
Jean-Francis MICHON

Pierre VALARCHER

Jean-Baptiste YUNÈS (Eds.)

3rd, INTERNATIONAL WORKSHOP, BFCA’07

PARIS, FRANCE, MAY 2007

PROCEEDINGS

PUBLICATION DES UNIVERSITÉS DE ROUEN ET DU HAVRE





BFCA’07





BFCA’07
Boolean Functions: Cryptography and

Applications

Edited by

Jean-Francis Michon
Pierre Valarcher

Jean-Baptiste Yunès

Proceedings of the conference

organized at the

Université Paris Diderot, May 2–4th, 2007

by the

Laboratoire d’Informatique Fondamentale:
Fondements et Applications de Paris Diderot

Laboratoire d’Informatique, de Traitement de
l’Information et des Systèmes de Rouen

Laboratoire d’Algorithmique, Complexité
et Logique de Paris Est

Publication des Universités de Rouen et du Havre



c© PUBLICATION DES UNIVERSITÉS DE ROUEN ET DU HAVRE, 2007



Contents

Préface III

Sylvain Guilley, Philippe Hoogvorst,
Renaud Pacalet, Johannes Schmidt

Improving side-channel attacks by exploiting substitution
bpxes properties 1

İsa Sertkaya, Ali Doğanaksoy
Some results on nonlinearity preserving bijective
transformations 27

Selçuk Kavut, Melek D. Yücel, Subhamoy Maitra
Construction of resilient functions by the concatenation of
boolean functions having nonintersecting Walsh spectra 43

Sumanta Sarkar, Subhamoy Maitra,
Deepak Kumar Dalai

On dihedral group invariant boolean functions 63

Joan-Josep Climent, Francisco J. Garćıa,
Verónica Requena

Some constructions of bent functions of n + 2 variables
from bent functions of n variables 77

Ali Doğanaksoy, Elif Saygı, Zülfükar Saygı
Some necessary conditions for a quadratic feedback shift
register to generate a maximum length sequence 93

Frederik Armknecht, Pierre-Louis Cayrel,
Philippe Gaborit, Olivier Ruatta

Improved algorithm to find equations for algebraic attacks
for combiners with memory 101

Mauŕıcio Araújo Dias, José Raimundo de Oliveira
An inverter architecture for ECC-GF(2m) based on the
Stein’s algorithm 119

Josef Pieprzyk, Xian-Mo Zhang
Computing Möbius transforms of boolean functions and
characterising coincident boolean functions 135



II

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

PREFACE

Jean-Francis Michon1, Pierre Valarcher2 and
Jean-Baptiste Yunès3

The Meeting

The “Boolean Functions: Cryptography and Applications”
international meeting took place on May 2-3th, 2007, in Paris,
France. It was the third conference, in the field of Boolean func-
tions, organized by the LITIS, University of Rouen, the LIAFA,
University Paris Diderot and the LACL University of Paris-Est.

The main purpose of the conference was to create contacts
between many different scientists working on Boolean functions,
and that goal was reached. Approximatetly 30 participants came
from many different countries over the world.
All papers were reviewed by two competent referees.
The organizers would like to give special thanks to Professor
McGuire from Claude Shannon Institute, Ireland, and Professor
Langevin from University of Toulon, France for their invited talk.

L’Atelier

L’atelier international “Fonctions Booléennes: Cryptographie
et Applications” s’est tenu les 7 et 8 mars 2007, à l’Université

1 Université de Rouen, LITIS, 76821 Mont Saint Aignan Cedex, France.
email: jean.francis.michon@univ-rouen.fr
2 Université Paris-Est, LACL, 94500 Crteil, France.
email: valarcher@univ-paris12.fr
3 LIAFA - Université Denis Diderot - Paris 7. 175 rue Chevaleret, F-75013
Paris, France. email: Jean-Baptiste.Yunes@liafa.jussieu.fr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



IV J-F. MICHON, P. VALARCHER, J-B. YUNÈS

Paris Diderot, France. Il s’agissait de la troisième conférence sur
le thème des fonctions Booléennes. BFCA’07 a été organisé con-
jointement par le LIAFA de l’Université Diderot de Paris, le LITIS
de l’Université de Rouen et le LACL de l’Université Paris-Est.

Le but premier de cette conférence est de faire se rencontrer
de nombreux chercheurs travaillant sur les fonctions Booléennes.
Tous les articles ont été examinś par deux juges compétents. Nous
tenons à remercier le professeur McGuire de l’Institut Claude
Shannon, Irlande, et le professeur Langevin de l’Université de
Toulon, France, pour leurs conférences invitées.

Thanks/Remerciements

Many thanks to our sponsors:
Un grand merci à nos sponsors:

Le LIAFA
L’Université Paris 7
Le LITIS
Le LACL
Le CNRS

Organizing committee/Comité d’organisation

Jean-Francis Michon (Univ. de Rouen, LITIS)

Pierre Valarcher (Univ. Paris-Est, LACL)

Jean-Baptiste Yunès (Univ. Paris 7, LIAFA)

Secretary/Secrétariat

Noëlle Delgado (LIAFA)

Louise Fauconnier (LIAFA)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



PREFACE V

Program committee/Comité de programme

Ali Akhavi (LIAFA/CNRS, France)

Hervé Chabanne (SAGEM, France)

Philippe Guillot (Univ. Paris 8, France)

Subhamoy Maitra (Indian Statistical Institute, Kolkata, India)

Jean-Francis Michon (LITIS, Rouen, France)

François Rodier (Institut de Mathématiques de Luminy, France)

Pierre Valarcher (LACL, Créteil, France

Melek D. Yücel (Middle East Technical University, Turkey)

Jean-Baptiste Yunès (LIAFA, Paris, France)

Referees/Examinateurs

Ali Akhavi
Lejla Batina
Hervé Chabanne
Mireille Fouquet
Éric Garrido
Philippe Guillot
Aline Gouget
Fabien Laguillaumie
Subhamoy Maitra
Jean-Francis Michon
Emmanuel Prouff
François Rodier
Damien Vergnaud
Melek Yücel
Jean-Baptiste Yunès

BFCA on the WEB/BFCA sur Internet

http://www.liafa.jussieu.fr/bfca/

Paris, September (Septembre), 2007

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07





Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

IMPROVING SIDE-CHANNEL ATTACKS BY
EXPLOITING SUBSTITUTION BOXES PROPERTIES

Sylvain Guilley1,2, Philippe Hoogvorst1,2, Renaud Pacalet1,3 and
Johannes Schmidt4

Abstract. This article revisits the “Correlation Power At-
tack” (CPA [18]), and justifies its physical relevance regard-
ing CMOS circuits dissipation model. The CPA is then
shown to be practical – and reproducible – on a real piece of
hardware (DES co-processor.) Based on this successful at-
tack, a theory about the vulnerability is derived. It happens
that the attack asymptotic strength is not related to the
acquisition conditions, but only to the algorithm implemen-
tation. In the case of an iterative implementation of a Feis-
tel cipher, we show that the customarily used power mod-
els are valid. Within this theoretical framework, the attack
strength depends only on the substitution boxes mathemat-
ical properties. A new distinguisher (9), more efficient than
the transparency order [10], is proposed. Two enhancements
of the proposed distinguisher are presented. The study of
the relationship between the proposed distinguishers and the
substitution boxes is still an open problem.

Key words: Security of hardware, side-channels analysis, at-
tack algorithms, maximum likelihood evaluation, criteria on vec-
torial Boolean functions (substitution boxes, aka sboxes.)

1 email: {guilley, hoogvorst, pacalet}@enst.fr
2 GET/ENST, CNRS LTCI (UMR 5141), 46 rue Barrault, F-75634 Paris
Cedex 13, France.
3 GET/ENST, CNRS LTCI (UMR 5141), Institut Eurecom BP 193, 2229
route des Crêtes, F-06904 Sophia-Antipolis Cedex, France.
4 email: johannes.schmidt@mpq.mpg.de. Max-Planck-Institute of Quan-
tum Optics, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



2 SYLVAIN GUILLEY ET AL.

1. Introduction

Electronic systems that embed cryptographic material are vul-
nerable to side-channel attacks. Every cryptographic implementa-
tion, be it software or hardware, leaks physical information about
its internal state. More precisely, the usage of Boolean variables by
complementary-MOS (CMOS [7]) circuits is responsible for charge
transfers. The consequence is an observable power consumption
and an electromagnetic field generation. Those dynamic quanti-
ties can be acquired by an attacker. They are rich in information
because they are correlated with the manipulated data. Exploit-
ing side-channels (power consumption, electromagnetic emissions,
etc.) of hardware has proved to be a successful technique to ac-
quire information about the key being used for ciphering.

Two categories of side-channel attacks can be defined, depend-
ing on their modus operandi.

(1) The so-called “template” attacks consist in a long off-line
profiling step, that enables future fast on-line attacks.

(2) The so-called “correlation” attacks work as greedy algo-
rithms: the side-channel information is analyzed until the
secrets are extracted.

Template attacks [4, 9] require that a clone of the target at-
tacked (or the target itself in open platforms) be available. This
clone is then used as a training device, that is exercised in order
to build up a side-channel database.

The on-line attack consists in matching the side-channel infor-
mation acquired on the actual target device with that collected
in the profiling preliminary stage. The correct key guesses are
distinguished from the bad ones based on the analysis of the de-
viations from the profile database. The attack thus relies on a
measurement-versus-measurement comparison.

The correlation attacks work differently: a known or suspected
physical syndrome is looked for in the acquired side-channel infor-
mation. The attack can thus begin from scratch. It ends as soon
as the correlation with the physical syndrome overcomes a given
signal-to-noise ratio, that makes it possible to decide unambigu-
ously the correct values of the subkeys. Contrary to template at-
tacks, correlation attacks require some a priori information about
the architecture of the algorithm under attack: the attacker must
indeed be able to devise a so-called “selection function”, and to



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 3

access either the plaintext or the ciphertext. The goal of this func-
tion is to extract from the power traces only one relevant part.
The extraction is consistent if the selection function is correlated
to an actual internal dissipation occurring in the attacked chip;
otherwise, it is decorrelated (at first order) and the extracted sig-
nal appears like noise. The term of “correlation attack” was first
coined by É. Brier et al. in 2003 [17]. It made more clear the
working factor of the original DPA from P. Kocher [6]: this sem-
inal attack is indeed a single-bit correlation attack in the partic-
ular case when the sensitive data is used right after a constant
(plaintext-independent) operation.

All these attacks have been shown to be practical on unpro-
tected implementations. It is now to be feared that they improve
in such a way they become able to defeat protected implementa-
tions as well. Unfortunately, this scenario is all the more likely as
neither the template nor the correlation attacks are optimal. As a
matter of fact, the template attacks do not exploit the knowledge
of the underlying implementation, and correlation attacks do not
use a clone device to devise a fine-tuned power dissipation model.

The strategy presented in this paper consists in using the ad-
vantages of both the template and the correlation attacks. The
goal of this paper is to show how the use of a model of the ex-
ploited dissipation, possibly extracted from a clone device, can
enhance the attack. In particular, the goal is not to demonstrate
the fastest possible attack. For this reason, plain traces, without
any signal processing, are used. In addition, we do not take advan-
tage of any peculiarity of the design under analysis: so, to remain
consistent, we present a basic register transfer attack (although
tailored attacks might be more powerful.)

The rest of the article is organized as follows. Section 2 presents
the correlation power attack based on a CMOS power model. The
goal of this section is to provide a didactic explanation of this
attack, illustrated on the example of a DES [8] co-processor. Sec-
tion 3 provides experimental evidences that the CPA works when
applied on real-life encryptions. The choice for a selection func-
tion based on a Hamming distance (HD) is motivated here. In
the section 4, a theory for the CPA is presented. This theory
merges results from the original CPA [18] and from the key hy-
potheses disambiguation using an maximum likelihood estimator
(MLE [11].) A new criterion, namely Equation (9), for the power

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



4 SYLVAIN GUILLEY ET AL.

attack strength is proposed in Sec. 4.3.3. In Sec. 5, two opti-
mizations for the attack are presented. It is an open issue to find
links and to compare these criteria. Finally, Sec. 6 concludes the
paper and emphasizes that challenging open problems related to
Boolean functions are presented in this paper. The appendices A
and B provide detailed technical information about the attacked
circuit and the acquisition setup. The appendix C provides with
the detailed proofs of some lemmas.

2. Correlation Power Attack

2.1. Power Model of CMOS Circuits

In the historical DPA of P. Kocher [6], no explicit link was
explained between the power curves and the gates dissipation: the
attack only assumed a “mysterious” bias. This section explains
the nature of the leaks in two popular power models: Hamming
weight and Hamming distance [17].

In CMOS circuits [7], logic gates only leak information when
their output toggles. This information can be collected by an
attacker as a current intensity (power attack), a radiated electro-
magnetic field (EM attack), or any other auxiliary physical chan-
nels. In the sequel, we focus on power attacks, where an attacker
monitors the device’s activity thanks to acquisition of the voltage
drop across a “spying” resistance malevolently placed between the
power supply source and the power input of the targeted device.
Depending on the relative N (negatively doped) and P (positively
doped) MOS transistors dimensions and on the capacitive environ-
ment of the net it loads, the energy can be different whether the
output rises or falls. We denote these quantities with ξ↑ and ξ↓.
The overall chip consumption is thus made up of the accumulation
of the individual contributions from all the gates. In a cryptopro-
cessor, the inputs are the message m and the key k. In addition,
if the implementation is synchronous, the gates only change states
consecutively to a rising edge of the global clock. The chip power
consumption occurring at period t → t + 1 is thus equal to:

power
.
=

∑

i∈nets

ξ↑i i(t) · i(t + 1)
︸ ︷︷ ︸

Net i has a rising edge

+ξ↓i i(t) · i(t + 1)
︸ ︷︷ ︸

Net i has a falling edge

. (1)



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 5

We do not claim that this model is original: it is for instance
used in [11], and also in the basic power analysis engines embedded
in CAD tools, such as Cadence [2].

Concretely, the consumption defined in (1) is perturbed by
some sources of noise:

• first of all, the gates i "= i′ consumption is not totally
decorrelated, due to cross-talk between nets,

• second, the combinatorial parts are incurred by glitches,
• third, the chip environment might vary during the acqui-

sition, and
• fourth, the acquisition apparatus brings its own impreci-

sion, for instance due to quantification noise.

2.2. Side-Channel Information Extraction

The power model (1) provides an integrated information about
the circuit’s activity. In the context of side-channel analysis, the
attacker wishes to extract the activity of a single net. We place
ourselves in the case where the attacker knows the exact function-
ality of the circuit, but not its layout. She is thus able to acquire
traces, and to weight them with a “selection function”, noted S.
This function (for a single target net j) can be defined as:

(1) the Hamming weight (HW): j(t + 1) or
(2) the Hamming distance (HD): j(t) ⊕ j(t + 1).

It is preferable to use the ±1 “signed” versions of those functions
(thus balanced), because the residual noise is averaged to zero.
The selection functions S are thus:

(1) the balanced Hamming weight: (−1)j(t+1) or
(2) the balanced Hamming distance: (−1)j(t)⊕j(t+1).

In a typical cryptographic algorithm (such as in a product block
cipher), the successive intermediate data are crafted to be as decor-
related as possible from each other. If “E” denotes the expectation
of a random variable, it is thus reasonable to assume that:

E(i(t) · i(t + 1)) = E(i(t) · i(t + 1)) =

E(i(t) · i(t + 1)) = E(i(t) · i(t + 1)) =

(
1

2

)2

=
1

4
.

Now, using the identities (−1)x = 1 − 2 · x, x = 1 − x and
E(x) = 1

2 , for all x ∈ {0, 1}, it is easy to compute the average

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



6 SYLVAIN GUILLEY ET AL.

signal got by an attacker using the two latter selection functions
(with “power” being equal to the random variable defined in (1)):









E

(

power ×
(

−2 · (−1)j(t+1)
))

=
ξ↑j −ξ↓j

2 ,

E

(

power ×
(

−2 · (−1)j(t)⊕j(t+1)
))

=
ξ↑j +ξ↓j

2 .
(2)

The detailed demonstration is given in appendix C.1 at page 23.
As the target gate dissipates power on both types of transitions,
ξ↑j and ξ↓j are strictly positive for all the nets j in the netlist.

Moreover, it is worth restricting our study to attacks on the
sequential elements (DFFs in synchronous circuits.) In this case,
banks of registers are activated simultaneously (by a global clock),
which allows for the coherent summation of their individual con-
tribution. The registers contain data that depend on some bits
of the key. Given one hypothesis, the prospective value of many
internal nodes can be guessed. It is thus relevant to attack those
bits together, using multi-bit selection functions. In addition, we
assume that at the end of a round the bits of a word are made
as much independent as possible. This independence hypothesis
is not exactly true, but it allows for a simple model. Under the
assumption that: ∀i "= j, E(i · j) = E(i) ·E(j) = 1

4 , the multi-bit
correlation yields:









E

(

power ×
(

−2 ·
∑

j∈J (−1)j(t+1)
))

=
P

j∈J ξ
↑
j −ξ

↓
j

2 ,

E

(

power ×
(

−2 ·
∑

j∈J (−1)j(t)⊕j(t+1)
))

=
P

j∈J ξ
↑
j +ξ

↓
j

2 .

(3)
To the authors’ knowledge, these two equations provide the first
formal justification of the CPA.

In [15], Thomas Messerges discusses an attack on a software
implementation of DES based on the guess of the substitution
boxes output. In this work, the observed peaks are explained by
the number of transitions in a register. However, if the assembly of
the code being executed is not known to the attack (which was the
case for Messerges), the exact sequence of instructions executed is
also unknown. For this reason, the power model is taken equal
to the Hamming weight of the substitution boxes (aka sboxes.)
The motivation for this choice is that, by chance, the content
of the register at the previous clock can happen to be constant



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 7

(independent of the data.) In this case, the Hamming distance
model simplifies into a Hamming weight model.

Notice that apparently different selection functions can yield
correlated peaks. A relevant example is to consider: j(t)⊕j(t+1),
instead of j(t) ⊕ j(t + 1). The resulting differential is exactly the
opposite, because for an n-bit word w, |w|−n/2 = n/2−|w|. Now,
with w = j(t) ⊕ j(t + 1), j(t) ⊕ j(t + 1) = j(t) ⊕ j(t + 1) = w. A
good evaluator for the correlation between two selection functions
x and y is the so-called Pearson correlation:

E ((x − Ex) · (y − Ey))
√

E(x − Ex)2 ·
√

E(y − Ey)2
.

In the case of x = |w| and y = |w|, the Pearson correlation is
maximal in absolute value (it is equal to | − 1|.)

2.3. Information Extraction Limitations

If, instead of (1), a static-leakage aware power dissipation model
(denoted power′) is used:

power′
.
=

∑

i∈nets

ξ00
i i(t) · i(t + 1) + ξ01

i i(t) · i(t + 1) +

ξ10
i i(t) · i(t + 1) + ξ11

i i(t) · i(t + 1) , (4)

we show that it is possible for no attacker to extract neither the
pure static leakage (such as ξ00

j ) nor the pure dynamic leakage

(such as ξ01
j = ξ↑j .) As a matter of fact, any selection function S

that involves nets states at times t and/or t + 1 can be expressed
as:

S
.
= y00

j j(t) · j(t + 1) + y01
j j(t) · j(t + 1) +

y10
j j(t) · j(t + 1) + y11

j j(t) · j(t + 1) ,

where
(

y00
j , y01

j , y10
j , y11

j

)

∈ R4 are four numerical constants chosen

by the attacker. The mathematical expectation of the product
power′×S is proportional to: ξ00

j y00
j +ξ01

j y01
j +ξ10

j y10
j +ξ11

j y11
j . The

extraction of ξ00
j or ξ01

j is impossible if y00
j +y01

j +y10
j +y11

j = 0. This
condition is however necessary for the interference with extraneous
nets i "= j to be cancelled.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



8 SYLVAIN GUILLEY ET AL.

2.4. Hypothesis Testing and Key Cracking

It is now possible to sketch the scenario for a power attack.
When the attacked circuit performs an encryption, the plaintext
might be known, but not the intermediate results after the first
round. The nets whose activity is relevant to be extracted are
those from the datapath. If an encryption begins at time t, then
the plaintext j(t) is assumed to be known. The value of the datap-
ath register at time t+1 depends on j(t) and on the first round key.
However, in most block ciphers, be them Feistel or substitution-
permutation networks, the round keys are injected into the data
as small chunks. For example, j(t + 1) depends:

• on 4 bits of the key for Serpent,
• on 6 bits of the key for DES,
• on 8 bits of the key for AES, SKIPJACK, KHAZAD and

SAFER.

An attack thus consists in testing all the possible selection func-
tions: for every chunk of the key, there are 24, 26 or 28 of them
for the abovementioned popular algorithms. The correct selection
function will exhibit the bias computed in (3). The incorrect se-
lection functions are expected to be decorrelated from the power
traces, and thus to exhibit no or little bias.

3. Experimental Validation of CPA Attacks

3.1. Attacks Reproducibility

Prior to developing a theory about CPA, we need to be confi-
dent in the fact that attacks are indeed reproducible. For this pur-
pose, two experimental conditions are evaluated on a DES crypto-
processor:

• (Setup 1)at nominal voltage 1.2 V, with a spying resistor
R of 11 Ω [13],

• (Setup 2)the circuit is under-powered (V=0.7 volts) and
a resistor of higher value (R=80 Ω) is used.

The circuit’s dissipation profile is highly dependent on the experi-
mental conditions, as shown in Fig. 1. In both cases, the plaintext
x =000011fdca19fd46 is encrypted with the key k =6a65786a-
65786a65, resulting in the ciphertext y =78ec7f6ff219a7fe. The
figure represents accurate measurements, at 20 Gsample/s, of the



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 9

-20

0

20

40

60

80

0 5 10 15 20 25 30

11/20

V
ol

ta
ge

[m
V

]

Time [ns]

Time [clock cycles]

(Setup 1)

R=11 Ω, V=1.2 volt

-20

0

20

40

60

80

0 5 10 15 20 25 30

11/20

V
ol

ta
ge

[m
V

]

Time [ns]

Time [clock cycles]

(Setup 2)

R=80 Ω, V=0.7 volt

Figure 1. Trace power signature for two different
environmental conditions.

(same) first round of DES, running at 32 MHz (hence a period of
31.25 ns.) The power signature is described below:

• the rising edge of the clock is responsible for the dissipation
between 0 ns and 31.25 ns / 2, whereas

• its falling edge is responsible for the dissipation in the sec-
ond half of the period.

The CPA is realized on those two types of traces. The working
factor that is selected to quantify the attack success is a mere
signal-to-noise ratio (SNR):

• the signal is the extraction of the datapath for the correct
key guess, using extraction method presented in (3) with
set J being the 64-bit LR register of DES, whereas

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



10 SYLVAIN GUILLEY ET AL.

 0

 2

 4

 6

 8

 10

 0  10000  20000  30000  40000  50000

SN
R

Trace number

DPA on DES Sbox #1 (attack of the first round)

Theoretical SNR
(Asymptotic value)

Setup 1 / Correct key
Setup 2 / Correct key

Figure 2. Evolution of the SNR of the DPA on
DES sbox #1 with the number of accumulated
traces.

• the noise is the standard deviation of the extractions for
the incorrect key guesses.

Definition 3.1. Signal Sig SNR.

SNR(Sig)
.
= Sig(k=k̇)−Sig

„

1
#k−1

P

k %=k̇

“

Sig(k)−Sig
”2

«1/2 ,

where Sig is the signal mean, estimated as 1
#k

∑

k Sig(k).

The evolution of the SNR with the number of power traces (similar
to the representative ones shown in Fig. 1) is given in Fig. 2 for
the first sbox of DES.

Notice that a more elaborate criterion will be presented in
Sec. 4. It will be based on a model, that makes it possible to
derive a theoretical value for the SNR.

The model and the experimental SNRs are shown in Fig. 3 and
appear to match when the actual key used during encryption is
equal to the correct key k̇. The asymptotic values are however not
strictly identical, although a dependency in the sbox is clear. One
possible explanation for this second-order discrepancy is suggested
in Sec. 5.



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 11

 0

 2

 4

 6

 8

 10

 1  2  3  4  5  6  7  8

As
ym

pt
ot

ic
 S

N
R

 o
f t

he
 D

PA
 (3

00
00

 tr
ac

es
)

Sbox index

SNR of the DPA on the 8 Substitution Boxes (Sboxes) of the DES

Theoretical model [ Digital ; weight function = mean{ HW( S(x+k)+random )} ]
Experimental acquisition campaign on SecMatV1/DES_HW [ 11 ohm, 1.2 V ]
Experimental acquisition campaign on SecMatV1/DES_HW [ 80 ohm, 0.7 V ]

Figure 3. Comparison between theoretical dig-
ital model presented in Sec. 4 and experimental
analog measurements of the DPA Signal-to-Noise
Ratio (SNR) on the secret key encryption algo-
rithm DES [8] embarked in the SecMat V1 ASIC
(cf. the layout of Fig. 7(a)).

3.2. Hamming Weight versus Hamming Distance

As for DES, there are two common ways to attack:

(1) either known plaintext attacks, where the observer consid-
ers the first round of the encryption,

(2) or known ciphertext attacks on the last round of the DES
algorithm.

We will elaborate on the former, but all assumptions and equations
hold for the latter in analogy.

Figure 4 shows differential traces obtained by the weighting of
traces with the selection function HDJ(t)

.
=

∑

j∈J (−1)j(t)⊕j(t+1)

where J is the right 32-bit word (R) of DES datapath and t = 0
is the beginning on the encryption. Using NIST notations [8], the
selection function HDR(0) is also expressed as 32− 2× |R0 ⊕R1|.
This selection function extracts the number of transitions between
the right half of the IP-permuted plaintext and the right half of
the output of the first round. In figure 4, the extraction is actually
plotted with two curves: the rising (resp. falling) edge selection
function is 16− 2× |R0 ·R1| (resp. 16− 2× |R0 ·R1|.) Notice that
the arithmetic sum of these curves is equal to HDR(0), because
|R0 ⊕ R1| = |R0 · R1| + |R0 · R1|.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



12 SYLVAIN GUILLEY ET AL.

-1

 0

 1

 2

 3

 4

 5

 6

191817

Vo
lta

ge
 [m

V]

Time [clock cycles]

’Rising edge’ selection function
’Falling edge’ selection function

Transfer in the register R Transfer in the register L

Maximum = 1.39 mV

Maximum = 1.65 mV

Figure 4. Differential traces resulting from the
weighting by the two selection functions 16 − 2 ×
∣
∣R0 · R1

∣
∣ (rising edge) and 16−2×

∣
∣R0 · R1

∣
∣ (falling

edge) on DES.

At clock period 1, the transition occurs in the register R of
DES, while at clock period 2, the transition occurs in the register
L, because |R0 ⊕ R1| = |L1 ⊕ L2|. The power curves at clock

period 1 show that: ξ↑R ≈ ξ↓R ≈ 5.2 mV, where ξ↑,↓R
.
=

∑

j∈R ξ↑,↓j .
The register R seems to be well balanced. As for the register L,
the dissymmetry is significative: 1.39 mV = ξ↑L < ξ↓L = 1.65 mV.
The origin of the discrepancy between the signature of registers R
and L is not understood yet.

The Hamming distance model is thus much better, since it
exploits a larger bias.

4. CPA Attacks Modelization

4.1. From Practice to Theory

The SNR of the CPA on DES revealed that the eight sboxes
were not of equal strength. In this section, we seek an explanation
for this observation. First of all, we must get rid of the dependency
in the number of traces.

In practice, the traces are not random variables, such as in
(1), but rather functions T (x) of the ciphertext x. When few



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 13

traces (say N) are processed, the selection function S is biased.
In experiments, the following computation is done, so as to make
up for the bias:

∑N−1
x=0 CPA(x) "=

∑+∞
x=0 CPA(x) = 0 [12]. The

correlation is computed as follows:

tr(S × T ) − tr(S) × tr(T ) , (5)

where “tr” is the trace operator: trf
.
=

∑

x f(x). To simplify
the model, we assume that enough samples are collected for the
plaintexts to be equiprobable.

For the sake of clarity, the rest of the explanations are done us-
ing the unweighted Hamming Distance (HD) model. This means

that when attacking a multi-bit register J , all ξ{↑,↓}j , for j ∈ J , are
assumed to be equal. This quantity is thus a mere measure of tran-
sitions count. Only in the last Section 5 they will be reintroduced
to demonstrate an improvement of the attack.

4.2. From Crypto-Systems to Sboxes

The existing correlation models are often discussed in terms of
sboxes [10,12]. When attacking an entire crypto-system, the model
must be adapted. Figure 5 shows the datapath involving the first
sbox in an iterative hardwired DES implementation. The known
plaintext is j(t) ∈ J , where J is the 64-bit register LR. Given the
iterative nature of the algorithm, after the first round, j(t + 1) is
overwriting j(t) in the same register. However, it happens that
the sub-set of J involved by the first sbox is:

• j(t) ∈ R{32, 1, 2, 3, 4, 5} in the IP’ed plaintext, and
• j(t + 1)∈ R{9, 17, 23, 31} after the first round.

As {32, 1, 2, 3, 4, 5} ∩ {9, 17, 23, 31} = ∅, j(t) is independent from
j(t + 1) when analyzing the first sbox. The same remark actually
holds for all the sboxes. This property results from the diffusion
of DES. Any Feistel cipher is expected to feature the same prop-
erty. In this case, the attacker can decide to choose j(t) = 0, in
which case j(t)⊕ j(t+1) = j(t+1). Consequently, both the Ham-
ming weight and the Hamming distance selection functions can be
studied in a common framework.

4.3. Multi-bit Correlation Power Attack (CPA)

Emmanuel Prouff defined in [10] the transparency order, a met-
ric of the vulnerability of sboxes against a certain class of power

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



14 SYLVAIN GUILLEY ET AL.

4

S

[1-4]

6

[1-6]

E

6

6
{32,1,2,3,4,5}

R0 P

4

R1

4

4

L1

⊕K1

6

{9,17,23,31} {9,17,23,31}[1-6][1-6]

Key (K1)
M

e
ss

a
g
e

(L
R

0
)

⊕L0

L0
{9,17,23,31} {32,1,2,3,4,5}

Figure 5. Datapath of DES involved in the DPA
attack of the first round on sbox #1.

attacks. The considered attack scenario is a Hamming weight pre-
diction of the sboxes outputs.

This section elaborates on this result, by considering the same
selection function (multi-bit correlation power-analysis – CPA),
but using a maximum likelihood estimator (MLE) to distinguish
the correct key from the wrong hypotheses [11]. The new criterion
(9), that has not been studied yet, is proposed as a metric to
quantify the intrinsic strength of the targeted sbox.

4.3.1. Differential Traces

The target cryptographic function is: x +→ f(x⊕ k̇), the output
of a substitution box f , where the key k̇ is injected via one XOR1.
The vectorial Boolean function f operates from Fn

2 to Fm
2 . The

Boolean coordinate b ∈ [0,m[ of f is denoted fb. The attack
model is the following: the power traces are expected to contain
the scalar information p(x)

.
=

∑m−1
b=0 fb(x⊕ k̇), where x varies from

trace to trace and where k̇ is an unknown constant (e.g. a key.)
Note:

• The power model can be extended to a parametrized leakage
〈α|f ◦ τk̇〉, where α ∈ Rm models loads for each coordinate,
and where τk is the translation of vector k: τk( · ) +→ k⊕ · .
The studied case corresponds to α = (1, · · · , 1). Refer to
Sec. 5.2.

• Still better, a physical model that encompasses “signal in-
tegrity” issues, such as “cross-talk” between neighbor nets,
can be used: 〈f ◦ τk̇|α|f ◦ τk̇〉, where α ∈ Rm×m models
the cross-talk (symmetrical) matrix. Diagonal terms αb,b

1Other types of injection would yield the same results.



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 15

of matrix α are the components of vector α in the previous
model without cross-talk, because αb,b

(

fb ◦ τk̇

)2
= αbfb ◦τk̇.

The studied case corresponds to α = Idm.

However, these considerations are only useful to fine-tune an at-
tack to a given hardware. In the rest of this section, we suppose
that the leak is perfect: all the bits sign with the same amount and
they are not physically correlated.

The attacker correlates the traces with the collection of multi-
bit selection functions sk : x +→

∑m−1
b′=0 (−1)fb′(x⊕k), indexed by

k ∈ Fn
2 . For the sake of commodity, the key guess k is better off

be taken relative to the actual key k̇; the distance ε
.
= k⊕ k̇ is thus

considered in the sequel. A selection function must be balanced,
for decorrelated contributions to average to zero. After having
weighted enough traces, the attacker finally has at her disposal
#Fn

2 = 2n figures, namely:

∑

x

(
∑

b fb(x ⊕ k̇)
)

×
(
∑

b′ (−1)fb′ (x⊕k)
)

= tr
∑

b,b′ fb(−1)fb′◦τε = −1
2tr

∑

b,b′(−1)fb⊕fb′◦τε .
(6)

The last equality is a consequence of the selection function be-
ing balanced. Indeed, if p is the power model (tr(p) > 0, otherwise
the cryptographic engine violates the second law of thermody-
namics) and s the selection function, then tr(s) = 0 ⇔ tr(ps) =
tr((p − tr(p))s). This means that the same information can be
extracted from plain p or from its centered variant p − tr(p).

Notice that if the target function was not x +→ f(x ⊕ k̇) (cf
Sec. 4.3.1) but:

x +→ y ⊕ f(x ⊕ k̇) = j(t + 1), (7)

where the initial state is y
.
= j(t), then (6) would still be valid.

The reason is that the contribution of y (for DES sbox #1, y =
R0{9, 17, 23, 31}) is cancelled by the XORing between j(t) and j(t+
1).

In addition, the quantity (6) is negative because, in case of
an happy guess (i.e. ε = 0), the figure of merit for the matches

fb(x⊕ k̇) versus (−1)fb(x⊕k̇) (∀b ∈ [0,m[) is either 0·(−1)0 = 0 ≤ 0
or 1 · (−1)1 = −1 ≤ 0. Correct hypotheses are thus statistically
acknowledged by a negative weight.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



16 SYLVAIN GUILLEY ET AL.

For this reason, we define the differential traces as (twice) the
opposite of the expression (6):

∆(ε)
.
= tr

∑

b,b′

(−1)fb⊕fb′◦τε . (8)

4.3.2. Ghost Peaks

The differential traces (8) have two remarkable properties:

(1) tr∆ =
∑

ε∆(ε) = 0 if f is balanced (this is our assumption
in the sequel),

(2) ∆(0) = tr
(
∑

b (−1)fb ×
∑

b′ (−1)fb′
)

= tr
(
∑

b (−1)fb

)2
.

Consequently, ∆(0) ≥ ∆(ε), because the differential traces
are the auto-correlation of the centered Hamming weight
of the function f . The extensive proof of this property
is given in appendix C.2 at page 23. This result is the
first formal demonstration that the CPA is indeed a dis-
tinguisher between hypotheses on keys.

As, in our case, the correct selection function is equal to p −
tr(p), ∆(0) = tr(p2) > 0 (because tr(p) > 0.) As a consequence,
∃ε "= 0 such that ∆(ε) "= 0. The set {∆(ε), ε "= 0} is referred to as
ghost peaks.

Given the second property, the correct key can be guessed by
choosing the largest differential trace. This way of validating the

hypothesis k
?
= k̇ leads to the transparency order Tf [10].

As already mentioned in equation (7), in an iterative hardwired
implementation of DES, the initial state y to be replaced in situ
by the sbox output depends neither of the plaintext x nor on the
secret key k̇. In this case, an attacker can choose the “precharge
state” y to be equal to 0. Under this assumption, the transparency
order can be expressed as:

Tf =
1

2n − 1

∑

ε *=0

(|∆(0)| − |∆(ε)|)

= |∆(0)| −
1

2n − 1

∑

ε *=0

|∆(ε)| .

4.3.3. MLE as Hypotheses Test

The previous key candidates disambiguation is sub-optimal, be-
cause it treats ghost peaks as noise, although they are predictable.



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 17

The MLE method described in R. Bévan’s PhD thesis [11] consists
in computing a distance between full constellation of ghost peaks
and the expected constellation. Notice that in R. Bévan’s work,
the correlations are not computed explicitly: this section develops
R. Bévan computations.

We consider in the sequel the Euclidean distance ||·||2, but other
metrics could be more suitable (especially if the power model is
weighted by different real coefficients.)

The attacker thus computes the following set of distances, in-
dexed by ε:

||
−−−→
∆ ◦ τε −

−→
∆||2 ,

where
−→
f = (f(0), f(1), · · · , f(2n − 1)) is the vector made up of

function f values (i.e. its truth table represented flattened.)
This quantity can be expanded as:

∑

e

(

tr
∑

b,b′ (−1)fb ·
(

(−1)fb′◦τe⊕ε − (−1)fb′◦τe

))2

=
∑

e

(

tr
∑

b,b′ (−1)fb◦τe ·
(

(−1)fb′◦τε − (−1)fb′
))2

.

Thus, the attack will be all the more easy as the following
metric is high:

min
ε *=0

∑

e



tr
∑

b,b′

(−1)fb◦τe ·
(

(−1)fb′◦τε − (−1)fb′
)





2

. (9)

5. Attacks Enhancement Proposals

5.1. Multi-Dimensional Selection Function

The attacker can also guess the output bits b′ one by one, yield-
ing in bitwise differential traces:

∀b′ ∈ [0,m[, ∆(b′, ε)
.
= tr

∑

b

(−1)fb⊕fb′◦τε . (10)

After that, the attacker simply computes a distance in an m× 2n-
dimensional space.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



18 SYLVAIN GUILLEY ET AL.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2  4  6  8  10  12  14

Vo
lta

ge
 [m

V]

Time [ns]

R[1]
R[2]
R[3]
R[4]

1 2 3 4· · · · · ·

sbox #1

R

E

S
· · · · · ·

Figure 6. Extraction of the power consumption
of the four output bits of DES sbox #1.

5.2. Weighted Power Model

All the bits of the target register are not identical, from a phys-

ical point of view. Figure 6 shows the values 1
2

(

ξ↑j + ξ↓j

)

extracted

for each of the four bits j ∈ {1, 2, 3, 4} of the first sbox output.
It clearly appears that bits 1 & 4 sign with a greater intensity

than bits 2 & 3. Knowing the architecture of DES, the reason
is straightforward: the expansion E of DES induces one extra
fanout for the extremal bits R[1] and R[4]. An attacker can take
advantage of this a priori information (either extracted from the
layout or characterized on the device itself) to fine-tune her attack.

6. Conclusion

Correlation power attacks have been applied with success on
real devices. This tool allows to extract local information out
of global execution traces. The attack consists in testing an hy-
pothesis on a sub-key, involved in the extraction. Some seminal
works, by E. Prouff [10] and C. Carlet [3], model the CPA attack,
and prove that its strength is directly correlated to cryptanalytic



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 19

properties of the substitution boxes featured by symmetrical block
cipher algorithms. However, the attack strategy is not optimal, in
the sense that the best hypothesis is selected, thus disregarding
the structure of the false hypotheses. R. Bévan’s proposed in [11]
an optimal key hypothesis test, based on a maximum likelihood
estimator. This strategy is explicited in this paper. It leads to
the proposal for a new criterion (9) to quantify the weakness of
an sbox in front a CPA. This criterion opens up a new field of in-
vestigations, such as trade-offs between mandatory cryptographic
properties of sboxes and the CPA-resistance. Two alternative, and
supposedly stronger, criteria are also presented. Their superiority
w.r.t. (9) is still on open issue.

Acknowledgements

This work has partly funded by the French “Conseil Régional
de la Région PACA” through the SCS competitivity international
pole and by STMicroelectronics Advanced System Technology de-
partment at Rousset.

The authors are also grateful to the anonymous reviewers for
their valuable comments and suggestions.

Appendix A. The Attacked DES Architecture

The hardware used for the measurements is described in [14].
This section briefly recalls the main features of the hardware.

The DES crypto-processor was willingly embedded within a
SoC to avoid interferences between the encryptions and the pads
activity: indeed, in the presented architecture, the cryptoproces-
sor’s program is loaded once, and then executes silently; the only
pad that toggles is a trigger that is sent to the oscilloscope so that
it properly synchronizes the acquisitions. This trigger is activated
well before the encryption begins to ensure an optimal decoupling
of the two events.

The SecMat V1 experimental circuit is designed to validate
countermeasures against the DPA (Differential Power Attacks.)
It is made up of about two million transistors and has a silicon
area of 4 mm2. Its overall architecture is a bus-centric system-
on-chip (SoC), described in Tab. 1. Standardized modules, im-
plementing the Advanced-VCI [16] interface, are plugged together

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



20 SYLVAIN GUILLEY ET AL.

DES1

DES2

CPU

AES

RAM256
3×

(for DES)

ROM2k

4×
RAM64
(for AES)

SDES

RAM32k

Figure 7. Prototype ASIC developed in order
to confront power models against actual measure-
ments (refer to [5, pp 62–63].) The target crypto-
processor is labeled “DES2”.

onto a fixed priority bus mastered by an 8-bit 6502 CISC micro-
processor (obtained from the late open source project Free-IP.)
The processor boots a “monitor” from an embedded 2kb ROM
and loads its program from the outside through an UART (up
to 921 600 bauds) into a embedded 32kb RAM. The SoC is pro-
grammable in the C language (using cc65 compiler chain from
http://www.cc65.org/.) The main feature of the chip is the ac-
tivation of the four cryptoprocessors — one AES and three DES —
to lead DPA campaigns. It has been demonstrated interactively at
the circuit exhibition collocated with the conference ESSCIRC’05.

The SecMat circuits were synthesized with Cadence pks shell
and placed-and-routed with Cadence encounter. The DES mod-
ules to cryptanalyze were powered by a dedicated supply pair, that
convey the VSS=0 volt and VDD=1.2 volt voltages directly into to
the co-processor, equipped with its own power ring. The private
voltage of every co-processor is noted V, whereas the circuit’s core
voltage is noted U. In normal operating conditions, V=U=1.2 volt.
For the sake of attacks, the voltages may be tuned, as shown in
the left part of Fig. 8.



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 21

SecMat V1 Modules SecMat V1 Top-Level

Every module (e.g. crypto-
processors) communicates via
a shared local RAM.

Modules are connected to a
bus, and are able to send in-
terrupts to the 6502 CPU.

RAM

ADD

DI

WEB

DO

LOADR3

SELR2NR3

LOADR2

LOADR1

SELVCINDES

R
E

R
R

O
R

R
E

O
P

E
O

P

R
S
P

V
A

L

R
S
P
A

C
K

C
M

D

C
M

D
V
A

L

C
M

D
A

C
K

E
O

C

VCIInterface

R
S
P

V
A

L
E

O
P

C
M

D

C
M

D
V
A

L
C

M
D

A
C

K

R
S
P
A

C
K

R
E

O
P

R
E

R
R

O
R

R
D

A
T
A

D
I

A
D

D

D
O

C
M

D

E
O

C

W
E

B

A
D

D
R

E
S
S

W
D

A
T
A

R
D

E
R

R
O

R

8

8

8

8

83

2

ADD

WDATA

RD

INTR

CORE

R1

R2 R3

R
A

M
E

N
R

A
M

E
N

E
R

R
O

R
C

O
R

E

C
M

D
C

O
R

E

ARB

‘Wires’TimerUARTINTRRAMROMPIO

BUS

RAMRAM RAM RAM

CPU DES1 DES2 SDES AESFIX

I2C

Table 1. SecMat V1 System-on-Chip architecture.

The process is a low-leakage (hence high threshold voltage —
Vth(N) = 295 mV & Vth(P ) = 367 mV) 130 nm technology with
6 metal layers (M1–M6) from STMicroelectronics. The chips are
fabricated through the multi-project wafers offered by the CMP
(http://cmp.imag.fr/.)

The SecMat V1 circuit is placed on a motherboard that is con-
trollable remotely via a single USB socket. The SECMAT circuit
monitor is functional and can execute arbitrary code injected from
a PC. The attack motherboard is shown in the right part of Fig. 8.

Appendix B. The Acquisition Setup

The acquisition apparatus is an Infiniium 54 855A oscilloscope
sold by Agilent. The probes’ model is 1134A, featuring a band-
width of 7 GHz. The E2669A differential connectivity kit was
used. The power traces shown in this document were acquired
with a solder-in connector.

This section reports an acquisition campaign realized on the
DES hardware encryption of the ASIC SecMat V1. The architec-
ture of the crypto-processor is extensively described in chapter 3
of [13]. The campaign consists in the acquisition of 81 089 traces
with a constant key, jexjexje in ASCII or 0x6a65786a65786a65

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



22 SYLVAIN GUILLEY ET AL.

V

VSS

VDD

U

out: DES(k,m)
in: k, m

PC ↔ USB ↔ SECMAT:

clk rst data sel

VSS

VDD DESR

U
A

R
T

SECMAT

C

Trigger

R

U

V

(SecMat)

Attacked

ASIC

Power supplies Control via USB

32 MHz clock DPA probe

C

Trigger

Figure 8. Tunable environmental conditions (R,
V) when measuring side-channels on the SecMat
DES co-processor. (left.) The attack board front
view, with the SecMat V1 ASIC in exergue. (right.)

in hexadecimal. The traces are averaged 64 times by the oscillo-
scope. Without averaging, the traces resolution is 8 bits. Using
the oscilloscope built-in averaging capability, the resolution can
reach 12 bits. The spying resistor is on the VDD side of the power
supply, its resistance is 11 Ω, and the voltage is the nominal value
of 1.2 volts. In Fig. 3, another experimental condition is also used
(V = 0.7 volts and R=80 Ω.)



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 23

Appendix C. Mathematical Proofs

C.1. Proof of the First Equation in (2)

Proof.

E

({
∑

i∈nets
ξ↑i i(t) · i(t + 1)+
ξ↓i i(t) · i(t + 1)

}

×
(

−2 · (−1)j(t+1)
)
)

= −2 · E

({
∑

i∈nets
ξ↑i i(t) · i(t + 1)+

ξ↓i i(t) · i(t + 1)

}

× (1 − 2 × j(t + 1))

)

= −2 ·
∑

i∈nets

{

ξ↑i E
(

i(t) · i(t + 1)
)

+
ξ↓i E

(

i(t) · i(t + 1)
)

}

−2 ·
∑

i∈nets(−2) ×

{

ξ↑i E
(

i(t) · i(t + 1) · j(t + 1)
)

+
ξ↓i E

(

i(t) · i(t + 1) · j(t + 1)
)

}

= −2 ·
∑

i∈nets







1
22 ξ↑i + 1

22 ξ↓i − 2
{

1
23 ξ↑i + 1

23 ξ↓i

}

if i "= j ,

1
22 ξ↑i + 1

22 ξ↓i − 2
{

1
22 ξ↑i + 0 × ξ↓i

}

if i = j .

= −2 ·
∑

i∈nets

{
0 if i "= j ,

− 1
22 ξ↑i + 1

22 ξ↓i if i = j .
= 1

2 · (ξ↑j − ξ↓j ) .

!

C.2. Autocorrelation Lemma Proof

The purpose of this subsection is to show that the autocorrela-
tion of a function f is maximal at its origin (i.e. in 0.) The lemma
to prove can be expressed in the following way:

∀ε, tr
(

f2
)

≥ tr (f · f ◦ τε) . (11)

Proof. Given an arbitrary α ∈ R, the expression

tr (α · f − f ◦ τε)
2 ∈ R

is trivially greater or equal to zero. Put differently, the R → R

application:

α +→ tr (α · f − f ◦ τε)
2

+→ tr (α · f)2 + tr (f ◦ τε)
2 − 2 · tr (α · f · f ◦ τε)

+→ α2 · trf2

︸︷︷︸

a

− α · 2 · tr (f · f ◦ τε)
︸ ︷︷ ︸

b

+ trf2

︸︷︷︸

c

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



24 SYLVAIN GUILLEY ET AL.

is positive or null. As it is a parabola, it has either a double zero
or no real root at all. The quadratic discriminant b2 − 4 · a · c is
thus either null or strictly negative, i.e. b2 ≤ 4 · a · c. Hence:

(2 · tr (f · f ◦ τε))
2 ≤ 4

(

trf2
)2

.

Given that trf2 is positive, the square root of the previous in-
equality can be taken safely:

trf2 ≥ ±tr (f · f ◦ τε) .

This is sufficient to prove the announced lemma. !

Another way of proving Eqn. (11) consists in using linear alge-
bra results, as explained below:

Proof. The set of real-valued functions E = (Fn
2 → R,+, ·) is a

vectorial space on R. It is casually referred to as “pseudo-Boolean”
functions [1]. The application (f, g) +→ 〈f, g〉

.
= tr(f · g) is a scalar

product on E , because it is a symmetric positive-definite bilinear
form. Eqn. (11) is thus a mere special case of the Cauchy-Schwarz
theorem with g = f ◦ τε. !

References

[1] E. Boros and P.L. Hammer. Pseudo-Boolean Optimization. Discrete Ap-
plied Mathematics, 123((1-3)):155–225, 2002.

[2] Cadence. Delay Calculation Algorithm Guide, june 2002. Product SPR50,
ct alg.pdf.

[3] Claude Carlet. On Highly Nonlinear S-Boxes and Their Inability to
Thwart DPA Attacks. pages 49–62. INDOCRYPT 2005 (LNCS 3797),
december 2005. Bangalore, India. (Complete version on IACR ePrint).

[4] S. Chari, J.R. Rao, and P. Rohatgi. Template Attacks. In CHES, volume
2523 of LNCS, August 2002. ISBN: 3-540-00409-2.

[5] “Circuits Multi-Projets” (CMP, < cmp@imag.fr >) Annual Report 2005.
[6] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis: Leaking

Secrets. In Proceedings of CRYPTO’99, volume 1666 of LNCS, pages pp
388–397. Springer, 1999.

[7] Neil H.E. Weste and David Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. 3 edition (May 11, 2004), ISBN: 0321149017.

[8] NIST/ITL/CSD. Data Encryption Standard. FIPS PUB 46-3, Oct 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[9] Paul N. Fahn and Peter K. Pearson. IPA: A New Class of Power Attacks.
1717/1999:173, August 1999. Worcester, MA, USA. ISSN 0302-9743.



IMPROVING SCAS BY EXPLOITING SBOXES PROPERTIES 25

[10] Emmanuel Prouff. DPA Attacks and S-Boxes. pages 424–441. FSE 2005
(LNCS 3557), february 2005. Paris, France. (Edited by Springer-Verlag).

[11] Régis Bévan. Évaluation statistique et sécurité des cartes à puce.
Évaluation d’attaques DPA évoluées. PhD thesis, (french). Université
Paris 11 & École Nationale Supérieure d’Électricité (Supélec), April 2004.

[12] S. Guilley and Ph. Hoogvorst and R. Pacalet. Differential Power Analysis
Model and some Results. In Proceedings of WCC/CARDIS’04, pages pp
127–142, August 2004. Toulouse, France.

[13] Sylvain Guilley. Contre-mesures Géométriques aux Attaques Exploitant
les Canaux Cachés. PhD thesis, ENST, January 2007.

[14] Sylvain Guilley and Philippe Hoogvorst and Renaud Pacalet. A Fast
Pipelined Multi-Mode DES Architecture Operating in IP Representation.
Integration, The VLSI Journal,
DOI: 10.1016/j.vlsi.2006.06.004. (To appear in 2007).

[15] Thomas S. Messerges and Ezzy A. Dabbish and Robert H. Sloan. In-
vestigations of Power Analysis Attacks on Smartcards. In USENIX —
Smartcard’99, pages 151–162, May 10–11 1999. Chicago, Illinois, USA.

[16] VSI Alliance. On-Chip Bus Development Working Group. Virtual Com-
ponent Interface Standard Version 2 (OCB 2 2.0), April 2001.
http://www.vsia.org/.

[17] Éric Brier, Christophe Clavier, and Francis Olivier. Optimal statistical
power analysis. Cryptology ePrint Archive, Report 2003/152, 2003.

[18] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power
Analysis with a Leakage Model. Proc. of CHES’04, LNCS 3156:16–
29, August 11–13 2004. ISSN: 0302-9743; ISBN: 3-540-22666-4; DOI:
10.1007/b99451; Cambridge, MA, USA.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07





Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

SOME RESULTS ON NONLINEARITY PRESERVING

BIJECTIVE TRANSFORMATIONS

İsa Sertkaya1 and Ali Doğanaksoy1

Abstract. Nonlinearity is the most crucial criterion for mea-
suring the confusion property of symmetric ciphers. Meier
and Staffelbach investigated under which transformations
nonlinearity is preserved by only considering the bijective
transformations that act on input arguments of Boolean
functions. In this study, we extend the group by includ-
ing the bijective transformations acting on the truth table
of Boolean functions. We first give necessary and sufficient
conditions for an affine bijective transformation to keep non-
linearity invariant. Then, we present a class of non-affine
nonlinearity preserving bijective transformations and with
some search results, we give exact set of nonlinearity pre-
serving bijective transformations for Boolean functions with
two input arguments.
Keywords: Boolean function, nonlinearity

1. Introduction

Confusion is a very important property for a symmetric cipher,
lack of which causes vulnerability to cryptanalytic attacks. In
order to resist these attacks, the building components of the ci-
pher, mostly viewed as Boolean functions, are chosen with high
nonlinearity.

Investigating the bijective transformations that preserve the
design criterion will not only help understanding how powerful

1 Institute of Applied Mathematics, Middle East Technical University and
National Research Institute of Electronics and Cryptology, TÜBİTAK-
UEKAE, Turkey.
email: isa@uekae.tubitak.gov.tr, aldoks@metu.edu.tr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



28 İ. SERTKAYA & A. DOĞANAKSOY

the criterion is [1], but may also give opportunity to classify the
Boolean functions with respect to the criterion or to construct
Boolean functions with desired confusion and diffusion properties.

Meier and Staffelbach [4] studied and classified the bijective
transformations acting on input arguments of Boolean functions.
They showed that, only the affine transformations keep nonlin-
earity invariant. However, the considered group is a small group
related to all bijective transformations that act on the truth tables
of Boolean functions.

Later, in [3] (page 417) and [5] (Proposition 8.3), some spe-
cific bijective transformations are also investigated related to the
Walsh spectrum of Boolean functions. The considered transforma-
tions are composed of an affine bijective transformation on input
arguments of Boolean functions and adding an affine Boolean func-
tions. These results are a special case of the Theorem 3.7 stated
in the following section.

In this study, we concentrate on the group of the bijective trans-
formations and try to determine those transformations that keep
nonlinearity invariant. After recalling the result obtained in [4],
we give necessary and sufficient conditions for an affine bijective
transformation to preserve nonlinearity. Later, we focus on non-
affine bijective transformations and show existence of such trans-
formations. Finally, by using the search results, we give the exact
set of nolinearity preserving bijective transformations for Boolean
function with two input arguments and give some examples of non-
affine nolinearity preserving bijective transformations for Boolean
function with two input arguments.

2. Preliminaries

In this section, we fix the notation and state the definitions. A
Boolean function on n variables is a map, with domain Vn, that
takes values from GF (2). The set of all Boolean functions is de-
noted by Fn, which is isomorphic to V2n , and trivially |Fn| = 22n

.
From now on, unless otherwise stated explicitly, by “a function”
we mean a Boolean function in Fn.

Any function f can be uniquely represented as;

• The truth table of f ,

Tf = (f(α0), f(α1), . . . , f(α2n−1))



NONLINEARITY PRESERVING TRANSFORMATIONS 29

where αi ∈ Vn and αi’s are written in lexicographic order,
• The sequence of f ,

ζf = ((−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n
−1)),

• The algebraic normal form of f ,

f(x1, x2, . . ., xn) = c0⊕c1x1⊕· · ·⊕c12x1x2⊕· · ·⊕c12···nx1x2 · · · xn

where c0, c1, . . . , c12···n ∈ GF (2), or equivalently,

ANFf = (c0, c1, . . . , c12···n).

A function is called affine if it is of the form

f(x1, x2, . . ., xn) = c0⊕c1x1⊕· · ·⊕cnxn.

The set of all affine functions is denoted by An. If c0 = 0, then
the function is called linear and the set of all linear functions is
denoted by Ln.

The Walsh transform of f is defined as:

Wf (w) =
∑

x∈Vn

(−1)f(x)⊕wx

where w ∈ Vn and wx is the standard inner product on Vn. The or-
dered tuple, (Wf (α0),Wf (α1), . . . ,Wf (α2n−1)) is called the Walsh
spectrum of f and is denoted by TWf

. Obviously,

TWf
= ζfHn,

where Hn is the Sylvester-Hadamard matrix of order 2n.
The absolute maximum value in the Walsh spectrum is called

the spectral amplitude and we shall denote it by
∥
∥TWf

∥
∥.

Nonlinearity Nf of f , is the minimum distance of f to affine
functions, that is:

Nf = 2n−1 −
1

2

∥
∥TWf

∥
∥

Let Sn be the group consisting of all permutation matrices of
order n, and let Dn be the group consisting of all diagonal ma-
trices with all diagonal entries equal to ±1. Then S±

n , the group
generated by Sn and Dn, is a semidirect product of Sn and Dn.
The elements of S±

n are called monomial matrices.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



30 İ. SERTKAYA & A. DOĞANAKSOY

Definition 2.1. [2] Two Hadamard matrices H1 and H2 of order
n, are equivalent if one can be obtained from the other by opera-
tions of permuting rows and multiplying some rows by -1, and/or
permuting columns and multiplying some columns by -1. That
is to say, H1 and H2 are equivalent if H2 = P−1H1Q, for some
monomial matrices P,Q in S±

n .

Definition 2.2. [2] The automorphism group of a Hadamard ma-
trix H of order n, is the group consisting of all pairs (P,Q) of
monomial matrices, satisfying P−1HQ = H, where the group op-
eration is (P1, Q1) ◦ (P2, Q2) = (P1P2, Q1Q2).

We denote the automorphism group of a Hadamard matrix H
by Aut(H), that is

Aut(H) = {(P,Q) ∈ S±
n |P−1HQ = H}.

We end this section by stating some theorems, that will be used
in the following section, without giving proof. For further deatails,
reader may refer to [6].

Theorem 2.3. [6] Let f, g ∈ Fn. Let h ∈ Fn be the function
defined as,

h(α) = (f ⊕ g)(α) = f(α) ⊕ g(α) for all α ∈ Vn.

Then, the Walsh transform of h is equal to

Wh(ω) =
1

2n

∑

α∈Vn

Wf (ω ⊕ α)Wg(α),

for all ω ∈ Vn.

Corollary 2.4. ( [6]) Let f ∈ Fn and g ∈ Ln be such that g(α) =
βα for all α ∈ Vn. Then, the Walsh transform of the function
h ∈ Fn defined as,

h(α) = (f ⊕ g)(α) = f(α) ⊕ βα for all α ∈ Vn,

is equal to

Wh(ω) = Wf (ω ⊕ β),

for all ω ∈ Vn.



NONLINEARITY PRESERVING TRANSFORMATIONS 31

3. Nonlinearity Preserving Bijective Transformations

Let Θ(n) be the group of bijective transformations over V2n .
Any transformation ψ ∈ Θ(n), can be written as:

ψ(x1, x2, . . . , x2n) = (ψ0(x1, x2, . . . , x2n), ψ1(x1, x2, . . . , x2n),

. . . , ψ2n−1(x1, x2, . . . , x2n)),

where ψi(x1, x2, . . . , x2n) ∈ F2n , i = 0, 1, . . . , 2n−1. We denote the
action of a transformation ψ ∈ Θ(n) on a function f ∈ Fn by ψ ∗
f = ψ(Tf ). Note that (ψ ∗ f)(αi) = ψi(Tf ), i ∈ {0, 1, . . . , 2n − 1}.
Thus, ψ ∗ f is the truth table of the resulting function, and (ψ ∗
f)(αi) is the i-th (i = 0, 1, . . . , 2n − 1) component of the truth
table, namely the image of the resulting function at αi ∈ Vn.

It is obvious that, a ψ ∈ Θ(n) preserves nonlinearity, that is
Nf = Nψ∗f , if and only if

∥
∥TWf

∥
∥ =

∥
∥TWψ∗f

∥
∥, for any f ∈ Fn. By

Pn(N), we denote the set of transformations, which preserve Nf

for all f ∈ Fn, i.e.,

Pn(N) = {ψ ∈ Θ(n) | Nf = Nψ∗f , for all f ∈ Fn}

Theorem 3.1. Let ψ ∈ Θ(n), such that ψ results in a permutation
in the truth table for all f ∈ Fn, that is ψ∗f = TfP where P ∈ S2n .
Then, ψ ∈ Pn(N) if and only if there exists a Q ∈ S±

2n such that
(Q−1, P ) ∈ Aut(Hn).

Proof. Obviously, if there exists a Q ∈ S±
2n such that (Q−1, P ) ∈

Aut(Hn), then TWψ∗f
is nothing but a signed permutation of TWf

.
Thus, since spectral amplitude does not change, we can conclude
that ψ ∈ Pn(N).

Note that, ψ ∗ f = TfP means ψ is a bijective transformation
on input arguments of functions. Thus, by [4] we know that, ψ is
in fact an affine bijective transformation on input arguments of f ,
i.e., ψ ∗ f = TfP = Th where

h(α) = f(αA ⊕ β) for all α ∈ Vn,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



32 İ. SERTKAYA & A. DOĞANAKSOY

where β ∈ Vn and A ∈ GL(n,GF (2)). Then, for all f ∈ Fn we
have,

Wh(ω) =
∑

α∈Vn

(−1)f(αA⊕β)⊕ωα

=
∑

α∈Vn

(−1)f(α)⊕ω(αA−1⊕βA−1)

=
∑

α∈Vn

(−1)f(α)⊕(ω(αA−1)⊕ω(βA−1))

= (−1)ω(βA−1)
∑

α∈Vn

(−1)f(α)⊕(ω(A−1)t)α,

for all ω ∈ Vn.
Thus, ψ ∈ Pn(N) if and only if there exists a Q ∈ S±

2n such
that (Q−1, P ) ∈ Aut(Hn). !

Theorem 3.1 restates the result of Meier and Staffelbach, by
viewing the transformations as acting on the truth table of the
functions. Furthermore, with the following corollary, it classifies
the affine bijective transformations whether they are in fact linear
or not.

Corollary 3.2. Given a permutation matrix P ∈ S2n , the corre-
sponding bijective transformation that acts on input arguments of
f is linear if and only if Q ∈ S2n , where (Q−1, P ) ∈ Aut(Hn).

Proof. Immediately follows from the proof of Theorem 3.1. !

Naturally, Θ(n) can be partitioned as affine and non-affine
(nonlinear) transformations. Recall that by definition, ψ ∈ Θ(n)
can be written as:

ψ(x1, x2, . . . , x2n) = (ψ0(x1, x2, . . . , x2n), ψ1(x1, x2, . . . , x2n),

. . . , ψ2n−1(x1, x2, . . . , x2n)),

where ψi(x1, x2, . . . , x2n) ∈ F2n , i = 0, 1, . . . , 2n − 1. Since, each
ψi ∈ F2n can be represented by the algebraic normal form:

ψi(x1, x2, · · · , x2n) = c(i)
0 ⊕ c(i)

1 x1 ⊕ . . . ⊕ c(i)
12···2nx1x2 · · · x2n .



NONLINEARITY PRESERVING TRANSFORMATIONS 33

Then we get,

ψ : Tf &−→






















c(0)
0

c(1)
0

...

c(2n−1)
0









︸ ︷︷ ︸

λ0

⊕









c(0)
1

c(1)
1

...

c(2n−1)
1









︸ ︷︷ ︸

λ1

f(α0) ⊕ · · · ⊕









c(0)
2n

c(1)
2n

...

c(2n−1)
2n









︸ ︷︷ ︸

λ2n

f(α2n−1) ⊕









c(0)
12

c(1)
12

...

c(2n−1)
12









︸ ︷︷ ︸

λ12

f(α0)f(α1)⊕

· · · ⊕









c(0)
12···2n

c(1)
12···2n

...

c(2n−1)
12···2n









︸ ︷︷ ︸

λ12···2n

f(α0) · · · f(α2n−1)














t

,

or equivalently,

ψ : Tf &−→
(

λ0 ⊕ AT t
f ⊕ λ12f(α0)f(α1) ⊕ · · · ⊕

λ12···2nf(α0)f(α1) · · · f(α2n−1))
t ,

where A is the matrix of the form A = [λ1 λ2 . . . λ2n ].
For a bijective transformation ψ ∈ Θ(n), if λi = [0 0 . . . 0]t

for all i ∈ {12, 13, . . . , 12 · · · 2n}, then ψ is an affine transfor-
mation. Otherwise, if there exists a λi (= [0 0 . . . 0]t for some
i ∈ {12, 13, . . . , 12 · · · 2n}, then ψ is a non-affine transformation.
We denote the subgroup of Θ(n) consisting of all affine transfor-
mations by A(n).

The bijective transformations acting on input arguments of the
function f ∈ Fn are the elements of Θ(n), that satisfies the fol-
lowing conditions:

i: λ0 = [0 0 . . . 0]t,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



34 İ. SERTKAYA & A. DOĞANAKSOY

ii: λi = [0 0 . . . 0]t, for all i ∈ {12, 13, . . . , 12 · · · 2n},
iii: A ∈ S2n , i.e., A is a permutation matrix.

Hence, the group of all bijective transformations acting on input
arguments of the function f , is in fact the group S2n . Therefore,
we can conclude that S2n ⊂ A(n) ⊂ Θ(n).

The following lemma shows the existence of transformations
other than permutations which keep Nf invariant for all f ∈ Fn.

Lemma 3.3. Fix g ∈ Fn, and define a transformation ψ ∈ Θ(n)
by setting ψ ∗ f = ψ(Tf ) = Tf ⊕ Tg, for all f ∈ Fn. Then,
ψ ∈ Pn(N) if and only if g ∈ An.

Proof. First, suppose ψ ∈ Θ(n) such that ψ(Tf ) = Tf ⊕ Tg where
g ∈ An, and let Th = ψ ∗ f = Tf ⊕ Tg. Then, from Theorem 2.3,
we know that, the Walsh transform of the function h is

Wh(ω) =
1

2n

∑

α∈Vn

Wf (ω ⊕ α)Wg(α),

for all ω ∈ Vn. Since g ∈ An, TWĝ
= (0, 0, . . . ,±2n, 0, . . . , 0). That

is, Walsh spectrum of g has only one non-zero value, which is equal
to ±2n. Then, the above equation can be simplified as,

Wh(ω) = ±Wf (ω ⊕ αk)

for all ω ∈ Vn, where k ∈ {0, 1, . . . , 2n − 1}. Thus, ψ preserves
∥
∥TWf

∥
∥ for all f ∈ Fn. Therefore, it follows that ψ ∈ Pn(N).

Now conversely, suppose ψ ∈ Θ(n) such that ψ(Tf ) = Tf ⊕ Tg

where f, g ∈ Fn and ψ ∈ Pn(N). Assume that g /∈ An. Consider
a function f ∈ An. Then, obviously, the function h ∈ Fn, with
Th = ψ ∗ f = Tf ⊕ Tg is not an affine function. Thus, Nh > Nf ,
which contradicts with the assumption ψ ∈ Pn(N). Thus, the
assertion follows. !

Now, we give some lemmas that will be used in the proof of the
main theorem which states the necessary and sufficient conditions
for an affine transformation ψ ∈ A(n) to preserve nonlinearity for
all f ∈ Fn. For the proofs, reader may refer to [6] and [7].

Lemma 3.4. [6] Let A ∈ GL(2n, GF (2)) be fixed. Define ψ ∈
Θ(n) such that ψ(Tf ) = TfA for all f ∈ Fn. If ψ ∈ Pn(N), then
A = (ai,j), where i, j ∈ {1, 2, . . . , 2n}, satisfies the following:

i: Any column of A is the truth table of some function whose
nonlinearity is equal to one.



NONLINEARITY PRESERVING TRANSFORMATIONS 35

ii: The vector obtained by xor of any two columns of A is the
truth table of some function whose nonlinearity is equal to
two.

Lemma 3.5. [6] Any matrix A ∈ GL(2n, GF (2)) satisfies the two
conditions in Lemma 3.4 if and only if A = B⊕P , where P ∈ S2n

and B is a matrix of order 2n over GF (2) whose columns are the
not necessarily distinct truth table of affine functions.

Lemma 3.6. [6] Given A ∈ GL(2n, GF (2)) satisfying the condi-
tions in Lemma 3.4, define the linear transformation ψ ∈ Θ(n) so
that ψ(Tf ) = TfA for all f ∈ Fn. Then, ψ ∈ Pn(N) if and only
if the corresponding P ∈ S2n is in fact an affine transformation
acting on input arguments of f .

Lemma 3.6 states that the nonlinearity preserving linear trans-
formations are of the form Tf (B ⊕P ) where P ∈ S2n corresponds
to an affine transformation on input arguments of f , and B is a
matrix of order 2n over GF (2) whose columns are truth tables of
some affine functions, not necessarily distinct. Let ψ be a nonlin-
earity preserving linear transformation. Trivially, for all f ∈ Fn

we have ψ ∗ f = Tf (B ⊕ P ) where B and P are as mentioned
above. Furthermore, we can express ψ as ψ = ψ1 ⊕ ψ2 where
ψ1 ∗ f = TfB and ψ2 ∗ f = TfP . Obviously, image of ψ1 is a sub-
set of affine functions, i.e., Im(ψ1) ⊆ An. So, we may replace ψ1

with a nonlinear map defined over V2n , say ψ̃1, with Im(ψ̃1) ⊆ An,
which is not necessarily invertible. Then, the resulting transfor-
mation ψ̃ = ψ̃1 ⊕ ψ2 is not an affine transformation. However, it
is easy to show that ψ̃ keeps nonlinearity invariant. Therefore, if
there exists a bijective transformation ψ̃ such that ψ̃ = ψ̃1 ⊕ ψ2

where Im(ψ̃1) ⊆ An and ψ2 ∗ f = TfP with P satifying the re-

quirements above, then ψ̃ is a non-affine nonlinearity preserving
transformation.

Theorem 3.7. Let ψ ∈ A(n) be an affine transformation so that
for all f ∈ Fn,

ψ ∗ f = ψ(Tf ) = Tg ⊕ TfA,

where g ∈ Fn and A ∈ GL(2n, GF (2)) are fixed.
Then, ψ ∈ Pn(N) if and only if g ∈ An and A = B ⊕P , where

P ∈ S2n corresponds to an affine transformation acting on input
arguments of f , and B is the matrix of order 2n over GF (2) whose

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



36 İ. SERTKAYA & A. DOĞANAKSOY

columns are the truth table of affine functions, not necessarily dis-
tinct.

Proof. For fixed g ∈ Fn and A ∈ GL(2n, GF (2)), suppose ψ ∈
Θ(n) so that ψ(Tf ) = Tg ⊕ TfA, preserves Nf for all f ∈ Fn,
that is ψ ∈ Pn(N). Now, consider the affine function 0n, that is
T0n = (0, 0, . . . , 0). Then, by the assumption, the function h ∈ Fn

such that Th = ψ(T0n) has the same nonlinearity with 0n. In
other words, h ∈ An. Since, Th = ψ(T0n) = Tg, it follows that
g ∈ An. Since ψ is an affine transformation, we can write ψ ∗ f =
ψ2 ∗ (ψ1 ∗ f), where ψ1 ∗ f = TfA and ψ2 ∗ f = Tf ⊕ Tg. We have
shown that, ψ2 preserves Nf , for all f ∈ Fn, since g ∈ An. Then,
ψ ∈ Pn(N) if and only if ψ1 preserves Nf , for all f ∈ Fn, for
which the sufficient and necessary conditions are shown in Lemma
3.5 and 3.6.
Obviously, from Lemma 3.3, 3.4, 3.5, and 3.6, it follows that if
g ∈ An and A = B ⊕ P , where P ∈ S2n with ϕ ∈ A(n), and B is
the matrix of order 2n over GF (2), whose columns are the truth
table of affine functions, which are not necessarily distinct, and
ψ(Tf ) = Tg ⊕ TfA, then ψ ∈ Pn(N). !

Note that, the results obtained in [3] and [5] are in fact, equiv-
alent to a special case of the above theorem, that is the case when
the matrix B is the zero matrix.

So far, we have analyzed the elements of A(n) and classified
whether they are in Pn(N) or not, by giving the necessary and suf-
ficient conditions on affine bijective transformations to keep non-
linearity invariant. Now, we present a proposition that shows the
existence of non-affine bijective transformations that keep nonlin-
earity invariant.

Proposition 3.8. Let ψ ∈ Θ(n) be a transformation satisfying
the following conditions:

i: λ0 is the truth table of some affine Boolean function,
ii: the matrix A satisfies the conditions mentioned in Lemma

3.6,
iii: λi is the truth table of some affine Boolean function for

all i ∈ {12, 13, . . . , 12 · · · 2n}.

Unless λi = [0 0 . . . 0]t for all i ∈ {12, 13, . . . , 12 · · · 2n}, ψ is a
non-affine transformation. Then, ψ ∈ Θ(n) satisfying the above
conditions preserve nonlinearity for all f ∈ Fn.



NONLINEARITY PRESERVING TRANSFORMATIONS 37

Proof. The action of ψ ∈ Θ(n) satisfying the mentioned condi-
tions, on a function is nothing but permuting the function’s truth
table by an affine transformation that acts on input arguments,
and xoring it with the truth table of an affine function which is
determined by the function itself. We know by Theorem 3.1 and
Lemma 3.3, such a situation does not change the nonlinearity for
all f ∈ Fn. Hence, all ψ ∈ Θ(n) that satisfy the above conditions,
surely, keep nonlinearity invariant. !

Proposition 3.8 proves that there exists a class of non-affine
nonlinearity preserving bijective transformations. In order to make
the proposed conditions on non-affine bijective transformations
clear, we give some examples on F2 in the following section.

4. Search Results and Examples

The number of elements in Θ(n) is 22n
!. In fact, for n = 2, we

have:

(1) |F2| = 16
(2) |A2| = 8
(3) |Θ(2)| = 16! ∼= 244

(4) |P2(N)| = 8! × 8! ∼= 230

where |.| stands for the cardinality of that set, i.e. number of ele-
ments of the set. Here, P2(N) can be easily constructed since, in
F2, there exists 8 affine functions and constructing a transforma-
tion in a way that maps affine functions onto itself and non-affine
functions onto non-affine functions.

Search algorithms can be carried over these bijective transfor-
mations when n = 2, for extracting the exact set of nonlinearity
preserving transformations. But, even for n = 3, |Θ(3)| ∼= 21684,
hence searching the whole set becomes infeasible.

For n = 2, we scan the group of bijective tranformations acting
on F2, namely Θ(2), in order to clearify the exact set of non-
linearity preserving transformations, namely P2(N). The search
was pursued by first constructing non-linearity preserving trans-
formations and then checking whether they satisfy the conditions
mentioned in Proposition 3.8 or not. Relying on our search results,
we prove the following remark:

Proposition 4.1. Let ψ ∈ Θ(2). Then, ψ preserves nonlinearity,
i.e. ψ ∈ P2(N), if and only if ψ satisfies the following conditions:

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



38 İ. SERTKAYA & A. DOĞANAKSOY

i: λ0 is the truth table of some affine Boolean function,
ii: the matrix A satisfies the conditions mentioned in Lemma

3.6,
iii: λi is the truth table of some affine Boolean function for

all i ∈ {12, 13, . . . , 1234}.

Hence, Propositions 3.8 and 4.1 derives the exact nonlinearity
preserving transformations in Θ(2).

We end this section by giving some examples non-affine non-
linearity preserving transformations for n = 2.

Example 4.2. Let ψ ∈ Θ(2) defined as:

ψ(x1, x2, x3, x4) = (ψ0(x1, x2, x3, x4), ψ1(x1, x2, x3, x4),

ψ2(x1, x2, x3, x4), ψ3(x1, x2, x3, x4)),

where the truth table of ψ0, ψ1, ψ2, ψ3 from F4 is as follows:

Tψ0
= (0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1),

Tψ1
= (0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0),

Tψ2
= (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0),

Tψ3
= (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1).

Then, the ANF of ψ0, ψ1, ψ2, ψ3 will be:

ANFψ0
= (0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0),

ANFψ1
= (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0),

ANFψ2
= (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0),

ANFψ3
= (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

or equivalently,

ψ0(x1, x2, x3, x4) = x1 ⊕ x1x4 ⊕ x3x4,

ψ1(x1, x2, x3, x4) = x2 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x3x4

⊕x2x3x4,

ψ2(x1, x2, x3, x4) = x3 ⊕ x2x4 ⊕ x1x3x4 ⊕ x2x3x4,

ψ3(x1, x2, x3, x4) = x4.



NONLINEARITY PRESERVING TRANSFORMATIONS 39

Then we have,

ψ : Tf &−→ (AT t
f ⊕ λ14f(α0)f(α3) ⊕ λ24f(α1)f(α3) ⊕

λ34f(α2)f(α3) ⊕ λ134f(α0)f(α2)f(α3) ⊕

λ234f(α1)f(α2)f(α3))
t,

where A is the identity matrix, λ14 = [1100]t, λ24 = [0110]t, λ34 =
[1100]t, λ134 = [0110]t and λ234 = [0110]t.

Obviously, ψ /∈ A(2), that is to say, ψ is not an affine transfor-
mation. However, applying ψ to a function is nothing but adding
some affine functions to the truth table of the function which are
determined by the function itself. Hence, by Lemma 3.3, this does
not affect the nonlinearity. Since, this holds for all f ∈ F2, we
conclude the non-affine bijective trasformation ψ preserves non-
linearity, i.e., ψ ∈ P2(N).

Example 4.3. Let ψ ∈ Θ(2) be defined as:

ψ(x1, x2, x3, x4) = (ψ0(x1, x2, x3, x4), ψ1(x1, x2, x3, x4),

ψ2(x1, x2, x3, x4), ψ3(x1, x2, x3, x4)),

where,

ψ0(x1, x2, x3, x4) = 1 ⊕ x1 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x3x4

⊕x2x3x4

ψ1(x1, x2, x3, x4) = x2 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x3x4

⊕x2x3x4

ψ2(x1, x2, x3, x4) = x1x2 ⊕ x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x2x3x4

ψ3(x1, x2, x3, x4) = 1 ⊕ x1x2 ⊕ x3 ⊕ x3x4 ⊕ x1x3x4 ⊕ x2x3x4.

Then,

ψ : Tf &−→ (λ0 ⊕ AT t
f ⊕ λ12f(α0)f(α1) ⊕ λ14f(α0)f(α3) ⊕

λ24f(α1)f(α3) ⊕ λ34f(α2)f(α3) ⊕

λ134f(α0)f(α2)f(α3) ⊕ λ234f(α1)f(α2)f(α3))
t,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



40 İ. SERTKAYA & A. DOĞANAKSOY

where λ0 = [1001]t, λ12 = [0011]t, λ14 = [1100]t, λ24 = [1100]t,
λ34 = [1111]t, λ134 = [1111]t, λ234 = [1111]t and A is the matrix;







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







.

Again, ψ /∈ A(2). Nevertheless, applying ψ to a function f is
rearranging the input arguments of f by an affine bijective trans-
formation and adding some affine functions to the truth table of
f which are determined by f itself. Hence, by Theorem 3.1 and
Lemma 3.3, ψ does not change the nonlinearity. Since, this is
true for all f ∈ F2, the non-affine bijective trasformation ψ keeps
nonlinearity invariant, i.e., ψ ∈ P2(N).

5. Conclusion

We have presented the exact set of nonlinearity preserving affine
bijective transformations by considering the transformations act-
ing on the truth tables of Boolan functions and we showed that
there exists a class of nonlinearity preserving non-affine transfor-
mations. Furthermore, for n = 2, with search results we proved
that Proposition 3.8 is in fact necessary and sufficient for preserv-
ing nonlinearity, that is the transformations satisfying the condi-
tions in Proposition 3.8 are the only nonlinearity preserving trans-
formations. As a future work, we are planning to pursue this in-
vestigation to clearify the whole nonlinearity preserving bijective
transformations and examine the contributions of these transfor-
mations to construction of Boolean functions with desirible desgin
criteria.

References

[1] Shannon C.E., Communication Theory of Secrecy Systems, Bell System
Technical Journal, Vol. 28: 656-715 (1949).

[2] Hall Jr. M., Note on the Mathieu group M12, Arch. Math. 13: 334-340
(1962).

[3] MacWilliams F.J., Sloane N.J.A., The theory of error-correcting codes,
Amsterdam, New York, Oxford:North-Holland (1978).



NONLINEARITY PRESERVING TRANSFORMATIONS 41

[4] Meier W. and Staffelbach O., Nonlinearity Criteria for cryptographic func-
tions, Advances in Cryptology - EUROCRYPT’89 (Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, New York 1990) 434: 549-562
(1989).

[5] Preneel B., Analysis and Design of Cryptographic Hash Functions, Ph. D.
Thesis, COSIC, Katholieke Universiteit Leuven, Belgium, (1993).

[6] Sertkaya İ., Nonlinearity Preserving Post-Transformations, M. Sc. The-
sis, Institute of Applied Mathematics, Middle East Technical University,
Ankara, Turkey, (2004).

[7] Sertkaya İ., Doğanksoy A., On Nonlinearity Preserving Bijective Transfor-
mations, 2nd National Symposium on Cryptology, Ankara, Turkey, (2006).

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07





Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

CONSTRUCTION OF RESILIENT FUNCTIONS BY
THE CONCATENATION OF BOOLEAN FUNCTIONS

HAVING NONINTERSECTING WALSH SPECTRA

Selçuk Kavut1, Melek D. Yücel1 and Subhamoy Maitra2

Abstract. We study the construction of resilient functions
satisfying the upper bound on nonlinearity by concatenating
Boolean functions such that the positions corresponding to
nonzero values in their Walsh spectra are non-overlapping.
For this purpose, we suitably modify a steepest descent based
search algorithm to obtain 9-variable functions achieving
nonlinearity 240 and resiliency order 3. Such functions have
been discovered very recently by a particle swarm optimiza-
tion (PSO) based heuristic search. We independently con-
firm that it is possible to generate those functions by con-
catenating properly selected four 7-variable functions with
nonlinearity 48 and resiliency order 3, obtained by the steep-
est descent based search algorithm that we describe in detail.
In the process, we show that some resilient functions known
by theoretical constructions can also be generated heuristi-
cally, even for quite large search spaces as that of n = 9.
More specifically, we could obtain 9-variable functions hav-
ing nonlinearity 224 and resiliency order 4 by searching the
whole space. Several pairs of such functions with noninter-
secting Walsh spectra could be reliably produced, suitable
for concatenation to yield 10-variable functions having non-
linearity 480 and resiliency order 4. Moreover, restricting
the search space to Rotation Symmetric Boolean Functions
(RSBFs), we could demonstrate several 10-variable RSBFs
having nonlinearity 488 and correlation immunity of order
2, which have not been demonstrated previously.

1 Department of Electrical and Electronics Engineering, Middle East
Technical University, 06531 Ankara, Türkiye.
email: {kavut, melekdy}@metu.edu.tr
2 Applied Statistics Unit, Indian Statistical Institute, 203 B T Road,
Kolkata 700 108, India.
email: subho@isical.ac.in

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



44

1. Introduction

Boolean functions constitute crucial components playing a cen-
tral role on the strength of cryptographic systems. Nonlinear-
ity and resiliency (balanced correlation immunity) are two cryp-
tographically significant properties of Boolean functions. The
concept of correlation immune Boolean functions was introduced
by Siegenthaler in 1984 [27] to withstand a class of divide-and-
conquer attacks on certain models of stream ciphers, and these
functions are used in stream cipher systems to resist cryptanalytic
attacks [28]. On the other hand, a Boolean function is desired to
be highly nonlinear, which provides robustness against Best Affine
Approximation (BAA) attacks [7] in the case of stream ciphers and
linear cryptanalysis [16] in the case of block ciphers.

The construction of cryptographically important Boolean func-
tions has for some time used general purpose heuristic algorithms
like simulated annealing, genetic algorithms, tabu search and var-
ious forms of hill-climbing. Such attempts were initially made
in [18–20]. These attempts provided good but suboptimal results.
Subsequently, simulated annealing [13] was used to provide com-
petitive results [3,11] in terms of nonlinearity and autocorrelation
values together for small functions having the number of input
values n ≤ 8. Some of the functions obtained by annealing [5],
could be transformed using simple linear change of basis to obtain
resilient functions with excellent profiles (i.e., the best possible
trade-offs). Supplementing optimization with theory allows the
best possible trade-offs between nonlinearity, algebraic degree and
correlation immunity for balanced functions on n ≤ 8 variables.
However, in general, for n ≥ 9, the optimization based algorithms
are not competitive since the search space increases super expo-
nentially as n increases. Thus some initial pruning is required
before attempting a suitable heuristic search. Very recently, by
restricting the search space to the class of Rotation Symmetric
Boolean Functions (RSBFs), some 9-variable RSBFs having non-
linearity 241 have been found [10] exploiting the steepest-descent
like algorithm [9, 12]. Such highly nonlinear Boolean functions
was an important open question in the literature for almost three
decades. This kind of search has also provided some other major
results in the RSBF class [9, 10]. We use a similar search, which
successfully works in a much larger class as investigated here.



CONSTRUCTION OF RESILIENT FUNCTIONS 45

The construction of resilient Boolean functions with very good
parameters in terms of nonlinearity, autocorrelation, algebraic de-
gree and other cryptographic parameters has received a lot of at-
tention in the literature as evidenced from the papers [1,14,15,21,
23–26,31]. In [24], a tight upper bound on nonlinearity of resilient
Boolean functions has been proposed and a list of functions on 7
to 10 variables have been presented in [24, Table 3] which were not
known at that time. After that it becomes a challenging question
to discover such functions and the papers [10], [21], [14], [22], [30]
present some of them. Very recently, the existence of 9-variable, 3-
resilient functions having nonlinearity 240 has been demonstrated
in [22], which was posed as an open question in Crypto 2000 [24].
These functions could be discovered by a heuristic search based on
a modified version of Partial Swarm Optimization (PSO) [29] after
an initial pruning of the search space provided by the construction
method of the concatenation of Boolean functions having nonin-
tersecting Walsh spectra [21, 22, 24, 31]. This method was first
noted in Crypto 2000 [24, Lemma 7] in construction of 8-variable,
3-resilient Boolean functions having nonlinearity 112 by concate-
nating two 7-variable 3-resilient functions each with nonlinearity
48. This has been generalized in [31] presenting n-variable, m-
resilient Boolean functions with maximum possible nonlinearity
2n−1 − 2m+1 for 2n−7

3 ≤ m ≤ n − 2, and studied further in [21]
providing Boolean functions on n = 7 + 3i variables (i ≥ 0) with
order of resiliency m = 2 + 2i. The major result of 9-variable,
3-resilient Boolean functions having nonlinearity 240 is presented
in [22], which provides the motivation of this paper. Specifically,
given two n-variable Boolean functions g and h having nonlinear-
ities nl(g) and nl(h) respectively, the concatenation f = (g ‖ h)
has nl(f) ≥ nl(g) + nl(h), but in general the equality occurs since
the Walsh spectra of g and h are not disjoint in general. On the
other hand, if g and h have nonintersecting Walsh spectra, then
nl(f) = 2n−1 +min(nl(g), nl(h)), that is, the minimum nonlinear-
ity of g and h determines nl(f). The situation can be extended to
the concatenation of more than two functions as in [22]. In [22],
however, description of the PSO based heuristic search is not in-
cluded. Here we suitably modify a steepest-descent based itera-
tive search algorithm appeared first in [12], which independently
confirms that such functions can be generated by concatenating

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



46 S. KAVUT, M. D. YÜCEL, S. MAITRA

properly selected four 7-variable, 3-resilient functions with nonlin-
earity 48 having nonintersecting Walsh spectra. From this moti-
vation, a natural question is whether it is possible to construct an
11-variable, 4-resilient Boolean function having nonlinearity 992,
which is still an unknown function in the literature, by concatenat-
ing sixteen 7-variable, 4 resilient functions with nonlinearity 32.
In Section 3.3, we show that such a construction does not exist.

In the process, we could reliably generate 9-variable, 4-resilient
functions having nonlinearity 224 by searching the whole space.
We could also find several pairs of these functions such that the
concatenation of each pair results in a 10-variable, 4-resilient func-
tion having nonlinearity 480. In addition to the theoretical con-
structions [21, 24] satisfying the upper bound on nonlinearity of
resilient Boolean functions, our results show that such functions
can also be generated by heuristic search.

The construction of 10-variable, 2-resilient Boolean functions
having nonlinearity 488 is an open problem since Crypto 2000 [24].
Here we present an important result which provides further vision
in this direction. Restricting the search space to the class of Ro-
tation Symmetric Boolean Functions (RSBFs) and exploiting a
suitable cost function, we could demonstrate several 10-variable
RSBFs having nonlinearity 488 and correlation immunity of or-
der 2, which have not been demonstrated previously. Then, the
problem becomes whether it is possible to transform such RS-
BFs to the 2-resilient functions using linear change of basis. On
the other hand, considering the efficient enumeration of some 9-
variable RSBFs possessing some important cryptographic proper-
ties [6, 17] and 10-variable rotation symmetric bent functions [8],
we motivate the researchers in enumeration of 10-variable RSBFs
having nonlinearity 488 and correlation immunity of order 2 (or
resiliency order 2, if exist) using a reasonable amount of compu-
tational power.

In the following section the basic definitions related to Boolean
functions are provided. In Section 3, we present our search strat-
egy in detail and provide our method used to obtain correlation
immune RSBFs. Section 4 is devoted to the conclusions.



CONSTRUCTION OF RESILIENT FUNCTIONS 47

2. Preliminaries on Boolean Functions

Let f : {0, 1}n → {0, 1} be a Boolean function that pro-
duces a single-bit result for each possible combination of values
from n Boolean variables. The truth table of a Boolean function
f(x1, . . . , xn) is a binary string of length 2n, f = [f(0, 0, · · · , 0),
f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)]. The Hamming
weight of a Boolean function f is the number of 1’s in its truth
table and denoted by wt(f). An n-variable Boolean function f
is said to be balanced if its truth table contains an equal number
of 0’s and 1’s, i.e., wt(f) = 2n−1. Also, the Hamming distance
between equidimensional Boolean functions f and g is defined by
d(f, g) = wt(f ⊕ g).

Algebraic Normal Form and Degree. An n-variable Boolean
function f(x1, . . . , xn) can be considered to be a multivariate poly-
nomial over GF (2). This polynomial can be expressed as a sum
of products representation of all distinct k-th order products (0 ≤
k ≤ n) of the variables. More precisely, f(x1, . . . , xn) can be writ-
ten as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representa-
tion of f is called the algebraic normal form (ANF) of f . The num-
ber of variables in the highest order product term with nonzero
coefficient is called the algebraic degree, or simply the degree of f
and denoted by deg(f).

Affine and Linear Boolean Functions. A Boolean function
f(x) having degree at most one is called an affine function of
x = (x1, . . . , xn) ∈ {0, 1}n . Its ANF is given by

f(x) = w1x1 ⊕ w2x2 ⊕ . . . ⊕ wnxn ⊕ c = w · x⊕ c,

where c ∈ {0, 1}, w = (w1, . . . , wn) ∈ {0, 1}n, and w ·x represents
the inner product of w and x. An affine function with the constant
term c = 0 is called linear. The set of all n-variable affine (respec-
tively linear) functions is denoted by A(n) (respectively L(n)).

Walsh Hadamard Transform. For a Boolean function f the
Walsh Hadamard transform is a real valued function over {0, 1}n

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



48 S. KAVUT, M. D. YÜCEL, S. MAITRA

which is defined as

Wf (w) =
∑

x∈{0,1}n

(−1)f(x)⊕x·w.

We refer to the vector W f = [Wf (0, 0, · · · , 0), Wf (1, 0, · · · , 0),
Wf (0, 1, · · · , 0), . . ., Wf (1, 1, · · · , 1)] as the Walsh spectrum , or
simply the spectrum of the function f . The Boolean functions f
and g are said to have nonintersecting Walsh spectra [24, Lemma
7] if and only if Wf (w) (= 0 ⇒ Wg(w) = 0 and Wg(w) (= 0 ⇒
Wf (w) = 0 for all w ∈ {0, 1}n.

Nonlinearity. The nonlinearity of an n-variable Boolean function
f is

nl(f) = min
g∈A(n)

(d(f, g)),

i.e, the minimum distance from the set of all n-variable affine
functions. In terms of Walsh spectrum, the nonlinearity of f is
given by

nl(f) = 2n−1 −
1

2
max

w∈{0,1}n
|Wf (w)|.

Correlation Immunity and Resiliency. Zhen and Massey [33]
have provided a spectral characterization of correlation immune
functions, which we use as the definition here. A Boolean function
f is m-th order correlation immune (respectively m-resilient) if and
only if its Walsh transform satisfies

Wf (w) = 0, for 1 ≤ wt(w) ≤ m (respectively 0 ≤ wt(w) ≤ m).

Parseval’s Theorem. It states that for an n-variable Boolean
function f , the sum of squared Walsh spectrum is constant and
equal to 22n: ∑

w∈{0,1}n

(Wf (w))2 = 22n.

Autocorrelation Function. The autocorrelation function of a
Boolean function f is given by

rf (d) =
∑

x∈{0,1}n

(−1)f(x)⊕f(x⊕d),



CONSTRUCTION OF RESILIENT FUNCTIONS 49

where d ∈ {0, 1}n. The autocorrelation value having maximum
magnitude (excluding the value at the origin which is equal to 2n)
is also known as the absolute indicator [32] and denoted as:

∆f = max
d∈{0,1}n,d%=(0,...,0)

|rf (d)|.

Following the notation used in [24], we define the profile of
a Boolean function by (n,m, d, σ) as its (input variable length,
resiliency order, degree, nonlinearity).

3. Search Algorithm

3.1. Spectral Inversion Method

In [4], an unusual approach in the design of Boolean functions
has been introduced in which Walsh spectra is exploited as the
search space instead of truth tables. The motivation in this ap-
proach results from the fact that various important cryptographic
criteria (balance, nonlinearity, correlation immunity, resiliency)
are defined in terms of the Walsh values of that function. The
basic idea is to start with a set of Walsh values that satisfy the
desired cryptographic properties. In general, it may be rather hard
to generate an initial set of Walsh values, but in some cases it is
relatively easier through the following Lemma (proved in [24]) and
arbitrarily fixing the first bit in the truth table.

Lemma 1 : [24] Let n ≥ 3 and m > *n
2 + − 2. The spectrum of

any (n,m,−, 2n−1 − 2m+1) function is necessarily three valued
(0,±2m+2).

In addition, it has been known that the algebraic degree of the
function (n,m, d, 2n−1 − 2m+1) is always maximum and equal to
d = n−m−1 [2]. Let us now illustrate how to generate a starting
set of Walsh values by considering Boolean functions with profile
(7, 3, 3, 48). The corresponding Walsh values must be either 0 or
±32 by Lemma 1. Using Parseval’s theorem it is found that the
number of nonzero Walsh values (±32’s) is equal to 16 (= 22×7

22×5 ).
Further, since the following inverse Walsh transform relation

2n × (−1)f(0,...,0) =
∑

w∈{0,1}n

Wf (w)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



50 S. KAVUT, M. D. YÜCEL, S. MAITRA

defines the value of f(0, 0, . . . , 0), arbitrarily fixing this to be zero
constrains the distribution of the nonzero Walsh values to: 10
many ’+32’s and 6 many ’−32’s. Then, zero Walsh values are
placed corresponding to w’s with weights satisfying 0 ≤ wt(w) ≤ 3
and the remaining Walsh values (i.e., ten ’+32’s, six ’−32’s and
forty eight ’0’s) are arbitrarily allocated to the remaining posi-
tions. This initial set of Walsh values is simply a permutation of
the spectrum of a (7, 3, 3, 48) function. However, since such a
permuted set of Walsh values is not guaranteed to be the Walsh
spectrum for some Boolean function, the problem reduces to find-
ing a suitable permutation such that when it is applied to this
set, the resulting function obtained by applying the inverse Walsh
transform to the permuted spectrum is Boolean. While a few per-
mutations will correspond to Boolean functions, most will not.
With each permutation we associate a cost that indicates how far
the permuted spectrum is from the spectrum of a valid Boolean
function. The objective cost function, to be minimized, is based
on Titsworth’s theorem [7], which states that W f is the Walsh
spectrum of a Boolean function if and only if

∑

w∈{0,1}n

Wf (w)Wf (s ⊕ w) = 22nδ(s).

where δ(s) = 1 if s = (0, . . . , 0) ∈ {0, 1}n and δ(s) = 0 otherwise.
The theorem suggests the following cost function as used in [4,22]:

Cost(W f ) =
∑

s%=(0,...,0)

(|
∑

w

Wf (w)Wf (s ⊕ w)|)R.

For s = (0, . . . , 0), since the inner sum is constant and equal to
22n for all permutations, this term is not considered. The cost
function punishes deviations from zero and is equal to zero for a
Boolean function. We set R = 1 in our experiments.

3.2. The Steepest-Descent Like Search Strategy

The search strategy that we extend for the construction of re-
silient functions by the spectral inversion method uses a steepest-
descent based iterative algorithm [12], where each iteration step
has the input set of Walsh values Wf (w) (in short, the vector W )
and the output set of Walsh values W min. At each iteration step,
the cost function is calculated within a pre-defined neighborhood



CONSTRUCTION OF RESILIENT FUNCTIONS 51

of W and the set of Walsh values having the smallest cost is chosen
as the iteration output W min. In some rare cases, the cost W min

may be larger than or equal to the cost of W . This is the crucial
part of the search strategy, which provides the ability to escape
from local minima and its distinction from the steepest-descent
like algorithm.

In order to carry out the search efficiently, a proper defini-
tion of the neighborhood is essential. A large number of neigh-
bors can make each iteration very slow due to the computational
power required to calculate corresponding cost values, whereas a
small set of neighbors can cause an incomplete search in each it-
eration missing possible candidates having less cost. Imagining
such a trade-off, we define the neighborhood as follows. Let us
consider again the Walsh spectrum of a (7, 3, 3, 48) function. As
stated before, a candidate spectrum, W , is formed by placing zero
values corresponding to 0 ≤ wt(w) ≤ 3 (these elements remain
fixed throughout the search) and arbitrarily allocating 10 values
of ’+32’s, 6 values of ’−32’s and 48 many ’0’s to the remaining
positions. Denoting the set of positions having zero Walsh values
(out of the fixed elements) by Szero, and the set of positions having
nonzero Walsh values by Snonzero, a neighbor of W is obtained
simply replacing an element in Szero by an element in Snonzero.
Hence, in the neighborhood of W , there are |Szero| × |Snonzero|
(= 48 × 16 = 768) many different permuted sets of W .

The search strategy given below starts with an initial set of
Walsh values, W initial, which is an arbitrary permutation of the
desired Walsh spectrum, and stops after a fixed number of itera-
tions, N . At each iteration, |Szero|×|Snonzero| distinct Walsh spec-
tra within the predefined neighborhood, each of which is shown
by W swapped, are visited by storing the cost value costswapped in
COST , and the corresponding set of Walsh values itself in SETW .
Among the stored cost values, the minimum one, costmin, is cho-
sen, and the respective set of Walsh values, W min, is obtained
from SETW as the candidate of the step output. If the candidate
W min is already in STORE, which contains all previous itera-
tion outputs, then this candidate W min and its cost are removed
from SETW and COST respectively. The minimum cost value is
searched again in COST among the remaining cost values to find
the respective new candidate for W min.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



52 S. KAVUT, M. D. YÜCEL, S. MAITRA

Algorithm 1

W = W initial;
for(int k = 0; k < N ; k + +){

for(int i = 0; i < |Szero|; i + +){
for(int j = 0; j < |Snonzero|; j + +){

Swap i-th element in Szero and j-th element in
Snonzero

SETW [ i ][ j ] = W swapped

COST [ i ][ j ] = costswapped

}
}
Find costmin (minimum costswapped in COST ), and W min

(respective W swapped in SETW )
while(W min is already in STORE){

Remove costmin from COST , and W min from SETW

Find costmin in COST , and W min in SETW

}
STORE[k] = W min

W = W min

}

We can store the iteration outputs in STORE efficiently to
save the memory requirements as follows. Consider the above
example of (7, 3, 3, 48) functions. Since the 64 elements are
fixed by placing zero values corresponding to 0 ≤ wt(w) ≤ 3, it
is enough to store the remaining 64 positions and corresponding
Walsh values. However, the positions corresponding to the values
of ’+32’s can be stored in a 64-bit vector by giving one if the
value is 32 and giving zero otherwise. Similarly, the positions
corresponding to the values of ’−32’s can be stored in another
64-bit vector. Therefore, in the case of (7, 3, 3, 48) functions,
it is possible to store an iteration output by four 32-bit words
using a 32-bit microprocessor or two 64-bit words using a 64-bit
microprocessor. Similarly, in the case of (9, 4, 4, 224) functions,
an iteration output can be stored in a sixteen 32-bit words or in
an eight 64-bit words.

In Algorithm 1, the value of costswapped can be calculated in an
efficient manner as follows. The cost value of an iteration input
set of Walsh values W can be stored in an array D such that each



CONSTRUCTION OF RESILIENT FUNCTIONS 53

array element corresponds to a difference vector s as given below:

Cost(W ) =
∑

s%=(0,...,0)

|D(s)|,

where D(s) =
∑

w
W (w)W (s⊕w). Arbitrarily representing a zero

Walsh value at position u as W (u), and a nonzero Walsh value at
position v as W (u), D(s) can be expressed separating the terms
having either W (v) or W (u) as in the following form:

D(s) =
∑

w %=v,w %=v⊕s,w %=u,w %=u⊕s
W (w)W (s⊕ w)

+ 2(W (v)W (s ⊕ v)) + 2(W (u)W (s ⊕ u)),

=
∑

w %=v,w %=v⊕s,w %=u,w %=u⊕s
W (w)W (s⊕ w)

+ 2(W (v)W (s ⊕ v)).

The simplification in the expression is due to the fact that W (u) =
0. Notice that for the difference vector s = u ⊕ v, the value of
D(u ⊕ v) remains the same after swapping W (u) and W (v). In
the following, we give an efficient method to calculate the val-
ues of array elements changing for the remaining s vectors, after
the replacement of W (u) and W (v). Let us denote the array
corresponding to the set of Walsh values W swapped, obtained by
swapping W (u) and W (v), as Dswapped. Then, the following rela-
tion between D(s) and Dswapped(s) is found (where the subscript
swapped is denoted by sw):

Dsw(s) =
∑

w %=v,w %=v⊕s,w %=u,w %=u⊕s
Wsw(w)Wsw(s ⊕ w)

+2(Wsw(v)Wsw(s ⊕ v)) + 2(Wsw(u)Wsw(s ⊕ u)),

=
∑

w %=v,w %=v⊕s,w %=u,w %=u⊕s
W (w)W (s⊕ w)

+ 2(W (u)W (s ⊕ v)) +2(W (v)W (s ⊕ u)),

=
∑

w %=v,w %=v⊕s,w %=u,w %=u⊕s
W (w)W (s⊕ w)

+ 2(W (v)W (s ⊕ u)),

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



54 S. KAVUT, M. D. YÜCEL, S. MAITRA

= D(s) − 2(W (v)W (s ⊕ v) − W (v)W (s ⊕ u)).

Consequently, Cost(W swapped) (= costswapped) is calculated using
the absolute values of Dswapped(s) (except Dswapped(0, . . . , 0)) for
which Dswapped(u⊕v) = D(u⊕v). Hence, considering the number
of only multiplications used, as it is the most time consuming
operation, the complexity for the calculation of the cost reduces
from O(22n) to O(3 · 2n), which provides a remarkable efficiency.

For (7, 3, 3, 48) functions, we have carried out 100 runs each
with N = 100 iterations, which generates 90 successes in a few
seconds using a computer system with Pentium IV 2.8 GHz pro-
cessor and 256 MB RAM. This shows the ease of generation of
such functions by the steepest-descent like search strategy. For
(9, 4, 4, 224) functions, we have carried out 150 runs setting
N = 4000, which results in 6 successes (due to the super exponen-
tial increase of the search space) among the generated 49,152,000
(= |Szero| × |Snonzero| × N = 192 × 64 × 4000) permuted sets of
Walsh values. With the same computer system, a typical run of
Algorithm 1 takes 6 minutes and 50 seconds for n = 9. Some of
the attained 9-variable functions are given in Appendix A.

3.3. Search for the Nonintersecting Walsh Spectra

The motivation in [22] to attain a Boolean function having pro-
file (9, 3, 5, 240) results from the observation of the following
Lemma, which follows directly from the basic definition of the
Walsh transform.

Lemma 2 : Let f be an (n+2)-variable Boolean function obtained
from the concatenation of n-variable Boolean functions f1, f2, f3

and f4, i.e., f = [f1 ‖ f2 ‖ f3 ‖ f4]. Then the Walsh spectrum
W f , of f is given by

= [W f1
+ W f2

+ W f3
+ W f4

‖ W f1
−W f2

+ W f3
−W f4

‖ W f1
+ W f2

−W f3
−W f4

‖ W f1
−W f2

−W f3
+ W f4

].

Keeping in mind that the degree of the function (n,m, d, 2n−1−
2m+1) is always maximum and equal to d = n−m−1 [2], Lemmas
1 and 2 indicate that it is possible to construct an (n,m, n−m−
1, 2n−1 −2m+1) function where n ≥ 3 and m > *n/2+−2 from the



CONSTRUCTION OF RESILIENT FUNCTIONS 55

concatenation of four (n− 2,m, n−m− 3, 2n−3 − 2m+1) functions
with nonintersecting Walsh spectra, if such functions exist.

Consequently, the search for (9, 3, 5, 240) function reduces to
find four (7, 3, 3, 48) functions with nonintersecting Walsh spectra,
which helps in pruning the search space dramatically compared to
the direct search for a (9, 3, 5, 240) function. We start searching
for the first (7, 3, 3, 48) function f1 using Algorithm 1, then
proceed (as in [22]) by finding the next (7, 3, 3, 48) function
fi, i = 2, 3, 4 with the following additional conditions on its Walsh
spectrum:

Wfi−j
(w) (= 0 ⇒ Wfi

(w) = 0 and Wfi
(w) (= 0 ⇒ Wfi−j

(w) = 0,

for all w ∈ {0, 1}n and 1 ≤ j ≤ i − 1. For the search of f2 and
f3, we restart Algorithm 1 with a slight modification. Specifically,
in the search for f2 (respectively f3), the positions of the nonzero
Walsh values of W f1

(respectively W f1
and W f2

) remain fixed
in addition to the positions corresponding to 0 ≤ wt(w) ≤ 3,
and hence the set Szero contains the remaining 32 (respectively
16) elements. However, notice that the set Szero is empty for the
case of f4, since all the elements except those in Snonzero (which
contains ten ’+32’s, six ’−32’s) are fixed. Therefore, the search
for f4 is carried out by considering possible permutations of the
elements in Snonzero. The number of all these permutations is
reasonably small (8008 permutations), and hence an exhaustive
search is possible for f4.

Using such an approach in our experiments, we have carried
out 400 trials setting N = 100 for each successive search of the
functions f1, f2 and f3, which generates 7 successes in one minute.
Although there is no efficiency analysis in [22], for comparison
purposes, we note that in [22] it is reported that two examples
of such functions are generated in a few minutes using the PSO
based search algorithm, which confirms the efficiency of our search
strategy. We observe that generally the functions f2 and f3 are
attained in the first or second runs of the search algorithm during
a success. Some of the resulted (9, 3, 5, 240) functions are given
in Appendix A.

In a similar way, we could construct several (10, 4, 5, 480) func-
tions by the concatenation of two (9, 4, 4, 224) functions f1 and f2

having nonintersecting Walsh spectra. More specifically, f1 is ob-
tained using Algorithm 1 directly, and subsequently f2 is attained

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



56 S. KAVUT, M. D. YÜCEL, S. MAITRA

Table 1. The number of runs for f1 and f2 yield-
ing (10, 4, 5, 480) functions.

number of runs
search for f1 8 25 30
search for f2 40 39 12

adding the constraint such that the Walsh values of W f2
are zero

in places where the Walsh values of W f1
are nonzero, which re-

quires a slight modification of Algorithm 1 as before. Some succes-
sive number of runs resulting such pairs of (9, 4, 4, 224) functions
are given in Table 1. For instance, from the second column, it is
seen that f1 is found in the 8-th run of Algorithm 1, and then
f2 is obtained in the 40-th run using Algorithm 1 which is prop-
erly modified by fixing the positions corresponding to the nonzero
Walsh values of W f1

.
We have implemented 100 trials with the number of iterations

N = 4000, which results in 3 successes producing (10, 4, 5, 480)
functions. Some of these functions are provided in Appendix A.

Considering such applications of the nonintersecting spectra
in the construction of resilient functions, one can naturally ask
whether it is possible to construct a (11, 4, 6, 992) function, which
is still an unknown function in the literature, by concatenating six-
teen (7, 4, 2, 32) functions. The following proposition shows that
such a construction does not exist.

Proposition 1. Construction of the function (11, 4, 6, 992) ob-
tained by the concatenation of sixteen (7, 4, 2, 32) functions having
either nonintersecting or intersecting Walsh spectra does not exist.

Proof. A (7, 4, 2, 32) function has only 29 positions for a nonzero
Walsh value to be placed corresponding to wt(w) > 4. Lemma
2 implies that the concatenation of sixteen (7, 4, 2, 32) functions
provides at most 29 × 16 = 464 nonzero values in the resulted
Walsh spectrum. This contradicts that the (11, 4, 6, 992) func-
tion has 210 = 1024 nonzero values each having ±64 in the Walsh
spectrum due to the Lemma 1 and Parseval’s theorem.



CONSTRUCTION OF RESILIENT FUNCTIONS 57

3.4. Search for (10, 2, -, 488) RSBFs

The set of Rotational Symmetric Boolean Functions (RSBFs) is

interesting to look into as the space is much smaller (≈ 2
2
n

n ) than
the total space of Boolean functions (22n

) and the set contains
functions with very good cryptographic properties. We refer the
interested reader to [10], and the references therein. We note only
that in RSBFs, all indices which are rotationally equivalent have
identical values of f . We use the same search algorithm as in [10]
within the space of RSBFs, however with a different cost function
which is more suitable for highly nonlinear (balanced) correlation
immune functions than the one used in [10]. The result of such
an effort produced results which had not been demonstrated pre-
viously.

In [5], simulated annealing based search algorithm was used to
derive balanced correlation immune functions with high nonlin-
earity exploiting the following cost function:

Cost(f) =
∑

wt(w)≤m

|Wf (w)|R + A × max
w

|Wf (w)|.

Here only the nonzero Walsh values corresponding to wt(w) ≤ m
are punished to satisfy m-th order resiliency, while A is a weighting
constant for the nonlinearity component. This enables (balanced)
correlation immunity and nonlinearity to be optimized simulta-
neously by the search algorithm. In our experiments, the search
strategy in [10] is applied in the space of 10-variable RSBFs set-
ting m = 2, R = 3, and A = 100, which prove successful. Note
that the search space in [10] is expressed in terms of truth tables,
and hence, we do not exploit the spectral inversion method in this
case. As for the algorithmic information, with the same computer
system used before, a typical run takes 36 seconds for which the
iteration number is 40,000. In 100 runs, 122 many 10-variable RS-
BFs having nonlinearity 488, and correlation immunity of order 2
are produced. This is the first time showing the existence of such
important functions. Some of these functions are presented in Ap-
pendix A. We couldn’t obtain balanced version of these functions,
which was posed as an open question in Crypto 2000 [24].

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



58 S. KAVUT, M. D. YÜCEL, S. MAITRA

4. Conclusions

We investigate the construction of resilient functions by con-
catenating Boolean functions with nonintersecting Walsh spectra,
obtained by a steepest-descent based search algorithm that we
have suitably modified for the problem. We have attained (9, 3, 5,
240) functions, which have been found very recently by an inde-
pendent heuristic search [22], based on a modified version of parti-
cle swarm optimization (PSO). We independently confirm that it
is possible to generate these functions by concatenating properly
selected four (7, 3, 3, 48) functions having nonintersecting Walsh
spectra. We provide the details of the modified steepest-descent
like search algorithm, which was absent for the heuristic search [22]
based on PSO. In the process, we could reliably obtain (9, 4, 4,
224) functions by searching the whole space; then, we could find
several pairs of such functions yielding (10, 4, 5, 480). These func-
tions provide further vision in addition to some known theoretical
constructions. Furthermore, we demonstrate several 10-variable
RSBFs having nonlinearity 488 and correlation immunity of order
2, which have not been demonstrated previously.

References

[1] P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation immune
functions. In Advances in Cryptology – CRYPTO’91, LNCS, No. 576,
Springer Verlag, pp. 86–100, 1992.

[2] C. Carlet. On the coset of weight divisibility and nonlinearity of resilient
and correlation immune functions. In Advances in Cryptography CRYPTO
1991, pp. 86–100, Springer Verlag, 1992.

[3] J. A. Clark and J. L. Jacob. Two-stage optimization in the design of
Boolean functions. In ACISP 2000, number 1841 in Lecture Notes in
Computer Science, pages 242–254. Springer-Verlag, 2000.

[4] J. Clark, J. Jacob, S. Maitra and P. Stănică. Almost Boolean functions:
The design of Boolean functions by spectral inversion. Computational
Intelligence, pages 450–462, Volume 20, Number 3, 2004.

[5] J. Clark, J. Jacob, S. Stepney, S. Maitra and W. Millan. Evolving Boolean
functions satisfying multiple criteria. In INDOCRYPT 2002, Volume 2551
in Lecture Notes in Computer Science, pages 246–259, Springer Verlag,
2002.

[6] D. K. Dalai, S. Maitra and S. Sarkar. Results on Rotation Symmetric Bent
Functions. In Second Workshop on Boolean Functions: Cryptography and
Applications, BFCA 06, LIFAR, University of Rouen, France, March 13–
15, 2006.



CONSTRUCTION OF RESILIENT FUNCTIONS 59

[7] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers.
Number 561 in Lecture Notes in Computer Science. Springer Verlag, 1991.

[8] S. Kavut, S. Maitra, S. Sarkar, and M. D. Yücel. Enumeration of 9-
variable Rotation Symmetric Boolean Functions having nonlinearity >

240. In Progress in Cryptology – Indocrypt 2006, LNCS 4329, pages 266–
279, Springer Verlag, December 2006.

[9] S. Kavut, S. Maitra and M. D. Yücel. Autocorrelation spectra of balanced
Boolean functions on an odd number input variables with maximum abso-

lute value < 2
n+1

2 . In Second International Workshop on Boolean Func-
tions: Cryptography and Applications, BFCA 06, March 13–15, 2006,
LIFAR, University of Rouen, France.

[10] S. Kavut, S. Maitra and M. D. Yücel. There exist Boolean functions on

n (odd) variables having nonlinearity > 2n−1 − 2
n−1

2 if and only if n > 7.
IACR eprint server, http://eprint.iacr.org/2006/181, 28 May, 2006 (ac-
cepted for publication in the IEEE Transactions on Information Theory
with the title ”Search for Boolean Functions with Excellent Profiles in
the Rotation Symmetric Class”).

[11] S. Kavut and M. D. Yücel. Improved cost function in the design of Boolean
functions satisfying multiple criteria. In Indocrypt 2003, pages 121–134,
Lecture Notes in Computer Science, Volume 2904, Springer Verlag, 2003.

[12] S. Kavut and M. D. Yücel. A new algorithm for the design of strong
Boolean functions. In First National Cryptology Symposium, pages 95–
105, METU, Ankara, Türkiye, November 18-20, 2005.

[13] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by sim-
ulated annealing. Science, 220(4598):671–680, May 1983.

[14] S. Maitra and E. Pasalic. Further constructions of resilient Boolean func-
tions with very high nonlinearity. IEEE Transactions on Information The-
ory, 48(7):1825–1834, July 2002.

[15] S. Maitra and P. Sarkar. Hamming weights of correlation immune Boolean
functions. Information Processing Letters, Vol. 71, pp. 149–153, 1999.

[16] M. Matsui Linear cryptanalysis method for DES cipher. In Advances
in Cryptology – EUROCRYPT’93, Lecture Notes in Computer Science,
pages 386–397. Springer Verlag, 1994.

[17] A. Maximov, M. Hell and S. Maitra. Plateaued rotation symmetric
Boolean functions on odd number of variables. In First Workshop on
Boolean Functions: Cryptography and Applications, BFCA 05, Univer-
sity of Rouen, France, March 7–9, 2005.

[18] W. Millan, A. Clark and E. Dawson. An effective genetic algorithm for
finding highly nonlinear Boolean functions. In First International Con-
ference on Information and Communications Security, number 1334 in
Lecture Notes in Computer Science, pages 149–158. Springer Verlag, 1997.

[19] W. Millan, A. Clark and E. Dawson. Heuristic design of cryptographi-
cally strong balanced Boolean functions. In Advances in Cryptology EU-
ROCRYPT’98, pages 489–499. Springer Verlag LNCS 1403, 1998.

[20] W. Millan, A. Clark and E. Dawson. Boolean function design using hill
climbing methods. In 4th Australasian Conference on Information, Se-
curity and Privacy, number 1587 in Lecture Notes in Computer Science,
pages 1–11. Springer Verlag, April 1999.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



60 S. KAVUT, M. D. YÜCEL, S. MAITRA

[21] E. Pasalic, S. Maitra, T. Johansson and P. Sarkar. New constructions
of resilient and correlation immune Boolean functions achieving upper
bound on nonlinearity. In Workshop on Coding and Cryptography - WCC
2001, Paris, January 8–12, 2001. Electronic Notes in Discrete Mathemat-
ics, Volume 6, Elsevier Science, 2001.

[22] Z. Saber, M. F. Udin and A. Youssef. On the existence of (9, 3, 5, 240) re-
silient functions. IEEE Transactions on Information Theory, 52(5):2269-
2270, May 2006.

[23] P. Sarkar and S. Maitra. Construction of nonlinear Boolean functions
with important cryptographic properties. In Advances in Cryptology -
EUROCRYPT 2000, pp. 485–506, 2000.

[24] P. Sarkar and S. Maitra. Nonlinearity bounds and constuction of resilient
Boolean functions. In Advances in Cryptology - Crypto 2000, pages 515–
532, Berlin, 2000. Springer Verlag. Lecture Notes in Computer Science
Volume 1880.

[25] P. Sarkar and S. Maitra. Construction of nonlinear resilient Boolean func-
tions using ”small” affine functions. In IEEE Transactions on Information
Theory, Vol. 50, No. 9, pp. 2185–2193, September 2004.

[26] J. Seberry, X. M. Zhang, and Y. Zheng. On constructions and nonlinearity
of correlation immune Boolean functions. In Advances in Cryptology -
EUROCRYPT’93, pp. 181–199, 1994.

[27] T. Siegenthaler. Correlation-immunity of nonlinear combining functions
for cryptographic applications. IEEE Transactions on Information The-
ory, IT-30(5):776-780, September 1984.

[28] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext
only. IEEE Transactions on Computers, C-34(1):81-85, January 1985.

[29] Special Issue on Particle Swarm Optimization. IEEE Transactions on
Evolutionary Computation, Volume 8, number 3, June 2004.

[30] P. Stănică, S. Maitra and J. Clark. Results on rotation symmetric bent
and correlation immune Boolean functions. Fast Software Encryption
Workshop (FSE 2004), New Delhi, INDIA, LNCS 3017, Springer Ver-
lag, pages 161–177, 2004.

[31] Y. V. Tarannikov. On resilient Boolean functions with maximum possible
nonlinearity. In Progress in Cryptology - INDOCRYPT 2000, pp. 19-30,
2000.

[32] X. M. Zhang and Y. Zheng. GAC - the criterion for global avalanche
characteristics of cryptographic functions. Journal of Universal Computer
Science, 1(5):316–333, 1995.

[33] X. Guo-Zhen and J. Massey. A spectral characterization of correlation
immune combining functions. IEEE Transactions on Information Theory,
34(3): 569-571, May 1988.



CONSTRUCTION OF RESILIENT FUNCTIONS 61

Appendix A

We present the truth tables in hexadecimal format. The fol-
lowing truth tables are (9, 3, 5, 240) Boolean functions.

4B36D26C9CE13987E19C2D93364BC678

625DAD38CBA1516EB58A46D31C76BA85

6996E41B69961BE496961BE46969E41B

3C66C399A5C35A3C9A5665A9959A6A65

3CC35A96996966A5A569C33C665A9996

4BE49636B41B96C9E11B699C1EE46963

3D4AC2B5A2D55D2AC1B63E495E29A1D6

17E4D28BAC3966599A669C35D14B27E8

The following truth tables are (9, 4, 4, 224) Boolean functions.

346B4BD4A7C869369669BC83C935529E

DA85A53A16D3D82D6996437C3C6AA7C1

C738B887945B69965AC625793AA5C768

2C7953C6E32C1EE193A5EC1AC55A3897

49E396693C3CD629DA1987B463C638C7

B6469669C399837C25BC784B9C636D92

3C96E349E34609F96996346E85B9DE12

69991CB61CE3F606C366CB917A1C21ED

The following truth tables are (10, 4, 5, 480) Boolean functions.

79B8861B2A56D5C64B46B4E5C5B93A29

5847A7E46DA99239A6B9591AB1464ED6

84ADD752B74528BA79362AC9C29A5D65

7B83287C48F2D70D86D4D52B3D1EA2E1

4AB597C299663C69E51AA15E693CC396

666996997989686796963C6983D65EA1

B54A683D6699C3961AE55EA169C33C96

99966966867697989669C3697C29A15E

63C2966D9A5B65A435BCCA43CC1939B6

6C3D9992C3643C9BC92936D633E6C649

9C9D693235A4CA5B6A4395BC66E3934C

936266CD6C9B936496D66929991C6CB3

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



62 S. KAVUT, M. D. YÜCEL, S. MAITRA

2AD96D92C536936C6D92615E5AA5B887

718D9966E61A86795AA5AC6329D65798

D62558A73AC99669A15EA798956A4E71

1EE2A95685797689C639539CB94668A7

The following truth tables are 10-variable RSBFs having nonlin-
earity 488 and correlation immunity of order of 2:

E891D712B67B124DCE396BCB520835A3

A5B80E926CDAF58E731D11D50B26D81E

8C63CA8444ED931969F0A6D9EE26D0BD

7E4A56F30353B662459E1829E2C557AC

85F46D4BA599C0713424ACF2D75F12C6

2982AB559C2DA2C7E8ED1D68B6418BF2

3EB9358D622CFF4A101F630B8B78691C

657382F847911C96BD0CB566727ACCA1

FAC9B4869F64947982AB2860C2253F93

C51899DE4C912C51F14C1D624BEAC31F

A5760294C3C6B6A971B497560CB43743

AB0375A152F62D1821CFADDCB40A02EE

C9627A6D01088375B45EA52DDA789897

3E069A61D67E267911F1CE341B3E600A

98CB101F6E33CC476249EE2D5DA65680

4947A5AB89A3F2E09B3111C85558FCE8



Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

ON DIHEDRAL GROUP INVARIANT BOOLEAN
FUNCTIONS

(EXTENDED ABSTRACT)

Sumanta Sarkar1, Subhamoy Maitra2 and Deepak Kumar
Dalai3

Abstract. In this paper we consider the Boolean functions
which are invariant under the action of Dihedral group. We
denote these functions as Dihedral Symmetric Boolean Func-
tions (DSBFs). We study theoretical results in this direction
and show how that can be used for efficient search in this
class. Most interestingly we note that some of the recently
found 9-variable Boolean functions having nonlinearity 241
belong to this class.

Keywords: Boolean Functions, Dihedral Group, Group Ac-
tion, Nonlinearity, Rotational Symmetry, Walsh transform.

1. Introduction

It has been studied in details that the symmetric Boolean func-
tions are in general not of good cryptographic and combinatorial
properties [1,4,6,9,10,15–17,23–25,29,30] and on the other hand,
the Rotation Symmetric Boolean functions (RSBFs) can produce
excellent results [2,3,5,7,8,12–14,18–21,26–28]. Now we look at a
class of Boolean functions which is a subset of the class Rotation
Symmetric Boolean functions and a superset of the Symmetric

1 Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata
700 108, INDIA, email: sumanta r@isical.ac.in
2 Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata
700 108, INDIA, email: subho@isical.ac.in
3 INRIA, Codes, Domaine de Voluceau-Rocquencourt, BP 105 - 78153, Le
Chesnay, France. email: Deepak.Dalai@inria.fr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



64 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

Boolean functions. This class is invariant under the action of Di-
hedral group.

Recently, 9-variable Boolean functions having nonlinearity 241
(greater than the bent concatenation bound) have been discovered
in the class of RSBFs [13,14]. Interestingly, we study the class of
DSBFs (which are invariant under the action of the Dihedral group
on {0, 1}n) and found some of the 9-variable Boolean functions
having nonlinearity 241 in this class.

The organization of the paper is as follows. In Section 2 we
describe the Dihedral group Dn. In Section 3, we discuss the
action of Dn on the set {0, 1}n followed by the discussion on the
structure of Walsh Spectra of DSBFs.

2. The Dihedral group

We start with the definition of Dihedral group [11, Page 184].

Definition 2.1. A group G which is generated by two elements
a, b ∈ G such that,

(1) an = b2 = e, where e is the identity element and n ≥ 3,
(2) ba = a−1b,

is said to be the Dihedral group of degree n and it is denoted as
Dn.

The elements of Dn are {e, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b},
i.e., |Dn| = 2n.

The geometric realization of the Dihedral group Dn is that it
is a group of symmetries (2n many) on the regular n-gon denoted
by Pn. Let the vertices of Pn be named as {1, 2, . . . , n}. Then all
the 2n many symmetries can be generated by

(1) rotation of Pn with respect to the line passing vertically
through the center of Pn at an angle 2π

n ,
(2) reflection of Pn about a line passing through a vertex and

the center.

Dn is a permutation group and it is a subgroup of the Symmetric
group Sn and it contains the cyclic group Cn as a subgroup. The
permutation which is one rotation of the vertices (1, 2, . . . , n) of Pn

is denoted by σ1
n =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

and the reflection of

Pn about the line passing through the vertex 1 and the center is the



ON DIHEDRAL GROUP INVARIANT BOOLEAN FUNCTIONS 65

permutation denoted by τn =

(

1 2 3 . . . n − 1 n
1 n n − 1 . . . 3 2

)

.

Thus {σ1
n, σ2

n, . . . , σn−1
n , σn

n, σ1
nτn, σ2

nτn, . . . , σn−1
n τn, σn

nτn} are the
elements of Dn. Note that σn

n is the identity permutation which

is

(

1 2 . . . n
1 2 . . . n

)

. We rename the permutations τnσi
n as ωi

n for

1 ≤ i ≤ n. Let us take D4 as an example.

Example 2.2. The elements of D4 are,

σ1
4 =

(

1 2 3 4
2 3 4 1

)

, σ2
4 =

(

1 2 3 4
3 4 1 2

)

,

σ3
4 =

(

1 2 3 4
4 1 2 3

)

, σ4
4 =

(

1 2 3 4
1 2 3 4

)

,

ω1
4 =

(

1 2 3 4
2 1 4 3

)

, ω2
4 =

(

1 2 3 4
3 2 1 4

)

,

ω3
4 =

(

1 2 3 4
4 3 2 1

)

, ω4
4 =

(

1 2 3 4
1 4 3 2

)

.

3. Characterization of the Dihedral group action on the
set {0, 1}n

An n-variable Boolean function is a mapping from Vn = {0, 1}n

to {0, 1}. We denote the set of all n-variable Boolean functions
as Bn and it is clear that |Bn| = 22n

. Thus it is not feasible to
search exhaustively over Bn for n ≥ 7 with the currently avail-
able computing facility. There have been a lot of attempts to
search Boolean functions with good cryptographic properties in
some subclasses of Bn such as Symmetric Boolean functions and
Rotation Symmetric Boolean functions (RSBFs). n-variable Sym-
metric Boolean functions are such functions which are invariant
under the action of the Symmetric group Sn and n-variable RS-
BFs are invariant under the action of Cyclic group Cn. The size of
the subclass of all n-variable Symmetric Boolean functions is 2n+1

and that of RSBFs is 2gn , where gn = 1
n

∑

k|n φ(k) 2
n
k , φ is the Eu-

ler’s φ function. Note that gn ≈ 2n

n . Thus one may get tempted to
search for good Boolean functions in these classes in order to take
the advantage of the small size (with respect to Bn). So far there
have been no significant Boolean functions found in the class of
Symmetric Boolean functions. On the other hand, the class of RS-
BFs has been proved to be very rich in terms of containing Boolean

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



66 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

functions with good cryptographic properties. Recently 9-variable
Boolean functions with nonlinearity 241 have been found in the
class of RSBFs [13, 14]. This question was open for more than
three decades. Moreover, the Patterson-Wiedemann functions [20]
on (n ≥ 15)-variables which have the maximum nonlinearity (ex-
ceeding the bent concatenation bound) are also RSBFs. So there
is enough motivation to search for cryptographically significant
Boolean functions in the class of RSBFs. Unfortunately, search-
ing exhaustively over all the n-variable RSBFs becomes difficult
for n > 9. So one may attempt to find another class of Boolean
functions which has size bigger than that of Symmetric Boolean
functions and lesser than that of the RSBFs. In this direction we
choose the Dihedral group Dn which is a subgroup of the Symmet-
ric group Sn and supergroup of the Cyclic group Cn. We consider
the n-variable Boolean functions which are invariant under the
action of the Dihedral group Dn and we denote them as Dihe-
dral Symmetric Boolean functions (DSBFs). Let S(Sn), S(Dn)
and S(Cn) respectively denote the set of all Symmetric Boolean
functions, RSBFs and DSBFs. Since, Sn ⊇ Dn ⊇ Cn, we have
S(Sn) ⊆ S(Dn) ⊆ S(Cn) ⊆ Bn (see also Figure 1).

Figure 1. The hierarchy of the subclasses of Bn.

We now present a few more definitions.

Definition 3.1 (Group action:). The group action of the group
G on the set X is a mapping φ : G × X → X denoted as g(x) or
g · x, which satisfies the following two axioms.

(1) (gh) · x = g · (h · x), for all g, h ∈ G and for all x ∈ X.
(2) e · x = x, for every x ∈ X, e is the identity element of G.



ON DIHEDRAL GROUP INVARIANT BOOLEAN FUNCTIONS 67

G is said to act on X and on the other hand X is called a G-set.

Definition 3.2 (Orbit:). Let the group G acts on the set X,
then the set Gx = {g.x|g ∈ G} is called the orbit generated by x.

These orbits are equivalence classes of X induced by the equiv-
alence relation defined by x ∼ y iff there exists a g ∈ G such that
g · x = y.

Definition 3.3. Let X ⊆ Vn be a G-set. A Boolean function f is
said to be invariant under the action of G if f(g · x) = f(x), for
all g ∈ G and for all x ∈ X.

That means if f is an n-variable Boolean function which is
invariant under the action of the group G on the set Vn, then all
the outputs corresponding to the inputs of Vn which belong to
the same orbit are same. In that case, these functions will form
a subclass of Bn and the size of this class will be 2m, where m
is the number of orbits. Naturally this subclass is smaller in size
than Bn. As for example, Symmetric and Rotation Symmetric
Boolean functions are invariant respectively under the action of
the Symmetric and Cyclic group on the set Vn. The number of
orbits can be obtained by the well known Burnside’s Lemma.

Lemma 3.4 (Burnside’s Lemma). Let G be a group of permuta-
tions acting on the set X. Then the number of orbits induced on X
is given by 1

|G|

∑

g∈G |fixX(g)|, where fixX(g) = {x ∈ X|g · x =

x}.

Let us now discuss how Dn acts on Vn and find the size of the
class formed by all n-variable DSBFs using the Burnside’s Lemma.
The count is known in general, but still we include it here for the
special case.

Let x = (x1, . . . , xn) ∈ Vn, then the action of Dn on Vn is as
follows.

σi
n(x) = (x1+i, x2+i, . . . , xn+i), for 1 ≤ i ≤ n,

ωi
n(x) = (x1+i, xn+i, . . . , x2+i), for 1 ≤ i ≤ n,

where the value k + i takes the value k + i mod n for 1 ≤ i, k ≤ n
with the only exception that it takes the value n if it is a multiple
of n.

Theorem 3.5. Let dn be the total number of orbits induced by the
Dihedral group Dn acting on Vn. Then

dn =
gn

2
+ l,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



68 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

where, gn = 1
n

∑

t|n φ(t)2
n
t (φ(t) is the Euler’s φ function) and

l =

{

3
42

n
2 if n is even

2
n−1

2 if n is odd .
.

Proof. We have Dn = {σ1
n, σ2

n, . . . , σn−1
n , σn

n , ω1
n, ω2

n, . . . , ωn−1
n , ωn

n}
acting on Vn = {0, 1}n. If a permutation P ∈ Dn is such that
P (x) = x for some x ∈ Vn, then the components of x which
belong to the same orbit must have the same value 0 or 1. Thus
if there are c1, c2, . . . , cj many cycles of different lengths, then the
number of fixed points in Vn induced by P is 2c1+...+cj .

First we find the number of fixed points induced by each σi
n,

1 ≤ i ≤ n. The number of permutation cycles of σi
n is gcd(n, i)

each of length n
gcd(n,i) . Then the number of fixed points induced

by σi
n is 2gcd(n,i). Thus the total number of fixed points induced

by σi
n for all i(1 ≤ i ≤ n) is

∑n
i=1 2gcd(n,i) =

∑

t|n

∑n
i,gcd(n,i) 2t =

∑

t|n 2t
∑

j,gcd(n
t
,j)=1 1 =

∑

t|n φ(n
t )2t.

Let us now count the fixed points of Vn induced by the per-
mutations wi

n, 1 ≤ i ≤ n. For an i(1 ≤ i ≤ n), we have

ωi
n =

(

1 2 3 . . . n
1 + i n + i n − 1 + i . . . 2 + i

)

. In this permuta-

tion 1 + i → n − (1 + i − 2) + i, i.e., 1 + i → n + 1, i.e.,
1 + i → 1 for i += n; further for i = n, 1 → 1. Again, for any
k, 1 < k ≤ n, k → n − k + 2 + i. When k += n − k + 2 + i mod n,
n−k+2+i → n−(n−k+2+i−2)+i, i.e., n−k+2+i → k. Thus, for
all k, 1 ≤ k ≤ n, there exists cycle of length at most 2. Let us now
count the number of 1-cycle and 2-cycle for each ωi

n, 1 ≤ i ≤ n. k
will form a 1-cycle which is (k) iff k = n−k+2+i mod n, i.e., 2k =
i+2 mod n, otherwise it will form a 2-cycle (k, n−k+2+i mod n).

CASE 1A. n odd, i odd.
Let i + 2 = tn + r, 1 ≤ r ≤ n. If r is odd, k = n+r

2 . On the other
hand if r is even k = r

2 .
CASE 1B. n odd and i even.

Since, gcd(2, n) = 1 and i + 2 is even, 2k = i + 2 mod n implies
k = i+2

2 mod n.
So for odd n there is exactly one 1-cycle and therefore number

of 2-cycle is n−1
2 . Thus the number of fixed points induced by each

of ωi
n is 21 · 2

n−1
2 , i.e., 2

n+1
2 .

CASE 2A. n even and i odd.
Note that i + 2 is odd. So n being even, it always leaves an odd



ON DIHEDRAL GROUP INVARIANT BOOLEAN FUNCTIONS 69

remainder after dividing i + 2. Therefore, the relation 2k = i + 2
mod n is not possible at all.

CASE 2B. n even and i even.
Let i + 2 = tn + r, 1 ≤ r ≤ n. Note that r is always even as i + 2
even. Therefore, the relation 2k = i + 2 mod n has two solutions
which are k = r

2 and k = n+r
2 .

So for even n, when i is odd there is no 1-cycle, that means
the number of 2-cycle is n

2 and when i is even the number of 1-
cycle is exactly 2 and the number of 2-cycle is n−2

2 . Therefore, for

odd i the total number of fixed points induced by ωi
n is 2

n
2 and

22 · 2
n−2

2 = 2
n+2

2 otherwise.
Hence, using Burnside’s Lemma we get,

dn = 1
2n

∑

t|n φ(t)2
n
t + 1

2n

{

n
2 2

n
2 + n

2 2
n+2

2 if n is even

n2
n+1

2 if n is odd ,

= 1
2n

∑

t|n φ(t)2
n
t +

{

3
42

n
2 if n is even

2
n−1

2 if n is odd .

!

Note that the number of orbits under the action of Cn is gn [26].
With the help of Theorem 3.5, we enumerate the number dn and
compare it with gn in Table 1.

n 1 2 3 4 5 6 7 8 9 10
gn 2 3 4 6 8 14 20 36 60 108
dn 2 3 4 6 8 13 18 30 46 78

n 11 12 13 14 15 16
gn 188 352 632 1182 2192 4116
dn 126 224 380 687 1224 2250

Table 1. Comparison between gn and dn

Remark 1. Let us name the set of all orbits induced by the ac-
tion of Cn by RSn and the orbits induced by the action of Dn

by DSn. Some of the orbits in RSn will also be orbits in DSn,
where as some will merge with another orbit. Let Oσ(x) is the
orbit generated by x = (x1, . . . , xn) in RSn. If for some i, ωi(x) ∈
Oσ(x) then Oσ(x) will be an orbit in DSn. Otherwise, the set
{x, σ1

n(x), . . . , σn−1(x), ω1
n(x), . . . , ωn

n(x)} will be an orbit in DSn.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



70 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

Choose two integers i and j such that j = i+k, k > 0. Now ωi(x) =
σi

nτn(x) and ωj(x) = σj
nτn(x) = σk

nσ
i
nτn(x) That means ωj(x)

is the effect of k-cyclic rotation of ωi(x), i.e., the set Oω(x) =
{ωq(x), q = 1, 2, . . . , n} is an orbit in RSn generated by x. If
ωi(x) = σp(x) for some integer p, i.e., ωi(x) ∈ Oσ(x) then all the
members of Oω(x) belong to the orbit Oσ(x). Therefore in DSn

the orbit Oσ(x) remains as it is in RSn. On the other hand, if
ωi(x) does not belong to the orbit Oσ(x) then none of the members
of Oω(x) belong to Oσ(x), which means Oσ(x)∪Oω(x) is an orbit
in DSn. As for example the orbit generated by 000000011 in RS9

is an orbit in DS9, whereas the orbit generated by 000001011 and
000001101 respectively merge with each other and form a single
orbit in DS9.

Let us denote the orbit generated by x in DSn by Gn(x). There
are dn many orbits up to equivalence. Without any loss of gen-
erality an orbit can be represented by the lexicographically least
element belonging to it. We call each representative element as
the leader of the corresponding orbit. Thus there are dn many
such leaders which we denote as Λn,0, Λn,1, . . . , Λn,dn−1 in lexico-
graphical order. Thus an n-variable DSBF f can be described by
a dn length bit string f(Λn,0), . . . , f(Λn,dn−1).

4. Walsh transform of DSBFs

In this section we present the results related to Walsh transform
values of DSBFs. The proofs of the results are almost similar to
the analysis for RSBFs as presented in [18, 19, 26, 28]. Still we
present them for completeness.

The Walsh transform value of f at w is given by Wf (w) =
∑

x∈{0,1}n(−1)f(x)⊕x·w. If f is a DSBF, then

Wf (w) =
dn−1
∑

i=0

(−1)f(Λn,i)
∑

x∈Gn(Λn,i)

(−1)x·w.

Then we have the following proposition.

Proposition 4.1. Let w, z ∈ Vn such that z ∈ Gn(w). If f is a
DSBF, then Wf (z) = Wf (w).



ON DIHEDRAL GROUP INVARIANT BOOLEAN FUNCTIONS 71

Proof. First we prove that

∑

x∈Gn(Λn,i)

(−1)x·w =
∑

x∈Gn(Λn,i)

(−1)x·z

Since, z ∈ Gn(w), either z = σk(w) or z = ωj(w) for some
k and j. When z = σk(w), we have,

∑

x∈Gn(Λn,i)
(−1)x·w =

∑

x∈Gn(Λn,i)
(−1)σ

k(x)·σk(w) =
∑

y∈Gn(Λn,i)
(−1)y·z (take y = σk(x))

=
∑

x∈Gn(Λn,i)
(−1)x·z.

On the other hand, if z = ωj(w), then similarly it can be proved
that

∑

x∈Gn(Λn,i)
(−1)x·w =

∑

x∈Gn(Λn,i)
(−1)x·z.

Then we have,

Wf (w) =
∑dn−1

i=0 (−1)f(Λn,i)
∑

x∈Gn(Λn,i)
(−1)x·w

=
∑dn−1

i=0 (−1)f(Λn,i)
∑

x∈Gn(Λn,i)
(−1)x·z

= Wf (z)

.

!

Thus we see that the distribution of the Walsh Transform values
of a DSBF can be described by dn many values. So we have the
following lemma.

Lemma 4.2. Let nM be a dn × dn matrix, where the (i, j)-th
element is

∑

x∈Gn(Λn,i)
(−1)x·Λn,j . Then Walsh transform of f can

be determined as [(−1)f(Λn,0), . . . , (−1)f(Λn,dn−1)] nM.

Corollary 4.3. Let f be an n-variable DSBF.

(1) Nonlinearity of f is given by

nl(f) = 2n−1 −
1

2
maxΛn,j ,0≤j<dn |

dn−1
∑

i=0

(−1)f(Λn,i)
nMi,j |.

(2) f is balanced iff
∑dn−1

i=0 (−1)f(Λn,i)
nMi,0 = 0.

(3) f is m-order Correlation Immune (respectively m-resilient)
iff

dn−1
∑

i=0

(−1)f(Λn,i)
nMi,j = 0, for 1 (respectively 0) ≤ wt(Λi,j) ≤ m,

where wt(x) denotes the weight of x.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



72 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

(4) f is bent iff
∑dn−1

i=0 (−1)f(Λn,i)
nMi,j = ±2

1
2 , for 0 ≤ j ≤

dn − 1.

4.1. Investigation of the matrix nM for odd n

It is clear that the members of an orbit are of same weight. Let
us consider the weight of an orbit to be the weight of an element in
that orbit. Since, n is odd, if weight of x ∈ Vn is odd, weight of its
complement x is even. Thus Gn(x) += Gn(x). So we see that odd
weight orbits and even weight orbits form two distinct classes each
of size dn

2 . Also number of elements in Gn(x) is same as that of
Gn(x). This gives the hints that the matrix nM can be permuted

in such a way that it can be written as

[

nS nS

nS −nS

]

, as shown

in the case of RSBFs in [18], where nS is a dn

2 × dn

2 matrix.

Proposition 4.4. [18] Let X = (x1, . . . , xn) ∈ Vn and Y =
(y1, . . . , yn) ∈ Vn. If wt(X) and wt(Y ) is an even number and if
n is odd, then

n
⊕

i=1

(xi ∧ yi) =
n

⊕

i=1

(xi ∧ yi) =
n

⊕

i=1

(xiand ∧ yi) = 1 ⊕
n

⊕

i=1

(x ∧ yi).

Theorem 4.5. If n is odd, the matrix nM can be permuted to

nMπ such that nMπ is of the form

nM
π =

[

nS nS

nS −nS

]

,

where nS is a dn

2 × dn

2 matrix.

Proof. In the matrix nM, both dn rows and dn columns correspond
to the dn orbits which are in lexicographical order. First permute
the rows of nM so that the first dn

2 rows correspond to the orbits

of even weights in lexicographical order and the second dn
2 rows

correspond to the complements of the first dn

2 orbits in the same

order. That means if the i-th (i = 0, . . . , dn

2 − 1) row corresponds
to the orbit representative by Λn,i, where Λn,i is the i-th element
in the lexicographical order, then (dn

2 + i)-th row corresponds to
the orbit generated by Λn,i. Same permutation is given to the
columns also. Finally we get the permuted matrix nMπ.

For 0 ≤ r, c ≤ dn

2 − 1 we have



ON DIHEDRAL GROUP INVARIANT BOOLEAN FUNCTIONS 73

nMπ
r,c =

∑

x∈Gn(Λn,r)(−1)x·Λn,c

=
∑

x∈Gn(Λn,r
(−1)⊕

n
i=1(x∧Λ(n,c)i

)

nMπ
r,c+ dn

2

=
∑

x∈Gn(Λn,r)(−1)
x·Λ

n,c+ dn
2

=
∑

x∈Gn(Λn,r
(−1)⊕

n
i=1(x∧Λ(n,c)i

)

nMπ
r+ dn

2 ,c
=

∑

x∈Gn(Λ
n,r+ dn

2
)(−1)x·Λn,c

=
∑

x∈Gn(Λn,r
(−1)⊕

n
i=1(x∧Λ(n,c)i

)

nMπ
r+ dn

2 ,c+ dn
2

=
∑

x∈Gn(Λ
n,r+ dn

2
)(−1)

x·Λ
n,c+ dn

2

=
∑

x∈Gn(Λn,r
(−1)⊕

n
i=1(x∧Λ(n,c)i

)

Since wt(Λn,i) is even for 0 ≤ i ≤ dn

2 − 1, then Proposition 4.4
implies that nMπ

r,c = nMπ
r,c+ dn

2

= nMπ
r+ dn

2 ,c
= − nMπ

r+ dn
2 ,c+ dn

2

.

Hence the proof. !

As the total number of the n-variable DSBFs is lesser than
that of the RSBFs for higher values of n (Table 1), one may at-
tempt exhaustive search to find functions with good cryptographic
properties such as nonlinearity, correlation immunity, balanced-
ness etc. In this direction the matrix nMπ will be much helpful
rather than the matrix nM. For a DSBF f Walsh transform is
given by Wf = [(−1)f(Λn,0), . . . , (−1)f(λn,dn−1)] nM. The compu-
tation effort is d2

n. We permute the representative elements of the
orbits as described in Theorem 4.5, i.e., the first dn

2 representative
elements are of even wight written in lexicographical order and the
second dn

2 elements are the representative of the orbits in which

complements of the first dn

2 representative elements belong to. We

rewrite f as f = fe||fo, where the dn

2 length string fe denotes the

outputs at the representative elements with even weight and the dn

2
length string fo denotes the outputs at the representative elements
with odd weight. Then we can write, Wf = (we + wo)||(we − wo),
where, we = (−1)fe

nS and wo = (−1)fo
nS, clearly the computa-

tion effort will be 2(dn

2 )2 + dn which is much lesser than d2
n.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



74 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

4.2. Highly nonlinear Boolean functions on odd number of vari-
ables

We have studied the recently discovered 9-variable Boolean
functions [13, 14] having nonlinearity 241. In [14, Table 1], 189
many 9-variable RSBFs having nonlinearity 241 have been de-
scribed. We checked that out of them 21 many functions belong
to the DSBF class. Therefore, one may note that the 9 variable
Boolean functions having nonlinearity 241 in the DSBF class are
more dense than those in RSBF class. This shows that the DSBF
class contains highly nonlinear functions with good density. These
functions have the maximum absolute value 52 in the autocorre-
lation spectra.

Further we have checked the two Patterson-Wiedemann func-
tions [20] and found that they do not belong to the DSBF class.
It will be interesting to study if some affine equivalent of these
functions may belong to the DSBF class.

5. Conclusion

We present initial results on Boolean functions which are in-
variant under the action of the dihedral group. We provide the
count of such functions and further study the properties of their
Walsh spectra. We find that there are 9-variable Boolean func-
tions having nonlinearity 241 in this class. Further investigation
in this class may provide more interesting results regarding the
cryptographic and combinatorial properties of such Boolean func-
tions.

References

[1] A. Canteaut and M. Videau. Symmetric Boolean Function. IEEE Trans-
action On Information Theory, Volume 51, 2791–2811, 2005.

[2] J. Clark, J. Jacob, S. Maitra and P. Stănică. Almost Boolean functions:
The design of Boolean functions by spectral inversion. Computational
Intelligence, pages 450–462, Volume 20, Number 3, 2004.

[3] T. W. Cusick and P. Stănică. Fast evaluation, weights and nonlinearity of
rotation-symmetric functions. Discrete Mathematics, pages 289-301, vol
258, no 1-3, 2002.

[4] T. W. Cusick and Y. Li. k-th order symmetric SAC Boolean functions
and bisecting binomial coefficients. Discrete Applied Mathematics, Volume
149, 73–86, 2005.



ON DIHEDRAL GROUP INVARIANT BOOLEAN FUNCTIONS 75

[5] D. K. Dalai, K. C. Gupta and S. Maitra. Results on algebraic immu-
nity for cryptographically significant Boolean functions. In INDOCRYPT
2004, number 3348 in Lecture Notes in Computer Science, pages 92–106,
Springer Verlag, December 2004.

[6] D. K. Dalai, S. Maitra and S. Sarkar. Results on rotation symmetric
Bent functions. In Second International Workshop on Boolean Functions:
Cryptography and Applications, BFCA 06, March 13–15, 2006, LIFAR,
University of Rouen, France.

[7] E. Filiol and C. Fontaine. Highly nonlinear balanced Boolean functions
with a good correlation-immunity. In Advances in Cryptology - EURO-
CRYPT’98, number 1403 in Lecture Notes in Computer Science, pages
475–488, Springer-Verlag, 1998.

[8] C. Fontaine. On Some Cosets of the First-Order Reed-Muller Code with
High Minimum Weight. In IEEE Transactions on Information Theory,
45(4):1237–1243, 1999.

[9] J. von zur Gathen and J. R. Roche. Polynomials with Two Values. Com-
binatorica, Volume 17(3), 345–362, 1997.

[10] K. Gopalakrishnan, D. G. Hoffman and D. R. Stinson. A Note on a Con-
jecture Concerning Symmetric Resilient Functions. Information Process-
ing Letters, Volume 47(3), 139–143, 1993.

[11] F. Harary. Graph Theory. Addison-Wesley Publishing Company, 1972.
[12] M. Hell, A. Maximov and S. Maitra. On efficient implementation of search

strategy for rotation symmetric Boolean functions. In Ninth International
Workshop on Algebraic and Combinatoral Coding Theory, ACCT 2004,
Black Sea Coast, Bulgaria, June 19–25, 2004.

[13] S. Kavut, S. Maitra and M. D. Yücel. Search for Boolean Functions with
Excellent Profiles in the Rotation Symmetric Class. To be published in
IEEE Transactions on Information Theory, 2007. An earlier version of
this paper is available under the title “There exist Boolean functions on

n (odd) variables having nonlinearity > 2n−1
−2

n−1

2 if and only if n > 7”
at IACR eprint server, http://eprint.iacr.org/2006/181, 28 May, 2006.

[14] S. Kavut, S. Maitra S. Sarkar and M. D. Yücel. Enumeration of 9-variable
Rotation Symmetric Boolean Functions having Nonlinearity > 240. In
INDOCRYPT - 2006, Lecture Notes in Computer Science 4329, Springer-
Verlag, pp 266–279, 2006.

[15] S. Maitra and P. Sarkar. Characterization of symmetric bent functions –
An elementary proof. Journal of Combinatorial Mathematics and Combi-
natorial Computing, Volume 43, 227–230, 2002.

[16] S. Maitra and P. Sarkar. Maximum Nonlinearity of Symmetric Boolean
Functions on Odd Number of Variables. IEEE Transactions on Informa-
tion Theory, Volume 48(9), 2626–2630, 2002.

[17] C. J. Mitchell. Enumerating Boolean functions of cryptographic signifi-
cance. Journal of Cryptology, Volume 2(3), 155–170, 1990.

[18] A. Maximov, M. Hell and S. Maitra. Plateaued rotation symmetric
Boolean functions on odd number of variables. In First Workshop on
Boolean Functions: Cryptography and Applications, BFCA 05, LIFAR,
University of Rouen, France, March 7–9, 2005.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



76 SUMANTA SARKAR, SUBHAMOY MAITRA, DEEPAK KUMAR DALAI

[19] A. Maximov. Classes of plateaued rotation symmetric Boolean functions
under transformation of Walsh spectra. In Workshop on Coding and Cryp-
tography, WCC 2005, IACR eprint server, no. 2004/354.

[20] N. J. Patterson and D. H. Wiedemann. The covering radius of the (215, 16)
Reed-Muller code is at least 16276. IEEE Transactions on Information
Theory, IT-29(3):354–356, 1983. See also correction in IT-36(2):443, 1990.

[21] J. Pieprzyk and C. X. Qu. Fast hashing and rotation-symmetric functions.
Journal of Universal Computer Science, pages 20-31, vol 5, no 1 (1999).

[22] F. S. Roberts. Applied Combinatorics. Prentice-Hall, Inc, Englewood
Cliffs, New Jersey.

[23] P. Sarkar and S. Maitra. Balancedness and Correlation Immunity of Sym-
metric Boolean Functions. To be published in Discrete Mathematics.
Available at: http://dx.doi.org/10.1016/j.disc.2006.08.008 [last accessed
February 2, 2007].

[24] S. Sarkar and S. Maitra. Efficient search for symmetric Boolean func-
tions under constraints on Walsh spectra values. In Second International
Workshop on Boolean Functions: Cryptography and Applications, BFCA
06, March 13–15, 2006, LIFAR, University of Rouen, France.

[25] P. Savicky. On the Bent Boolean Functions that are Symmetric. European
Journal of Combinatorics, Volume 15, 407–410, 1994.

[26] P. Stănică and S. Maitra. Rotation symmetric Boolean functions – count
and cryptographic properties. In R. C. Bose Centenary Symposium on
Discrete Mathematics and Applications, Electronic Notes in Discrete
Mathematics, Electronics Notes in Discrete Mathematics, volume 15,
pages 178-183, Elsevier, December 2002. Available at :
http://www1.elsevier.com/gej-ng/31/29/24/75/23/show/Products/notes/index.htt.

[27] P. Stănică and S. Maitra. A constructive count of rotation symmetric
functions. Information Processing Letters, 88:299–304, 2003.

[28] P. Stănică, S. Maitra and J. Clark. Results on rotation symmetric bent
and correlation immune Boolean functions. Fast Software Encryption
Workshop (FSE 2004), New Delhi, INDIA, LNCS 3017, Springer Ver-
lag, pages 161–177, 2004.

[29] Y. X. Yang and B. Guo. Further enumerating Boolean functions of crypto-
graphic significance. Journal of Cryptology, Volume 8(3), 115–122, 1995.

[30] C. K. Wu and E. Dawson. Correlation Immunity and Resiliency of Sym-
metric Boolean Functions. Theoretical Computer Science, Volume 312,
321–335, 2004.



Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

SOME CONSTRUCTIONS OF BENT FUNCTIONS

OF n + 2 VARIABLES FROM BENT FUNCTIONS OF

n VARIABLES ∗

Joan-Josep Climent1, Francisco J. Garćıa2 and Verónica
Requena3

Abstract. In this paper we present two properties of the
minterms of n variables. Then, using minterms of n variables
and minterms of two variables, we present some methods to
construct iteratively new bent functions of n + 2 variables
from bent functions of n variables.

1. Introduction

At the present time, S-boxes are an essential component in
block ciphers. The implementation of an S-box needs nonlinear
Boolean functions to guarantee the cryptographic effectiveness in
order to resist powerful methods of attack such as the differential
cryptanalysis. For an even number of inputs, Boolean functions
of maximum nonlinearity are bent functions. There is a great
number of bent functions, but unfortunately, the properties of bent

∗ This work was partially supported by Spanish grant MTM2005-05759. The
work of the third author was also supported by a grant for research students
from the Vicerectorat d’Investigació, Desenvolupament i Innovació of the
Universitat d’Alacant.
1 Institut Universitari d’Investigació Informàtica. Departament de Ciència
de la Computació i Intel·ligència Artificial. Universitat d’Alacant, Ap. cor-
reus 99, E-03080 Alacant, SPAIN. email: jcliment@dccia.ua.es
2 Departament de Fonaments de l’Anàlisi Econòmica. Universitat d’Alacant,
Ap. correus 99, E-03080 Alacant, SPAIN. email: francisco.garcia@ua.es
3 Departament de Ciència de la Computació i Intel·ligència Artificial. Uni-
versitat d’Alacant, Ap. correus 99, E-03080 Alacant, SPAIN.
email: vrequena@dccia.ua.es

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



78 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

functions, their classification, and their number are not totally
known yet.

There are two families of methods for the construction of good
S-boxes for cryptographic applications.

The simplest method is the direct construction of truth ta-
bles. For that purpose, Boolean functions that satisfy the strict
avalanche criterion are used. They are denominated bent permuta-
tions. Nevertheless, we are still very far from having an exhaustive
general method for their construction.

Alternatively, there is a method consisting in obtaining nonlin-
ear functions by random generation. However multidimensional
functions with the highest nonlinearity are not frequent, so it be-
comes difficult to find them randomly. Recently they have been
developed genetic algorithms that are effective, but only in some
particular cases.

It is well-known how to construct one-to-one S-boxes such that
any linear combination of the output functions is balanced. It
is also well-known with the process by which such linear com-
binations become bent. What is still unknown is the means for
constructing all the S-boxes which satisfy those properties. It is
for this reason, the study of the properties of bent functions and
the methods to construct them has received a very high attention
in the last decades.

The origin of bent functions goes back to a theoretical arti-
cle of McFarland [10] on sets of finite differences in finite groups.
One year after, Dillon [5] in his doctoral thesis systematized and
extended the ideas of McFarland, proving a great quantity of pro-
perties. For example, all bent function of n > 2 variables has
degree at most n/2, there are bent functions with degree equal to
n/2, and the only symmetrical bent functions are the quadratic
ones, existing exactly four of that functions for each n. The name
bent for these functions is due to Rothaus [12].

¿From the truth tables of bent functions and linear functions,
it is possible to construct bent functions with a greater number
of variables. But not all the bent functions in 6 variables can
be obtained from bent functions and linear functions with a less
number of variables, as proved Chang [3]. This does not mean that
it is not interesting to construct bent functions from functions with
a fewer number of variables, but it is not possible to generate all
of them in this way. In fact, thanks to Canteaut and Charpin
[1] we know two infinite families of bent functions in n variables



SOME CONSTRUCTIONS OF BENT FUNCTIONS 79

that cannot be obtained from bent functions of smaller number of
variables. In that paper, the authors also describe how the way in
which they can be constructed, from a bent function of n variables,
Boolean functions of n − 1 and n − 2 variables with a very high
nonlinearity.

Following a different strategy, Hou and Langevin [9] described
how, from a well-known bent function, new bent functions can be
obtained with the same number of variables.

Another way to analyze bent functions consists in exploring the
properties of the algebraic structures on GF(2n). See, for exam-
ple, Carlet and Guillot [2] or Hou [6, 8]. By this procedure some
authors have been able to determine all the cubic bent functions in
8 variables from the cubic bent functions in 6 variables (see [7]), to
find some homogeneous bent functions of degree 3 and with 8 or 10
variables (see [4]), or to characterize the homogeneous functions of
6 variables and degree 3 that are bent and those that are balanced
(see [11]). In [11], the authors also discuss why the homogeneous
functions could be very useful to design hash functions.

The construction of families of particular bent functions is im-
portant for the following two reasons. On the one hand, there
exists the practical necessity to have functions of maximum non-
linearity to implement ciphers. On the other hand, there are the-
oretical reasons to discover properties and to contrast conjectures.

The mentioned literature makes an intensive use of the re-
presentation of Boolean functions in polynomial form, in matrix
form and in sequential form. Nevertheless, the classical concept of
minterm, which is, by the way, directly related to the implemen-
tation of logic circuits and its complexity, has not been frequently
used.

This paper addresses the practical purposes involved in the
generation of bent functions using the representation of Boolean
functions as a sum of minterms. We will use this concept to obtain,
from bent functions of n variables, new bent functions of n + 2
variables. We will also verify that all functions obtained in such
manner are different.

The rest of the paper is organized as follows. Firstly, in Sec-
tion 2 we introduce some basic definitions and notations that are
used. In Section 3, we present two general methods to construct
bent functions of n + 2 variables starting with bent functions of n
variables, along with others important results that are necessary
to prove the main theorems.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



80 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

2. Preliminaries

Consider the binary field Z2 with the addition modulo 2 (de-
noted by ⊕) and the multiplication modulo 2. For any positive
integer n, it is well-known that Zn

2 is a linear space over Z2 with
the addition ⊕ given by

a ⊕ b = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)

for a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in Zn
2 . Also, we

consider the inner product

〈a, b〉 = a1b1 ⊕ a2b2 ⊕ · · · ⊕ anbn

of a and b. Furthermore, we say that a < b if there exists k (with
1 ≤ k ≤ n) such that

a1 = b1, a2 = b2, . . . , ak−1 = bk−1 but ak = 0 and bk = 1.

So we can order the elements e0,e1, . . . ,e2n−1 of Zn
2 such that

e0 < e1 < · · · < e2n−1.

Finally, if ei = (e(i)
1 , e(i)

2 , . . . , e(i)
n−1, e

(i)
n ) ∈ Zn

2 , then

e(i)
1 2n−1 + e(i)

2 2n−2 + · · · + e(i)
n−12

1 + e(i)
n 20 = i

and we call ei the binary expansion of i. With this representation,
we can identify the vector ei with the integer i, and consequently,
we can identify Zn

2 with Z2n .
A Boolean function of n variables is a mapping f : Zn

2 −→ Z2.
We denote by Bn the set of Boolean functions of n variables. Bn

is also a linear space over Z2 with the addition ⊕ given by

(f ⊕ g)(x) = f(x) ⊕ g(x)

for f, g ∈ Bn. For a function f of Bn, the (0, 1)-sequence of length
2n

ξf = (f(e0), f(e1), . . . , f(e2n−1))

is called the truth table of f .
The truth table of a Boolean function can be obtained by its

minterms. A minterm on n variables x1, x2, . . . , xn is an expres-
sion of the form

m(u1,u2,...,un)(x1, x2, . . . , xn) = (ū1 ⊕ x1)(ū2 ⊕ x2) · · · (ūn ⊕ xn)

with ū = 1⊕ u for all u ∈ Z2. Now, for i = 0, 1, 2, . . . , 2n − 1, it is
clear that mei

(x) = 1 if and only if x = ei. We will write mi(x)



SOME CONSTRUCTIONS OF BENT FUNCTIONS 81

instead of mei
(x). So, the truth table

(mi(e0), mi(e1), . . . , mi(e2n−1))

of mi(x) has a 1 in the ith position and 0 elsewhere. Consequently,

2n−1
⊕

i=0

mi(x) = 1 (1)

and the set {m0,m1,m2, . . . ,m2n−1} is a basis for Bn. So, any
f ∈ Bn can be expressed as

f(x) =
2n

−1
⊕

i=0

fi mi(x)

where

fi =

{

1, if i ∈ I,

0, if i /∈ I

for a subset I of {0, 1, . . . , 2n − 1} called the support of f and
defined as

I = {a ∈ Z
n
2 | f(a) = 1}.

So,
f(x) =

⊕

i∈I

mi(x)

and, therefore, I is the set of minterms of f .
The Hamming weight of a (0, 1)-sequence α, denoted by

w(α), is the number of 1s in α. The Hamming distance between
two (0, 1)-sequences α and β, denoted by d(α,β), is the number
of positions where the two sequences differ. It is well-know that
d(α,β) = w(α ⊕ β).

Let f be a Boolean function and ξf its truth table. The Ham-

ming weight of f , denoted by w(f), is the Hamming weight of
ξf ; that is w(f) = w(ξf ), and therefore, w(f) is the number of
minterms in the expression of f(x) as a sum of minterms.

Let f and g be two functions of Bn and ξf and ξg be the
corresponding truth tables. The Hamming distance between f
and g, denoted by d(f, g), is the Hamming distance between ξf

and ξg; that is, d(f, g) = d(ξf , ξg).
A (0, 1)-sequence is balanced if it contains an equal number

of 0s and 1s, so a function f in Bn is balanced if its truth table
is balanced.

We say that f in Bn is an affine function if it takes the form

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



82 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

f(x) = 〈a,x〉 ⊕ b

where a ∈ Zn
2 and b ∈ Z2. If b = 0, f is called a linear function.

The set of affine functions is denoted by An.
The nonlinearity of a function f in Bn is defined as

NL(f) = min{d(f, ϕ) | ϕ ∈ An}

which is upper bounded (see [14]) by

NL(f) ≤ 2n−1 − 2
n

2
−1.

The Boolean functions that achieve the maximum nonlinearity
are called bent functions (see [14]). As a consequence, bent
functions only exist for n even.

The following result (see [13, 14]), that we quote for further
references, gives us a characterization of a bent function.

Theorem 2.1. Let f be a function in Bn. The following state-
ments are equivalent.

(1) f is a bent function.
(2) For any a ∈ Zn

2 \{0} the Boolean function ga(x) = f(x)⊕
f(a ⊕ x) is balanced.

(3) For any a ∈ Zn
2 the number of 1s in the truth table of the

Boolean function ha(x) = f(x) ⊕ 〈a,x〉 is 2n−1 ± 2
n

2
−1.

As a consequence of the previous theorem, the number of 1s in
the truth table of a bent function f of n variables is 2n−1 ± 2

n

2
−1;

so that f is not balanced. Equivalently, the number of minterms
in the expression of f as a sum of minterms is 2n−1 ± 2

n

2
−1.

Finally, it is well-known that for any bent function f(x), the
functions 1 ⊕ f(x) and f(a ⊕ x) for all a ∈ Zn

2 , are also bent
functions.

3. Main results

In the rest of the paper, we consider that x = (x1, x2, . . . , xn)
is a vector of Zn

2 and that y = (y1, y2) is a vector of Z2
2.

Firstly, we introduce two important properties of the minterms
which allow us to construct functions of n+2 variables from func-
tions of n variables. In fact, we convert the minterms of a function
of n variables in minterms of a function of n + 2 variables.



SOME CONSTRUCTIONS OF BENT FUNCTIONS 83

Lemma 3.1. For each minterm of n variables, it is possible to
construct four different minterms of n + 2 variables.

Proof. Consider a minterm ma(x) of n variables, and consider also
the four minterms in 2 variables

mb(y) for b = 0, 1, 2, 3.

Assume that (a1, a2, . . . , an) and (b1, b2) are the binary expansion
of the integers a and b, respectively. Then

mb(y) ma(x) = m(b1,b2)(y) m(a1,a2,...,an)(x)

= (b̄1 ⊕ y1)(b̄2 ⊕ y2)(ā1 ⊕ x1)(ā2 ⊕ x2) · · · (ān ⊕ xn)

= m(b1,b2,a1,a2,...,an)(y,x)

= mc(y,x)

where c = b12n+1 + b22n + a. !

The proof of the previous lemma tell us that the four minterms
of n + 2 variables that can be obtained starting from the minterm
ma(x) of n variables are

ma(y,x), m2n+a(y,x), m2n+1+a(y,x), and m2n+2n+1+a(y,x).

Furthermore, minterms have the following property that make
them operative from the algebraic point of view.

Lemma 3.2. ma(b ⊕ x) = ma⊕b(x) for all a, b ∈ Zn
2 .

Proof. Assume that

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

then

ma(b ⊕ x) = (ā1 ⊕ b1 ⊕ x1)(ā2 ⊕ b2 ⊕ x2) · · · (ān ⊕ bn ⊕ xn)

= (a1 ⊕ b1 ⊕ x1)(a2 ⊕ b2 ⊕ x2) · · · (an ⊕ bn ⊕ xn)

= ma⊕b(x)

because āi ⊕ bi = 1 ⊕ ai ⊕ bi = ai ⊕ bi for i = 1, 2, . . . , n. !

The following theorem is one of the main results of this paper.
Here, we describe an iterative method to construct bent functions
of n + 2 variables, starting with two bent function of n variables.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



84 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

y1 y2 x m0(y) m1(y) m2(y) m3(y) B(b,a)(y, x)
0 0 τ 1 0 0 0 ξ0 ⊕Λa

0 1 τ 0 1 0 0 ξ0 ⊕ b21⊕Λa

1 0 τ 0 0 1 0 ξ1 ⊕ b11⊕Λa

1 1 τ 0 0 0 1 1 ⊕ ξ
1
⊕ b11 ⊕ b21 ⊕ Λa

Table 1. Truth table of B(b,a)(y,x)

Theorem 3.3. Let f0(x) and f1(x) be bent functions of n varia-
bles and assume that (i0, i1, i2, i3) is a permutation of (0, 1, 2, 3).
Then

B(y,x) = (mi0(y) ⊕ mi1(y)) f0(x) ⊕ mi2(y)f1(x)

⊕ mi3(y)(1 ⊕ f1(x))

is a bent function of n + 2 variables.

Proof. According to Theorem 2.1 we must prove that the number
of 1s of the truth table (that is, the number of minterms) of the
Boolean function

B(b,a)(y,x) = B(y,x) ⊕ 〈(b,a), (y,x)〉

is 2n+1 ± 2
n

2 for all (b,a) ∈ Z2
2 × Zn

2 .
Let us assume that (i0, i1, i2, i3) = (0, 1, 2, 3). Then

B(b,a)(y,x) = (m0(y) ⊕ m1(y)) f0(x) ⊕ m2(y)f1(x)

⊕ m3(y)(1 ⊕ f1(x)) ⊕ b1y1 ⊕ b2y2 ⊕ 〈a,x〉

where b = (b1, b2).
So, if 0 and 1 are the 2n × 1 arrays with all entries equal to 0

and 1 respectively; τ is the 2n × n array whose ith row is ei; ξ0
and ξ1 are the truth table of f0 and f1 respectively; and Λa is the
truth table of the linear function 〈a,x〉, then the last column of
Table 1 shows the truth table of B(b,a)(y,x). Now, each column of
Table 2 represents the four blocks of the truth table of B(b,a)(y,x)
for the different values of b.

Since f0 and f1 are bent functions, from Theorem 2.1, we have
that, for j = 0, 1, the number of 1s of ξj ⊕Λa is 2n−1 ± 2

n

2
−1, and

therefore, the number of 1s of ξj⊕1⊕Λa is 2n−1∓2
n

2
−1. So, in any

case, we have three blocks in which the number of 1s is 2n−1+2
n

2
−1



SOME CONSTRUCTIONS OF BENT FUNCTIONS 85

b1 = 0 b2 = 0 b1 = 0 b2 = 1 b1 = 1 b2 = 0 b1 = 1 b2 = 1
ξ0 ⊕Λa ξ0 ⊕Λa ξ0 ⊕Λa ξ0 ⊕Λa

ξ0 ⊕Λa ξ0 ⊕ 1⊕Λa ξ0 ⊕Λa ξ0 ⊕ 1⊕Λa

ξ1 ⊕Λa ξ1 ⊕Λa ξ1 ⊕ 1⊕Λa ξ1 ⊕ 1⊕Λa

1⊕ ξ1 ⊕Λa ξ1 ⊕Λa ξ1 ⊕Λa 1⊕ ξ1 ⊕Λa

Table 2. Truth table of B(b,a)(y,x) for the differ-
ent values of b = (b1, b2)

and one block in which the number of 1s is 2n−1 − 2
n

2
−1, or three

blocks in which the number of 1s is 2n−1 − 2
n

2
−1 and one block in

which the number of 1s is 2n−1 +2
n

2
−1. Consequently, the number

of minterms of B(b,a)(y,x) is always 2n+1 + 2
n

2 or 2n+1 − 2
n

2 .
Finally, if (i0, i1, i2, i3) is a permutation of (0, 1, 2, 3) other than

(0, 1, 2, 3), then the four blocks of the truth table of B(b,a)(y,x)
given in Table 2 are permuted according to (i0, i1, i2, i3) and there-
fore, the same result follows. !

Observe that as a consequence of Lemma 3.1 and Theorem 3.3
if I0 and I1 are the set of minterms of f0(x) and f1(x), respectively,
and if (a0, a1, a2, a3) is a permutation of (0, 2n, 2n+1, 2n + 2n+1),
then the set of minterms of the bent function B(y,x) constructed
in Theorem 3.3 is

I = {a0 + a, a1 + a | a ∈ I0} ∪ {a2 + a | a ∈ I1}

∪
{

a3 + a | a ∈ Ī1

}

(2)

where Ī1 = Z2n \ I1 is the set of minterms of 1 ⊕ f1(x).
Now, from expression (1) we have that

m0(y) ⊕ m1(y) ⊕ m2(y) ⊕ m3(y) = 1. (3)

So, if we take f0(x) = f1(x) = f(x) in the previous theorem, we
have the following result.

Corollary 3.4. If f(x) is a bent function of n variables and if
i ∈ {0, 1, 2, 3}, then

F (y,x) = f(x) ⊕ mi(y)

is a bent function of n + 2 variables.

Observe that, according to expression (2), the set of minterms
of the bent function F (y,x) constructed in the previous corollary
is,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



86 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

{a0 + a, a1 + a, a2 + a | a ∈ I} ∪
{

a3 + a | a ∈ Ī
}

where I is the set of minterms of f(x) and Ī = Z2n \ I is the set
of minterms of 1 ⊕ f(x).

On the other hand, remember that if f(x) is a bent function of
n variables and if c is a nonzero vector of Zn

2 , then f(c⊕x) is also
a bent function with the same number of minterms that f(x). So,
if we take f0(x) = f(x), and f1(x) = f(c ⊕ x) then, we have the
following result.

Corollary 3.5. If f(x) is a bent function of n variables, we con-
sider c ∈ Zn

2 with c += 0, and if (i0, i1, i2, i3) is a permutation of
(0, 1, 2, 3), then

G(y,x) = (mi0(y) ⊕ mi1(y)) f(x) ⊕ mi2(y)f(c ⊕ x)

⊕ mi3(y) (1 ⊕ f(c ⊕ x))

is a bent function of n + 2 variables.

If I is the set of minterms of f(x) and if c is the binary expan-
sion of the integer c, then by Lemma 3.2, c + I = {c + a | a ∈ I}
is the set of minterms of f(c ⊕ x). So, according to expressions
(2) and (3), if (a0, a1, a2, a3) is a permutation of (0, 2n, 2n+1, 2n +
2n+1), then the set of minterms of the bent function G(y,x) cons-
tructed in the previous corollary is,

{a0 + a, a1 + a, a2 + c + a | a ∈ I} ∪
{

a3 + c + a | a ∈ Ī
}

where I is the set of minterms of f(x).
Next, we present a new construction of a bent function of n+2

variables, from a bent function f(x) of n variables and some shifts
of f(x), that can not be obtained from Theorem 3.3.

Theorem 3.6. Let f(x) be a bent function of n variables and
consider u,v ∈ Zn

2 \ {0} such that

f(x) ⊕ f(u ⊕ x) ⊕ f(v ⊕ x) ⊕ f(u ⊕ v ⊕ x) = 1. (4)

If (i0, i1, i2, i3) is a permutation of (0, 1, 2, 3), then

H(y,x) = mi0(y)f(x) ⊕ mi1(y)f(u ⊕ x) ⊕ mi2(y)f(v ⊕ x)

⊕ mi3(y) (1 ⊕ f(u ⊕ v ⊕ x))

is a bent function of n + 2 variables.



SOME CONSTRUCTIONS OF BENT FUNCTIONS 87

Proof. According to Theorem 2.1, we must prove that the function

H(b,a)(y,x) = H(y,x) ⊕ H((b,a) ⊕ (y,x))

is balanced for all nonzero vectors (b,a) ∈ Z2
2 ×Zn

2 . In the follow-
ing, we identify the vector b ∈ Z2

2 with its integer representation
in Z22 .

Firstly, observe that from expression (4) and Lemma 3.2, we
have that

H(b,a)(y,x) = mi0(y)f(x) ⊕ mi1(y)f(u ⊕ x) ⊕ mi2(y)f(v ⊕ x)

⊕ mi3(y)
(

1 ⊕ f(u ⊕ v ⊕ x)
)

⊕ mi0⊕b(y)f(a ⊕ x) ⊕ mi1⊕b(y)f(a ⊕ u ⊕ x)

⊕ mi2⊕b(y)f(a ⊕ v ⊕ x)

⊕ mi3⊕b(y)
(

1 ⊕ f(a ⊕ u ⊕ v ⊕ x)
)

. (5)

So, we consider different cases depending on the values of (b,a).
Firstly, assume that a = 0n and that b += 02.
If b = 1, using expression (1) we obtain, after some tedious

algebraic manipulations, that

H(1,a)(y,x) = f(x) ⊕ f(u ⊕ x).

Now, if ξ and ξu are the truth table of f(x) and f(u⊕x), respec-
tively, then the truth table of H(1,a)(y,x) has four blocks,

ξ ⊕ ξu ξ ⊕ ξu ξ ⊕ ξu ξ ⊕ ξu

and therefore, it is balanced, because ξ⊕ ξu is balanced by Theo-
rem 2.1 since f(x) is a bent function.

A similar argument follows for b = 2 and b = 3 because

H(2,a)(y,x) = f(x) ⊕ f(v ⊕ x)

and
H(3,a)(y,x) = f(u ⊕ x) ⊕ f(v ⊕ x).

Now, assume that a += 0n and b = 02.
Then, from expression (5) we have that

H(b,a)(y,x) = mi0(y)
(

f(x) ⊕ f(a ⊕ x)
)

⊕ mi1(y)
(

f(u ⊕ x) ⊕ f(a ⊕ u ⊕ x)
)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



88 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

⊕ mi2(y)
(

f(v ⊕ x) ⊕ f(a ⊕ v ⊕ x)
)

⊕ mi3(y)
(

f(u ⊕ v ⊕ x) ⊕ f(a ⊕ u ⊕ v ⊕ x)
)

and taking into account that, by Theorem 2.1, the functions

f(x) ⊕ f(a ⊕ x), f(u ⊕ x) ⊕ f(a ⊕ u ⊕ x),
f(d ⊕ x) ⊕ f(a ⊕ v ⊕ x), f(u ⊕ v ⊕ x) ⊕ f(a ⊕ u ⊕ v ⊕ x)

are balanced because f(x), f(u⊕x), f(v ⊕x), and f(u⊕ v ⊕x)
are bent functions, we obtain that H(b,a)(y,x) is balanced.

Finally, assume that a += 0n and b += 02. Taking into account
that ⊕ in Z2

2 = {0, 1, 2, 3} is defined by the table

⊕ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

and that b += 0, we have that

(i0 ⊕ b, i1 ⊕ b, i2 ⊕ b, i3 ⊕ b) =











(i1, i0, i3, i2), if b = 1,

(i2, i3, i0, i1), if b = 2,

(i3, i2, i1, i0), if b = 3.

So, for b = 1, expression (5) can be written in the following way
depending on the values of a.

For a = u, we have that

H(1,a)(y,x) = mi2(y) ⊕ mi3(y)

whose truth table has four blocks

0 0 1 1

not necessarily in this order, and consequently it is balanced be-
cause the length of each block is 2n.

For a = v, we have that

H(1,a)(y,x) = mi0(y)
(

f(x) ⊕ f(a ⊕ u ⊕ x)
)

⊕ mi1(y)
(

f(u ⊕ x) ⊕ f(a ⊕ x)
)

⊕ mi2(y)
(

f(a ⊕ x) ⊕ 1 ⊕ f(u ⊕ x)
)



SOME CONSTRUCTIONS OF BENT FUNCTIONS 89

⊕ mi3(y)
(

1 ⊕ f(a ⊕ u ⊕ x) ⊕ f(x)
)

which is balanced because a += u and each one of the functions
that multiplies a minterm is balanced.

For a += u and a += v, we have by a similar argument that
H(b,a)(y,x) is balanced.

Finally, for b = 2 and b = 3 we can use the same argument to
obtain that H(b,a)(y,x) is balanced. !

Observe that if I is the set of minterms of f(x), then u + I,
v+I and w+I are the sets of minterms of f(u⊕x), f(v⊕x), and
f(u ⊕ v ⊕ x), respectively, where w is the integer whose binary
expansion is u ⊕ v. So, expression (4) tells us that

I ∪ (u + I) ∪ (v + I) ∪ (w + I) = Z2n .

Furthermore, if (a0, a1, a2, a3) is a permutation of (0, 2n, 2n+1, 2n+
2n+1), then, the set of minterms of the bent function H(y,x)
constructed in the previous theorem is,

{a0 + a, a1 + u + a, a2 + v + a | a ∈ I} ∪
{

a3 + w + a | a ∈ Ī
}

.

One question that arises at this point is the following: starting
with the same bent function f(x) of n variables, the bent functions
F (y,x), G(y,x), and H(y,x), in n + 2 variables, constructed
following Corollaries 3.4 and 3.5, and Theorem 3.6 are will they
be different? And indeed they are and the following theorem will
prove it.

Theorem 3.7. Let f(x) be a bent function of n variables. Let
(i0, i1, i2, i3), (j0, j1, j2, j3), and (k0, k1, k2, k3) be permutations of
(0, 1, 2, 3). Assume that F (y,x), G(y,x), and H(y,x) are the
functions constructed in Corollaries 3.4, 3.5, and Theorem 3.6
using permutations (i0, i1, i2, i3), (j0, j1, j2, j3), and (k0, k1, k2, k3)
respectively. Then F (y,x) += G(y,x), F (y,x) += H(y,x) and
G(y,x) += H(y,x).

Proof. According to Corollaries 3.4, 3.5, and Theorem 3.6 we have
that

F (y,x) = f(x) ⊕ mi3(y)

G(y,x) = (mj0(y) ⊕ mj1(y)) f(x) ⊕ mj2(y)f(c ⊕ x)

⊕ mj3(y) (1 ⊕ f(c ⊕ x))

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



90 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

H(y,x) = mk0
(y)f(x) ⊕ mk1

(y)f(u ⊕ x) ⊕ mk2
(y)f(v ⊕ x)

⊕ mk3
(y) (1 ⊕ f(u ⊕ v ⊕ x))

If ξ is the truth table of f(x), then the truth table of F (y,x),
G(y,x), and H(y,x) have four blocks (not necessarily in that
order and not the same order for all):

F : ξ ξ ξ ξ ⊕ 1
G : ξ ξ ξc 1 ⊕ ξc

H : ξ ξu ξv 1 ⊕ ξu⊕v

where ξc, ξu, ξv, and ξu⊕v are the truth tables of f(c ⊕ x),
f(u ⊕ x), f(v ⊕ x), and f(u ⊕ v ⊕ x), respectively.

Now, it is clear that F (y,x) += G(y,x), because F (y,x) has
three blocks ξ and G(y,x) only has two blocks ξ.

Also, F (y,x) += H(y,x), because F (y,x) has three blocks ξ
and H(y,x) only has one block ξ.

Finally, G(y,x) += H(y,x), because G(y,x) has two blocks ξ
and H(y,x) only has one block ξ. !

Another question that appears at this point is the following:
Let F (y,x), G(y,x), and H(y,x) be bent functions of n + 2
variables, constructed according to Corollaries 3.6 and 3.7, and
Theorem 3.6 but starting with bent functions of n variables f(x),
g(x) and h(x), respectively; if f(x) += h(x) and g(x) += h(x)
is it possible that F (y,x) = G(y,x), F (y,x) = H(y,x), or
G(y,x) = H(y,x)? Next theorem shows that this situation can
not occurs.

Theorem 3.8. Let f(x), g(x), and h(x) be different bent func-
tions of n variables. Assume that (i0, i1, i2, i3), (j0, j1, j2, j3), and
(k0, k1, k2, k3) are permutations of (0, 1, 2, 3). If F (y,x), G(y,x),
and H(y,x) are the bent functions constructed in Corollaries 3.4
and 3.5, and Theorem 3.6 using the bent functions f(x), g(x), and
h(x), respectively, and the permutations (i0, i1, i2, i3), (j0, j1, j2, j3),
and (k0, k1, k2, k3), respectively. Then

F (y,x) += G(y,x), F (y,x) += H(y,x) and G(y,x) += H(y,x).

Proof. According to Corollaries 3.4, 3.5, and Theorem 3.6 we have
that

F (y,x) = f(x) ⊕ mi3(y),



SOME CONSTRUCTIONS OF BENT FUNCTIONS 91

G(y,x) = (mj0(y) ⊕ mj1(y)) ⊕ g(x)mj0(y)g(c ⊕ x)

⊕ mj3(y) (1 ⊕ g(c ⊕ x)) ,

H(y,x) = mk0
(y)h(x) ⊕ mk1

(y)h(u ⊕ x) ⊕ mk2
(y)h(v ⊕ x)

⊕ mk3
(y) (1 ⊕ h(u ⊕ v ⊕ x)) .

If ξf , ξg and ξh are the truth tables of f(x), g(x) and h(x),
respectively, then the truth tables of F (y,x), G(y,x), and H(y,x)
have four blocks (not necessarily in that order and not the same
order for all):

F : ξf ξf ξf ξf ⊕ 1 (6)

G : ξg ξg ξg,c 1⊕ ξg,c (7)

H : ξh ξh,u ξh,v 1 ⊕ ξh,u⊕v (8)

where ξg,c, is the truth table of g(c ⊕ x); ξh,u, ξh,v, and ξh,u⊕v

are the truth tables of h(u ⊕ x), h(v ⊕ x), and h(u ⊕ v ⊕ x),
respectively.

Since f(x) += g(x), we have that

f(x) = mi(x) ⊕ f ′(x) and g(x) = mj(x) ⊕ g′(x)

with i += j, mi(x) is a minterm that is not in the expression of
g′(x) as a sum of minterms, and mj(x) is a minterm that is not
in the expression of f ′(x) as a sum of minterms.

So, according to expression (6), in the ith position of each one
of the four blocks of the truth table of F (y,x) we have

1 1 1 0

but, according to expression (7), in the ith position of each one of
the four blocks of the truth table of G(y,x) we have

0 0 ? ?

depending on c. If ej ⊕ c = ei we have

0 0 1 0

but for ej ⊕ c += ei, then we have

0 0 0 1

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



92 J.-J. CLIMENT, F. J. GARCÍA, AND V. REQUENA

In any case, it is clear that both truth tables are different. So,
F (y,x) += G(y,x).

The same applies to the rest of the cases. !

References

[1] A. Canteaut and P. Charpin. Decomposing bent functions. IEEE Trans-
actions on Information Theory, 49(8): 2004–2019 (2003).

[2] C. Carlet and P. Guillot. A characterization of binary bent functions.
Journal of Combinatorial Theory (Series A), 76: 328–335 (1996).

[3] D. K. Chang. Binary bent sequences of order 64. Utilitas Mathematica,
52: 141–151 (1997).

[4] C. Charnes, M. Rötteler and T. Beth. Homogeneous bent functions,
invariants, and designs. Designs, Codes and Cryptography, 26: 139–
154 (2002).

[5] J. F. Dillon. Elementary Hadamard Difference Sets. PhD Thesis, Univer-
sity of Maryland, 1974.

[6] X.-D. Hou. GL(m, 2) acting on R(r, m)/R(r− 1, m). Discrete Mathemat-
ics, 149: 99–122 (1996).

[7] X.-D. Hou. Cubic bent functions. Discrete Mathematics, 189: 149–
161 (1998).

[8] X.-D. Hou. On the coefficients of binary bent functions. Proceedings of
the American Mathematical Society, 128(4): 987–996 (1999).

[9] X.-D. Hou and P. Langevin. Results on bent functions. Journal of Com-
binatorial Theory (Series A), 80: 232–246 (1997).

[10] R. McFarland. A family of noncyclic difference sets. Journal of Combina-
torial Theory (Series A), 15: 1–10 (1973).

[11] C. Qu, J. Seberry and J. Pieprzyk. On the symmetric property of homo-
geneous Boolean functions. In J. Pieprzyk, R. Safavi-Naini and J. Seberry
(editors), Information Security and Privacy – ACISP’99, volume 1587 of
Lecture Notes in Computer Science, pages 26–35. Springer-Verlag, Berlin,
1999.

[12] O. S. Rothaus. On “bent” functions. Journal of Combinatorial Theory
(Series A), 20: 300–305 (1976).

[13] J. Seberry, X.-M. Zhang and Y. Zheng. Nonlinearly balanced Boolean
functions and their propagation characteristics (extended abstract). In
D. R. Stinson (editor), Advances in Cryptology – CRYPTO’93, volume
773 of Lecture Notes in Computer Science, pages 40–60. Springer-Verlag,
Berlin, 1994.

[14] J. Seberry, X.-M. Zhang and Y. Zheng. Nonlinearity and propagation
characteristics of balanced Boolean functions. Information and Computa-
tion, 119: 1–13 (1995).



Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

SOME NECESSARY CONDITIONS FOR A

QUADRATIC FEEDBACK SHIFT REGISTER TO

GENERATE A MAXIMUM LENGTH SEQUENCE

Ali Doğanaksoy1, 2, Elif Saygı2, 3 and Zülfükar Saygı2

Abstract. In this paper, we deal with the properties of
the quadratic feedback shift registers generating maximum
length sequences. We give some necessary conditions for a
quadratic feedback function f of a feedback shift register to
generate a maximum length sequence. Also we present a
method generalizing this condition. Instead of searching all
the sequence, looking at the algebraic normal form of the
function f we can understand if the corresponding shift reg-
ister generates a sequence having short period.
Keywords: Boolean functions, binary sequences, maxi-
mum length sequences, m-sequences, shift registers, stream
ciphers.

1. Introduction

In many fields, such as mathematics, computer science, commu-
nication, cryptography, networks etc., binary sequences are used
extensively [1–3]. A common way of producing such a sequence is
employing a feedback shift register (FSR). It turns out to be an im-
portant problem to examine the properties of sequences produced

1 Department of Mathematics, Middle East Technical University
İnönü Bulvarı, 06531, Ankara, Turkey
2 Institute of Applied Mathematics, Middle East Technical University
İnönü Bulvarı, 06531, Ankara, Turkey
3 Faculty of Education, Hacettepe University, Ankara, Turkey,
email: {aldoks,e110925,saygi}@metu.edu.tr
Phone: +90 (312) 210 53 54 Fax: +90 (312) 210 29 85

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



94 ALİ DOĞANAKSOY, ELİF SAYGI, ZÜLFÜKAR SAYGI

by FSRs and as a consequence, FSRs have been widely studied in
the literature [4, 5].

A FSR of length n consists of a pair (F, f) where f is a Boolean
function defined on n variables and F is a vectorial Boolean func-
tion defined on n variables by setting

F (x1, x2, . . . , xn) = (x2, . . . , xn, f(x1, x2, . . . , xn)),

x1, . . . , xn ∈ F2. F , in fact, describes how to obtain the new state
from the previous state and thus called the next-state function; f
is used to define the nth term of the new state and is called the
feedback function. Starting from an initial state (s1, s2, . . . , sn),
we obtain the sequence of states:

F (s1, s2, . . . , sn) = (s2, . . . , sn, sn+1),

F (s2, . . . , sn+1) = (s3, . . . , sn+1, sn+2),
...

Then, by definition, the binary sequence produced by the FSR is
s1, s2, . . . , sn, sn+1, . . ..

A FSR is a finite state machine (with n stages), thus it has a
finite number (at most 2n) of states and it produces an ultimately
periodic sequence (of period at most 2n). In many situations a
FSR is not allowed to reach the all 0 state and in such a case the
output sequence has period at most 2n − 1. One of the interesting
problems is the analysis of the possible periods of FSRs. The
most interesting sequences are the ones with maximum periods.
A binary sequence of span n is called a maximal length sequence
(m-sequence) if its period (or length) is 2n − 1.

If the feedback function f of a FSR is a linear function we call
the FSR a linear feedback shift register (LFSR). Maximal length
sequences generated by linear LFSR’s have longest period and
good statistical properties. On the other hand, there exist several
algorithms to calculate the span of a given LFSR, among which
the best known is the Berlecamp-Massey algorithm [1,6]. By using
this algorithm a binary m-sequence of span n can be completely
determined by observing any consequtive 2n bits of the sequence.
This, of course, means a cryptographical weakness. In the design
of stream ciphers, when the LFSRs are used, to avoid this weakness
an amount of nonlinearity has been added by means of a nonlinear
filter function or a nonlinear combiner [4, 5]. Another possibility



NECESSARY COND. FOR A QFSR TO GENERATE M-SEQUENCE 95

is to use FSRs having nonlinear feedback functions. In this work
we deal with Quadratic Feedback Shift Registers (QFSRs), that is
whose feedback functions are quadratic Boolean Functions.

The feedback function of a QFSR can be represented as follows

f(x0, x1, . . . , xn) =
⊕

0≤i≤n

aixi ⊕
⊕

0≤i<j≤n

ai,jxixj .

The aim of this paper is to analyze the properties of the qua-
dratic feedback shift registers which generate maximum length
sequences. We obtain some necessary conditions for the feed-
back function f to generate a maximum length sequence. Also
we present a method to generalize the main idea. Instead of ex-
amining the sequence, one can concantrate on algebraic normal
form of the Boolean function f to understand whether the corre-
sponding shift register generates a sequence having a short period.

2. Some Previous Results

In this section we give some previous results and some necessary
conditions to generate quadratic m-sequences.

For a FSR if some initial state is never repeated, the generated
cycle of states is said to have a branch point, that is, for some
different states S1 and S2, we have F (S1) = F (S2). We now
state some results whose proofs can be found in the mentioned
references.

Proposition 2.1 ( [7]). A sequence have no branch point if and
only if the next state function F is one to one.

Recall that the degree of a Boolean function f , denoted by
deg(f), is the maximum number of variables in a term appearing
in f . The degree of a variable xi in f , denoted by degf (xi), is
the maximum number of variables among all terms in which xi

appears.

Proposition 2.2 ( [7]). A next state function F is one to one if
and only if degf (x0) = 1.

Note that, degf (x0) = 1 means that f is of the form f = x0 + g
where g is a Boolean function which does not depend on x0.

Corollary 2.3. Let f be a feedback function of a FSR that gen-
erates a quadratic m-sequence. Then degf (x0) = 1.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



96 ALİ DOĞANAKSOY, ELİF SAYGI, ZÜLFÜKAR SAYGI

3. Main Results

In this section we present our main results. Our results give
conditions for a feedback function f of a FSR to generate a max-
imum length sequence. Throughout this section f is a quadratic
Boolean function of the form

f(x0, x1, . . . , xn) = x0 ⊕ g(x1, . . . , xn)

= x0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj . (1)

Now we state a useful proposition which is stated and proved in [8].

Proposition 3.1. Let f = x0 +g be a quadratic feedback function
which generates an m-sequence. Then,

a. The number of linear terms in g and the number of qua-
dratic terms in g are not equal in modulo 2,

b. There is at least one linear term in g.

The main idea in the proof of the above proposition is con-
sidering certain periodical structures of the given sequence. The
motivation behind our work is to generalize this idea to a larger
class of templates.

We now examine the cases where the sequence has a cycle σ
of length m. Here we first present some useful notations to have
used in the remaining part of the paper. Let f be an n+1 variable
Boolean function of the form f(x0, x1, . . . , xn) = x0⊕g(x1, . . . , xn).
For i = 1, 2, . . . m, t = $(n − i)/m% and for any r ≤ m we define

ym
i =

⊕

0≤k≤t

ai+mk ⊕
⊕

0≤k<l≤t

ai+mk,j+ml,

ym
i ∗ ym

j =
⊕

0≤k≤t

ai+mk,j+mk,

ym
i1,i2 = ym

i1 ⊕ ym
i2 ⊕ ym

i1 ∗ ym
i2 ,

ym
i1,i2,··· ,ir =

⊕

1≤k≤r

ym
ik
⊕

⊕

1≤k<l≤r

ym
ik
∗ ym

il
.

Note that the above defined ym
i1,i2,··· ,ir

’s are the x-or of some spe-
cific coefficients of the function defined in (1). Before introducing
the main result, for the sake of some clarification, we present an
example.



NECESSARY COND. FOR A QFSR TO GENERATE M-SEQUENCE 97

Example 3.2. Let σ be a cycle of length m = 4, and define f to
be a function with 10 variables x0, x1, . . . , x9. Now we calculate
y4
1, y4

2, y4
1 ∗ y4

2 and y4
1,2.

y4
1 = a1 ⊕ a5 ⊕ a9 ⊕ a1,5 ⊕ a1,9 ⊕ a5,9,

y4
2 = a2 ⊕ a6 ⊕ a2,6,

y4
1 ∗ y4

2 = a1,2 ⊕ a1,6 ⊕ a2,5 ⊕ a2,9 ⊕ a5,6 ⊕ a6,9,

y4
1,2 = y4

1 ⊕ y4
2 ⊕ y4

1 ∗ y4
2.

The following propositions state new necessary conditions for
the sequence generated by QFSRs to be a maximum length se-
quence.

Proposition 3.3. Let f be an n + 1 variable quadratic feedback
function which generates an m-sequence then,

a. y2
1 ⊕ y2

2 ⊕ y2
1 · y

2
2 = 1, if n + 1 ≡ 0 mod 2 ,

b. y2
1 · y

2
2 = 0, if n + 1 ≡ 1 mod 2.

Proof. The proofs of these statements are similar. The main idea
behind is that a feedback function which generates an m-sequence
can not generate the cycle (01).

Assume that n+1 ≡ 0 mod 2 and the function f generates the
(01) cycle. That is,

f(0101 · · · 01) = 0 if and only if g(1010 · · · 01) = 0 and

f(1010 · · · 010) = 1 if and only if g(0101 · · · 010) = 0.

By definition, we have y2
1 = 0 and y2

2 = 0. Since f can not generate
the (01) cycle, both of y2

1 and y2
2 can not be zero, that is to say

y2
1 ⊕ y2

2 ⊕ y2
1 · y

2
2 = 1.

Similarly if n + 1 ≡ 1 mod 2 and f generates the (01) cycle, we
have f(0101 · · · 010) = 1, f(1010 · · · 0101) = 0 that is equivalent
to g(1010 · · · 010) = 1, g(0101 · · · 0101) = 1. So we have y2

1 = 1
and y2

2 = 1. But we know that f can not generate the (01) cycle,
so both of y2

1 and y2
2 can not be one, which is equivalent to say

y2
1 · y2

2 = 0. !

Example 3.4. Let f1, f2, f3, f4 be quadratic Boolean functions of
the form (1) and defined as f1 = x0+x3+x1x16+x18+x19+x14x19,
f2 = x0 + x6 + x1x3 + x5x7, f3 = x0 + x1 + x2 + x3 + x4 +

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



98 ALİ DOĞANAKSOY, ELİF SAYGI, ZÜLFÜKAR SAYGI

x2x9 + x5x11 + x6x9 and f4 = x0 + x1 + x3 + x1x3 + x2x4 + x3x4.
Then by checking the conditions given in Proposition 3.3 we see
that the functions f1, f2 and f3 satisfy the conditions, that is the
QFSRs with the corresponding feedback functions f1, f2 and f3

may generate m-sequences. But for f4 we have n + 1 = 5 ≡ 1
mod 2, y2

1 = a1 + a3 + a1,3 = 1 and y2
2 = a2 + a4 + a2,4 = 1.

Therefore the QFSR having feedback function f4 cannot generate
an m-sequence with the Proposition 3.3.

Proposition 3.5. Let f be an n + 1 variable quadratic feedback
function which generates an m-sequence then,

a. y3
1 ⊕ y3

2 ⊕ y3
3 ⊕ y3

1 · y3
2 ⊕ y3

1 · y3
3 ⊕ y3

2 · y3
3 = 1, if n + 1 ≡ 0

mod 3,
b. y3

1 · y
3
2 · y

3
3 ⊕ y3

1 · y3
3 = 0, if n + 1 ≡ 1 mod 3

c. y3
1 · y

3
2 · y

3
3 ⊕ y3

2 · y3
3 = 0, if n + 1 ≡ 2 mod 3

d. y3
2,3 ⊕ y3

1,3 ⊕ y3
1,2 ⊕ y3

2,3 · y
3
1,3 ⊕ y3

2,3 · y
3
1,2 ⊕ y3

1,3 · y
3
1,2 = 1, if

n + 1 ≡ 0 mod 3
e. y3

2,3 · y
3
1,3 · y

3
1,2 ⊕ y3

2,3 · y
3
1,2 = 0, if n + 1 ≡ 1 mod 3

f. y3
2,3 · y

3
1,3 · y

3
1,2 ⊕ y3

1,3 · y
3
1,2 = 0, if n + 1 ≡ 2 mod 3

Proof. To prove the statements we use the same technique as in
the proof of Proposition 3.3. Instead of using the (01) cycle we
concentrate on the cycles (001) and (011). Using the definitions
of ym

i1,i2,··· ,ir
’s and taking the feedback function f as in (1) we

complete the proof. !

Example 3.6. Let f1, f2, f3 be quadratic Boolean functions de-
fined as in the Example 3.4. We know that the condition given in
Proposition 3.3 is satisfied by f1, f2 and f3. An easy computation
shows that the conditions given in Proposition 3.5 are satisfied for
the functions f1 and f2. But for f3 we have n + 1 = 12 ≡ 0 mod
3 and y3

1 = y3
2 = y3

3 = 0. Therefore the QFSR with the feedback
function f3 cannot generate an m-sequence, with the Proposition
3.5.

Remark 3.7. Proposition 3.3 and Proposition 3.5 give necessary
conditions for a QFSR to generate an m-sequence. By examining
the algebraic normal form of a quadratic function one can easily
check the conditions given in the propositions to see whether the
corresponding QFSR is able to generate an m-sequence or not.

The idea in the proof of Proposition 3.3 and Proposition 3.5
can be easily generalized to cycles of length greater than three.



NECESSARY COND. FOR A QFSR TO GENERATE M-SEQUENCE 99

Theorem 3.8. Let f be an n+1 variable quadratic feedback func-
tion generating the cycle σ of length m and Hamming weight w.
If n + 1 ≡ 0 (mod m) then ym

i = 0, ym
i1,i2

= 0, . . ., ym
j1,j2,··· ,jw

= 0,
where 1 ≤ i ≤ m, 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 < · · · < jw ≤
m.
If n + 1 ≡ t (mod m) then ym

t = 1, ym
i1,t = ym

t,i2
= 1, . . .,

ym
j1,j2,··· ,jw

= 1, where 1 ≤ i1 < t ≤ m − 1, 1 ≤ t < i2 ≤ m − 1
and 1 ≤ j1 < j2 < · · · < jw ≤ m − 1 with jk = t for some
k. Also ym

m = 1, ym
i1,m = 1, . . ., ym

j1,j2,··· ,m = 1, where i1 )= t,
1 ≤ i1 ≤ m − 1, 1 ≤ j1 < j2 < · · · ≤ m − 1 and jk )= t for any k.

Proof. Similar to that of Proposition 3.3 and Proposition 3.5 !

References

[1] J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans.
Inf. Theory, vol. IT-15, no. 1, pp. 122127, Jan. (1969).

[2] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source
Code in C, New York: Wiley, (1996).

[3] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread

Spectrum Communications Handbook, New York: McGraw-Hill, (1994).
[4] S. W. Golomb, Shift register sequences, Aegean Park Press, Laguna Hills,

California, (1982).
[5] R. A. Rueppel, Analysis and design of stream ciphers, Springer Verlag,

Berlin, (1986).
[6] E. R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill,

(1968).
[7] A. Doğanaksoy and E. Saygı, On The Quadratic Feedback Shift Registers,

I. Ulusal Kriptoloji Sempozyumu Bildiriler Kitabı, pp. 127-133, (2005).
http://www.iam.metu.edu.tr/sempozyum/2005/

[8] A. H. Chan, R. A. Games and J. J. Rushanan, On the quadratic m-
sequences, Proceedings of Fast Software Encryption, LNCS 809, pp. 166-
173, (1994).

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07





Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

IMPROVED ALGORITHM TO FIND EQUATIONS

FOR ALGEBRAIC ATTACKS FOR COMBINERS

WITH MEMORY

Frederik Armknecht1, Pierre-Louis Cayrel2, Philippe Gaborit2

and Olivier Ruatta2

Abstract. Algebraic attacks have established as an impor-
tant tool for cryptanalyzing LFSR-based keystream genera-
tors. Crucial for an efficient attack is to find appropriate
equations of a degree as low as possible. Hereby, lower
degrees are possible if many keystream bits are involved
in one equation. An example is the keystream generator
E0 employed in Bluetooth, where equations of degree 4 ex-
ist for r = 4 and 5 clocks but equations of degree 3 for
r ≈ 8, 822, 188. The existence of degree 3 equations with
5 < r " 8, 822, 188 clocks remained an open question. It
is known that valid equations correspond to annihilators of
certain sets. The effort to compute the sets and to find
annihilators on them are exponential in r, making efficient
algorithms desirable. We describe first in this paper several
improvements for computing the sets and their annihilators
(the intersection method). Second, we use our new improve-
ments to exclude the existence of degree 3 equations for E0

with 5 < r ≤ 9. We also find 4 degree 4 annihilators with 7
consecutive output bits.
Keywords: Algebraic attacks, low degree equations, anni-
hilators, algorithm

1 NEC Europe Ltd. Network Laboratories, Kurfrsten-Anlage 36, D-69115
Heidelberg. email: Frederik.Armknecht@netlab.nec.de

2 Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas, 87000
Limoges, France.
email: {pierre-louis.cayrel,philippe.gaborit,olivier.ruatta}@xlim.fr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



102 ARMKNECHT, CAYREL, GABORIT AND RUATTA

1. Introduction

Shortly speaking, an algebraic attacks consists in generating
and solving a system of (non-)linear equations which describe im-
plicitly the secret key in dependence on known values. In the
case of keystream generators, this involves the known keystream
bits. Stream ciphers are designed for online encryption of se-
cret plaintext bitstreams which have to pass an insecure channel.
Widely used in practice are stream ciphers are keystream gener-
ators based on linear feedback shift registers (LFSR), a promi-
nent example being the E0 keystream generator used in the Blue-
tooth standard for wireless communications [4]. Before exchanging
data, the keystream generator is initialized with some secret value
S0 ∈ {0, 1}n on which both sender and receiver have to agree on.
To encrypt a stream of plaintext bits p0, p1, . . ., the keystream
generator is used to generate a bitstream z0, z1, . . . of the same
length. Both streams are XORed bit by bit, giving the cipher
text bits ct := pt ⊕ zt. The bits ct are send to the receiver, who
knows the secret initialization value of the keystream generator
and therefore can produce the same keystream bits zt to decrypt
the message by pt = ct ⊕ zt.

To evaluate the security, it is assumed that a potential adver-
sary knows the specifications of the keystream generator and some
of the keystream bits zt. An attack is to recover the value of S0

using the given information. Over the last years, several kind of at-
tacks have been invented (e.g., fast correlation attacks [6,14,15,21],
backtracking attacks [12, 13, 24, 25], time-memory tradeoffs [5],
BDD-based attacks [16] etc.). All have in common that the attack
complexity is exponential in the key size n.

Recently, a new kind of attack was proposed: algebraic at-
tack. For some ciphers, algebraic attacks outmatched all previ-
ously known attacks (e.g. [1, 9]). The basic idea is to generate
a system of equations with its solution being the secret key. Al-
though solving system of non-linear equations over finite fields is a
NP-hard problem, in this case the equations have some particular
properties. Each equation provides some information on the secret
key depending on r successive known keystream bits zt, . . . , zt+r−1

and the degree is upper bounded by some value d which is inde-
pendent of n. If the number of linearly independent equations is



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 103

high enough, an attack can be performed within O(n3d) opera-
tions. Observe that, despite to the other attacks, the complexity
is only polynomial in n but exponential in d.

Thus, one of the major topics in the context of algebraic attacks
is the search for low degree equations. Whereas the general exis-
tence of such equations has been proven in [1], only few is known
on how to find (or avoid) equations of a degree d. For example, in
the case of E0, an equation of degree 4 over r = 4 clocks has been
developed in [1], what led to fastest attack at this time. Later,
in [7], these equations were combined to derive a new equation of
degree 3 over r ≈ 8, 882, 198 clocks, what reduced the time effort
by several magnitudes. As far as we know, algebraic attacks are
still the fastest attacks on stand-alone E0.

1 Furthermore, these
results show the possibility that for r > 4, equations with an de-
gree < 3 may exist. This is particulary interesting as equations of
degree 2 or 1 would lead to practical attacks. Whereas it has been
confirmed that no equations of degree < 4 exist for E0 for r ≤ 5,
to the best of our knowledge, no results exist for r ≥ 6.

So far, all methods published to find all (or exclude the ex-
istence of) degree d equations are based on computing annihila-
tors of certain sets (see [1, 20] and for a general framework [2]).
However, as the generation of these sets and thus the effort for
computing the annihilators grow exponentially with r, efficient al-
gorithms for both steps are crucial. Normally, finding annihilators
is done by Gaussian elimination. Recently, an improved algorithm
was proposed in [3] which reduced the complexity of the Gauss-
ian elimination in these cases from cubic to quadratic, allowing
the computation of the algebraic immunity for Boolean functions
with more variables than it was possible before. Unfortunately,
it is difficult to achieve this complexity in practice and requires a
sophisticated memory management.

Our results are the following. First, we describe how to com-
pute a basis of all low degree equations over r clocks and present
several improvements on the way to construct the set XZ intro-
duced in [2] and on the way to prove the non existence of certain
low degree annihilators. Then, we give some experimental results
on the non existence of low degree equations of degree three for
E0 for a number of cloks between 5 and 9.

1Faster attacks on Bluetooth have been described in [17–19] but they rely
on the linearity of the key schedule of the Bluetooth encryption system.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



104 ARMKNECHT, CAYREL, GABORIT AND RUATTA

The paper is structured as follows. After explaining algebraic
attacks and the connection betweem equations and annihilators
in Section 2, we describe how to compute the corresponding sets
and some improvements in Sections 3 and 4. Depending on a
given secret information x∗ ∈ {0, 1}n, the stream cipher produces
a keystream Z(x∗) = (z1, z2, · · · ) which is bitwise XORed with E.
Knowing x∗, the decryption can be performed by using the same
rule. It is common to evaluate the security of a stream cipher
relative to the pessimistic scenario that an attacker has access
not only to the encrypted bitstream, but even to a sufficiently
long piece of keystream. Thus, the cryptanalysis problem of a
given stream cipher consists in computing the secret information
x∗ from a sufficiently long prefix of Z(x∗).

We call a stream cipher LFSR-based, if it consists of a certain
number k of linear feedback shift registers (LFSRs) and an addi-
tional device, called the nonlinear combiner, which transforms the
internal linear bitstream, produced by the LFSRs, into a nonlinear
output keystream. Because of the simplicity of LFSRs and the ex-
cellent statistical properties of bitstreams produced by well-chosen
LFSRs, LFSR-based stream ciphers are widely used in practice.
A lot of different nontrivial approaches to the cryptanalysis of
LFSR-based stream ciphers (fast correlation attacks, backtrack-
ing attacks, time-space tradeoffs, BDD-based attacks etc.) were
discussed in the relevant literature, and a lot of corresponding de-
sign criterions (correlation immunity, large period and linear com-
plexity, good local statistics etc.) for such stream ciphers were
developed.

A (k, l)-combiner consists of k LFSRs and a finite Mealy au-
tomaton with k input bits, one output bit and l memory bits.
Let n be the sum of the lengths of the k LFSRs. Starting from
a secret initial assignment x∗ ∈ {0, 1}n, the LFSRs produce an
internal linear bitstream L(x∗), built by blocks xt of k parallel
bits for each clock t. Starting from a secret initial assignment
c1 ∈ {0, 1}l to the memory bits, in each clock t the automaton
produces the t-th keystream bit zt corresponding to xt and ct and
changes the inner state to ct+1 (see figure 1). The secret informa-
tion is given by x∗ and c1. Numerous ciphers of this type are used
in practice. Note, e.g., that the E0 keystream generator used in
the Bluetooth wireless LAN system (see Bluetooth SIG (2001) [4])
is a (4, 4)-combiner.



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 105

—————————————————

!

!

"

!

#
#

##$%
%

%%&!

! !

!Memory

LFSRs

C

Xt zt

(Z, C)

Ct+1Ct

Z

—————————————————

Figure 1. A (k, l)-combiner

The aim of this paper is to analyze the security of
(k, l)-combiners with respect to algebraic attacks, a new method
for attacking stream and block ciphers. Algebraic attacks ex-
ist against AES and Serpent (Courtois and Pieprzyk (2002) [8])
and Toyocrypt (Courtois (2003) [9]). Related algebraic attacks
were used to attack the HFE public key cryptosystem (Courtois
(2002) [8]).

Courtois and Meier (2003) discussed algebraic attacks on gen-
eral LFSR-based stream ciphers and presented the best known at-
tacks on Toyocrypt and LILI-128 so far [9]. Very recently, Courtois
introduced fast algebraic attacks on LFSR-based stream ciphers,
an improved version of the algebraic attacks (Courtois (2003) [7]).

An algebraic attack is based on a nontrivial low degree relation
p for r clocks, i.e. a relation which holds for any sequence of r con-
secutive bits of the keystream and the corresponding kr internal
bits. Given such a relation p of small degree d and a sufficiently
long piece of a keystream Z(x∗, c1), p can be used to produce an
overdefined system of T nonlinear equations in the initial bits of
the LFSRs, which can be thought of as system of linear equations
in the monomials of length at most d. If T is large enough then
we get a unique solution which is induced by x∗, and from which
x∗ can be derived in a straightforward way.

2. Algebraic attacks and annihilators

In this section, we describe basic ideas of algebraic attacks on
keystream generators and the connection between valid equations
and annihilators of given sets. Hereby, an annihilator of a set
X ⊆ Fn

2 with F2 being the finite field with two elements is defined

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



106 ARMKNECHT, CAYREL, GABORIT AND RUATTA

to be a function g : Fn
2 → F2 with g(x) = 0 for all x ∈ X. First

of all, we define (k, !)-combiners which is the class of keystream
generators we are dealing with:

Definition 2.1. A (k, !)-combiner with k ≥ 1 and ! ≥ 0 consists
of an internal state S ∈ F!

2 × Fn
2 , a regular matrix L over F2 of

size n×n, called the LFSR feedback matrix, a (projection) matrix
P over F2 of size n × k a non-linear next memory state function
Ψ : F!

2 × Fk
2 → F!

2 and an output function f : F!
2 × Fk

2 → F2.

One example for a practically used (k, !)-combiner is the E0

keystream generator from the Bluetooth standard, which is a (4, 4)-
combiner with n = 128.

The generation of the keystream works as follows. First, the
internal state S is initialized to S0 := (Q0,K) ∈ F!

2 × Fn
2 where

K ∈ Fn
2 is the LFSRs initial state and the register of Q0 ∈ F!

2
is called the memory. The content of the LFSRs is updated by a
linear function, here denoted by the matrix L. In many cases, only
some of the LFSRs’ outputs are used for the computation of the
actual keystream bit and the next state of the memory register.
This is expressed by the projection matrix P and means that only
the values in Kt := K · Lt · P are involved in the computations at
clock t. The memory is updated via Qt+1 := Ψ(Qt,Kt), whereas
the keystream bit zt is computed by zt = f(Qt,Kt).

Obviously, the values of the keystream bits zt, . . . , zt+i depend
only on Qt and Kt, . . . ,Kt+i. We express this fact by defining the
extended output function f r(Qt,Kt, . . . ,Kt+r−1) = (zt, . . . , zt+i).
More formally, it holds that

f r(Qt,Kt, . . . ,Kt+i) = (f(Qt,Kt), f(Qt+1,Kt+1), . . . ,

f(Qt+r−1,Kt+r−1))

with Qi+1 = Ψ(Qi,Ki). An algebraic attack is based on finding
functions F1, . . . , Fs : Fk·r

2 × Fr
2 → F2 such that

Fi(Kt, . . . ,Kt+r−1, zt, . . . , zt+r−1) = 0 (1)

is true for all clocks t ≥ 0 and 1 ≤ i ≤ s. Given such functions, a
system of equation can be generated by

F (Kti , . . . ,Kti+r−1, zti , . . . , zti+r−1) = 0



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 107

where zti , . . . , zti+r−1 denote r successive known keystream bits. If
enough equations are given, the LFSRs initial state K is uniquely
determined and can be found by solving the system of equation.
Once K is known, Q0 can usually be reconstructed quite easily or
found by exhaustive search. Thus, we refer to K as the secret key
and call n the key size.

To compute the solution, the so-called linearization method
is possible. Given that each of the equations has a degree ≤ d
with d = maxi{degKt,...,Kt+r−1

(Fi)} being independent of n, the
number of involved monomials is upper bounded by µ(n, d) :=
(

n
0

)

+ . . . +
(

n
d

)

. If the number of linearly independent equations
equals the number of occurring monomials, a solution can be com-
puted by Gaussian elimination where each monomial is treated
like an independent variable. As µ(n, d) ∈ O(nd), the overall
complexity is in O(n3d), that is polynomial in the key size n but
exponential in d.

Thus, it is preferable to compose the system of equations with
linearly independent equations of a degree as low as possible. In
particular, for known zt+r−1

t := (zt, . . . , zt+r−1) and corresponding
unknown Kt+r−1

t := (Kt, . . . ,Kt+r−1), one would like avoid the
case that F1(K

t+r−1
t , zt+r−1

t ), . . . , Fs(K
t+r−1
t , zt+r−1

t ) are linearly
dependent and to exclude those expressions Fi(K

t+r−1
t , zt+r−1

t )
which have not the minimal degree. Therefore, to be sure that one
uses only linearly independent equations of the minimal degree for
any choice of zt+r−1

t , it is advisable to derive equations for each
possible value of zt+r−1

t independently. This leads to the notion of
Z-functions:

Definition 2.2. Fix a (k, !)-combiner and Z ∈ Fr
2. A function

F : Fr·k
2 → F2 is called a Z-function if whenever a part

zt+r−1
t := (zt, . . . , zt+r−1) of the keystream is equal to Z, then

F (Kt, . . . ,Kt+r−1) = 0 is valid

. More formally, it must hold:

∀t : zt+r−1
t = Z ⇒ F (Kt, . . . ,Kt+r−1) = 0.

If an adversary knows (for a fixed integer r), Z-functions
FZ,1, . . . , FZ,sZ

for each Z ∈ Fr
2, then we can set up the following

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



108 ARMKNECHT, CAYREL, GABORIT AND RUATTA

system of equations:

0 = F
(z

ti+r−1

ti
,j)

(Kti , . . . ,Kti+r−1), 1 ≤ j ≤ sZ

where zti+r−1
ti

denote as usual a sequence of r known keystream
bits starting from clock ti. More on Z-functions and a concrete
example can be found in the appendix, Section A.

Of course, this arises the question on how to find a basis of
Z-functions of minimal degree for any Z ∈ Fr

2 for a given (k, !)-
combiner and a fixed value of r. For this purpose, the following
theorem comes in handy. The proof is rather easy and can be
found for example in [2].

Theorem 2.3. Let a (k, !)-combiner be given and f r its extended

output function. Then, a function F : Fr·k
2 → F2 is a Z-function

with Z ∈ Fr
2 if and only if F is an annihilator of the set

XZ := {(X1, . . . ,Xr) ∈ F
r·k
2 | ∃Q ∈ F

!
2 : f r(Q,X1, . . . ,Xr) = Z}.

(2)

If an adversary observes the values zt+r−1
t = (zt, . . . , zt+r−1) of

r successive keystream bits, then he knows that (Kt, . . . ,Kt+r−1) ∈
Xzt+r−1

t

what can be expressed by Fzt+r−1
t

(Kt, . . . ,Kt+r−1) = 0.

Summing up, a general method to find a basis of linearly in-
dependent Z-functions for a given (k, !)-combiners is to first gen-
erate the sets XZ and then to compute a basis of annihilators
on them with the minimum degree.2 In the next section, we will
first examine the step of computing the sets XZ and propose sev-
eral improvements. Afterwards, we will turn our attention to the
task of computing annihilators of a given set and discuss several
enhancements, including a new quadratic time algorithm that re-
places the Gaussian elimination step in previous algorithms and
can be implemented easily.

Before we proceed, we want to point out that a similar approach
is possible to derive implicit equations for S-boxes used in block
ciphers. Such equations were important in the still controversial
but nontheless influential attacks on AES presented in [8]. Thus,
any improvements in computing annihilators are of independent

2Actually, in some cases more direct methods exist to find valid equations
(e.g., [1, 7, 9]) but these are not applicable in general and do not guarantee
that one has found all equations with the lowest possible degree.



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 109

interest in this area and may help to check S-boxes with larger
input/output-sizes.

3. Computing the sets XZ

In this section, we consider the question how to compute the set
XZ for a given (k, !)-combiner and a fixed value Z ∈ Fr

2. One pos-
sibility is to do exhaustive search. That is, compute for all possibil-
ities (Q,X1, . . . ,Xr) ∈ F

!+r·k
2 the value Z ′ = f(Q,X1, . . . ,Xr) and

keep those values (X1, . . . ,Xr) with Z ′ = Z. The main effort here
is O(2k·r+!) evaluations of f r. Of course, if Z ′ ,= Z, it is not nec-
essary to waste this information as it implies that (X1, . . . ,Xr) ∈
XZ′ . Thus, one can compute all 2r possible sets XZ at the same
time by computing the outputs of f r(Q,X1, . . . ,Xr) and sorting
(X1, . . . ,Xr) regarding the output. However, as 2r different sets
XZ exist, handling these sets simultanously resp. storing them
into memory or on hard disk causes additional problems with in-
creasing r. Thus, for large values of r, e.g. r ≥ 10, one might
prefer to generate the sets XZ independently, meaning that only
those values are stored with the correct output, or even to compute
these in the same time the annihilators are computed.

In some cases, the effort can be reduced somewhat by exploiting
the structure of the (k, !)-combiner. For example, the functions
f and Ψ of E0 depend only on the hamming weight of the inputs
Xt but not the concrete values. More precisely, it holds that for
all X1, . . . ,Xr, Y1, . . . , Yr ∈ F4

2 with |Xi| = |Yi|, where |.| is the
Hamming weight, that

f r(Q,X1, . . . ,Xr) = f r(Q,Y1, . . . , Yr)∀Q ∈ F
4
2.

Thus, it suffices to consider only the Hamming weights of the
inputs, reducing the number of possible inputs from 16 · 16r pos-
sible values (Q,X1, . . . ,Xr) ∈ F4

2 × F4·r
2 to 16 · 5r possible values

(Q, |X1|, . . . , |Xr|) ∈ F4
2 × {0, . . . , 4}r, reducing the number of in-

vocations of f r accordingly.
Independent of this, one can reduce the number of invocations

of f by a kind of divide-and-conquer approach. Herefore, exploit
the simple observation that if an input (X1, . . . ,Xr) ∈ Fk·r

2 cannot
lead to a specific out Z ∈ Fr

2, i.e. (X1, . . . ,Xr) ,∈ XZ , then none
of the possible extensions (X1, . . . ,Xr,Xr+1, . . . ,Xs) can lead to

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



110 ARMKNECHT, CAYREL, GABORIT AND RUATTA

any of the outputs Z||Z ′ ∈ Fs
2 with Z ′ ∈ F

s−r
2 and Z||Z ′ being the

concatenation of Z and Z ′.
To formalize this, we introduce some more identifiers. The

extended update functions Ψr : F!
2 × Fr·k

2 → F!
2 is defined by

Qr+1 := Ψr(Q1,X1, . . . ,Xr) where Qt+1 := Ψ(Qt,Xt)

. That is Ψr can be seen as the r-times application of Ψ on the
inputs Q1,X1, . . . ,Xr. For example, for r = 2, it holds that

Ψ̂(Q1,X1,X2) = Ψ(Ψ(Q1,X1),X2).

Definition 3.1. Let a (k, !)-combiner be given and Z ∈ Fr
2 and

Q ∈ F!
2 be fixed. We introduce the three following sets:

XQ,Z := {(X1, . . . ,Xr) | f r(Q,X1, . . . ,Xr) = Z} (3)

XZ,Q′ := {(X1, . . . ,Xr) | ∃Q : f r(Q,X1, . . . ,Xr) = Z

and Ψr(Q,X1, . . . ,Xr) = Q′} (4)

XQ,Z,Q′ := {(X1, . . . ,Xr) | f(Q,X1, . . . ,Xr) = Z

and Ψr(Q,X1, . . . ,Xr) = Q′} (5)

These three sets specify again a (sub-)set of all inputs which can
lead to the fixed output Z. The difference to XZ is that additional
conditions are imposed. For example, for the elements in XQ,Z it
is required that they lead to the output Z if the memory register
is set to Q at the beginning of the computations. Similarly, for
XQ,Z,Q′ it is recommended that the memory state is equal to Q
at the beginning and equal to Q′ after the computations and that
the output is Z.

The sets XQ,Z , XZ,Q′ and XQ,Z,Q′ can be used to compute the
sets XZ iteratively:

Theorem 3.2. Consider an arbitrary (k, !)-combiner. Then, it

holds for all values Q,Q′ ∈ F!
2, Z ∈ Fr

2 and Z ′ ∈ Fs
2:

XZ =
⋃

Q

XQ,Z =
⋃

Q

XZ,Q, XQ,Z||Z′ =
⋃

Q′

XQ,Z,Q′ × XQ′,Z′,

XZ||Z′ =
⋃

Q

XZ,Q × XQ,Z′ , XZ||Z′,Q′ =
⋃

Q

XZ,Q × XQ,Z′,Q′.



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 111

The last equation is important as it implies an iterative way to
compute XZ for Z ∈ Fr

2 for big values of r. Let for example Z ∈
Fr

2 and Z ′ ∈ Fr′
2 , then instead of computing XZ||Z′ directly with

2k·(r+r′) invoctations of f r+r′ , one can compute the sets XZ,Q and
XQ,Z′ independetly with 2k·r executions of f r and 2k·r′ executions
of f r′ , respectively. Thus, if r = r′, we reduced the effort from
2k·2r invocations of f2r to 2 · 2k·r invocations of f r. Of course, one
can reduce the effort further by dividing Z into smaller parts.

4. Computing annihilators - the intersection method

Whereas the computations of the sets XZ is still doable for
average values of r, the calculation of annihilators with a minimum
degree is far more time-consuming. This section is on several ways
on how to perform this task.

First of all, we need to mention that computing annihilators of
degree ≤ d for a given set S can be reduced to a problem in linear
algebra. Let S = {x1, . . . , xs} ⊂ Fn

2 and m1, . . . ,mµ(n,d) be all
monomials in n variables of degree ≤ d. We define a matrix M over
F2 of size s×µ(n, d) by setting Mi,j := mj(xi). Then, it holds that

any annihilator
⊕µ(n,d)

j=1 cj ·mj of S with a degree ≤ d gives a vector

V := (c1, . . . , cµ(n,d))
T such that M ·V = "0 and vice versa. Thus, a

natural way to address this problem is to compute the kernel space
of M . This has a time effort in O(s · µ(n, d)2). However, in our
particular case, it may hold that s . µ(n, d). For example, the
sets XZ for E0 with Z ∈ F7

2 have all a size ≥ 1, 200, 000 whereas
µ(4 · 7, 3) = 3683. Thus, checking if annihilators of degree ≤ 3
exist over r = 7 clocks would need about 1.200, 000 ·36832 ≈ 243.67

operations.
Therefore, we propose a different approach. First, µ(n, d) ran-

dom points in S are chosen and a matrix M ′ be calculated, similar
to the matrix M described above. More precisely, M ′ consists of
exactly those rows of M which corresponds to the µ(n, d) cho-
sen points from S. Then, the kernel K ′ of M ′ is computed, taking
about µ(n, d)3 operations. In the case of E0, this value of ≈ 235.54.
If this kernel consist only the all-zero vector, one knows immedi-
ately that no non-trivial annihilators of degree ≤ d exist. If the
kernel contains other vectors, then each of these vectors defines
one function of degree ≤ d which is zero on the chosen µ(n, d)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



112 ARMKNECHT, CAYREL, GABORIT AND RUATTA

elements. We call them potential annihilators. If there are not too
many of them, one can check for each potential annihilator if it
cancels the remaining s − µ(n, d) elements in S too. If yes, one
has found an annihilator of degree ≤ d for the whole set S. If not,
one has proven that no such annihilators exist.

Assuming that the number of potential annihilators is too big to
be exhaustively checked, then one can pursue as follows. First, one
choses another random µ(n, d) points in S, giving another matrix
M ′′ of size µ(n, d) × µ(n, d). Also here, the kernel K ′′ is com-
puted, causing an effort of additional µ(n, d)3 operations. Then,
the intersection of both kernels K ′ and K ′′ is computed, taking
about µ(n, d) · (dim(K ′) + dim(K ′′))2 operations which should be
significantly less than µ(n, d)3 in most cases. As the intersection
gives now all annihilators for the chosen 2 · µ(n, d) elements, it
displays a new set of potential annihilators. From this point, one
can proceed as explained above.

Thus, we have seen that the effort is mainly dominated by com-
puting annihilators for sets with µ(n, d) elements. Using Gaussian
elimination here is quite straightforward, but has two disadvan-
tages: First, one has to guess the value of d aforehand, and second,
the effort is cubic in µ(n, d). Thus, one should preferably replace
this step by a better method. One candidate is the quadratic time
algorithm introduced in [3]. But this algorithm, although very ef-
ficient, also needs sophisticated programming methods and careful
memory handling.

The intersection method we proposed here permits to avoid its
use and permits to take advantage of the fact that the dimension
of the monomial basis is far smaller that the dimension of the sets
XZ . In the next Section we will handle the cases of 7, 8 and 9
clocks with annihilators of degree 3.

5. Experimental results - 7, 8 and 9 clocks

The case of 6 clocks can be handled easily. Hence in the fol-
lowing we focus on the case of on 7, 8 and 9 clocks for which we
apply the intersection method of the previous section:

• Research for degree 3 annihilators
Searching for annihilators of degree 3 we obtain 4× r variables

and a basis of µ(4× r, d) monomials. We construct the 2r sets XZ



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 113

with size ≈ 2r×3. We do a gaussian elimination in order to find
polynomial annihilators of the µ(4 × r, d) points, here is 2 cases :

• either the matrix is inversible and there is no annihilator.
• or it isn’t and we have a basis of potential annihilators, so

we keep this basis in memory and by choosing another set
of µ(4 × r, d) points we compute a new basis of potential
annihilators and we do the intersection method described
in Section 4.

clocks #variables #monomials #sets attempts(average)
7 28 3683 128 2
8 32 5489 256 2
9 36 7807 512 3

clocks time(1 attempt) time(total)
7 3 min 12 hours
8 3 min 30 29 hours
9 4 min 102 hours

Applying the method of Section 4 we were able to construct sets of
random points which associated matrices had kernels with a null
intersection, which proves that no annihilator of degree 3 exist
with 7, 8, 9 clocks. The implementation was made on a PC at 1
Ghz with a program in C.

• Research for degree 4 annihilators
In that case it is known that there exists at least one annihi-

lator valid for each set. For each set we searched for all possible
annihilators. We applied a linear algebra method similar to the
previous case but adapted for all points of a set, and we found 4
annihilators for each set we considered: one annihilator common
to all the sets and 3 other different annihilators for each set. Our
computation was done only for 37 sets but we can conjecture that
it is the same for all the sets. Finding 4 annihilators for each set
do not permit to reduce the number of bits of streams needed be-
cause we can deduce 4 equations of degree 4 from the equation of
degree 4 allready known (with 4 consecutive outputs).

clocks #var. #mon. #annihilators #sets time(for a set)
7 28 24150 4 128 18 hours

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



114 ARMKNECHT, CAYREL, GABORIT AND RUATTA

Appendix A. Z-functions and the set XZ

In this section, we illustrate the concept of Z-functions and
the sets XZ . Herefore, we take a look at the summation gener-
ator [22] which is a (k, 0log2 k1)-combiner, based on the integer
addition. This means that both the input bits and the memory
state are treated as integers and added together. The result forms
the output and the next memory state.

More formally, at each clock t there are k input bits xt,1, . . . , xt,k

and the memory state Qt ∈ F
%log2 k&
2 . The integer sum of these

values is computed, i.e. St := xt,1 + . . . + xt,k + Qt where Qt is
taken as a value in {0, . . . , 2%log2 k&}. Then, the output and the
next memory state Qt+1 are computed by

zt := St mod 2 = (xt,1 + . . . + xt,k + Qt) mod 2 (3)

Qt+1 := St div 2 =

⌊

(xt,1 + . . . + xt,k + Qt)

2

⌋

(4)

For example, in the case k = 2 and ! = 1, it holds that

zt+1 := f(Qt, xt,1, xt,2) = Qt ⊕ xt,1 ⊕ xt,2 and (5)

Qt−1 := Ψ(Qt, xt,1, xt,2) = Qt · (xt,1 ⊕ xt,2) ⊕ xt,1 · xt,2. (6)

We keep now at the example of k = 2 and ! = 1. In Table 1,
an overview of all possible inputs (X1,X2) ∈ F4

2 over two clocks
and initial memory state Q ∈ F2 are given, together with the
corresponding outputs Z ∈ F2

2. For example, if the initial state of
the memory bit is 0 and if the inputs (coming from the LFSRs) are
00 in the first clock and 01 in the second clock, then the output
Z of the summation generator is Z = 01. Alternatively, one can
express this by f2(Q,X1,X2) = f2(0, 00, 01) = (0, 1).

From Table 1, one can derive directly the four different sets
XZ :3

X(0,0) = {(0000), (0011), (1101), (1110), (0101), (0110), (1001), (1010)}
X(0,1) = {(0001), (0010), (1100), (1111), (0100), (0111), (1000), (1011)}
X(1,0) = {(0100), (0111), (1000), (1011), (0000), (0011), (1101), (1110)}
X(1,1) = {(0101), (0110), (1001), (1010), (0001), (0010), (1100), (1111)}

(7)

Assume now that we are interested in a Z-function F for Z =
(00). That is, F has to be zero on all inputs (X1,X2) which can

3The commas are removed for the sake of brevity.



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 115

Q 0 0 0 0 0 0 0 0

X1 (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 00 01 01 00 10 11 11 10

Q 0 0 0 0 0 0 0 0

X1 (1,0) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1) (1,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 10 11 11 10 01 00 00 01

Q 1 1 1 1 1 1 1 1

X1 (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 10 11 11 10 01 00 00 01

Q 1 1 1 1 1 1 1 1

X1 (1,0) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1) (1,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 01 00 00 01 11 10 10 11

Table 1. All possible input-output combinations
over 2 clocks for the summation generator with k =
2 inputs and ! = 1 memory bits

lead to the output 00. By definition, this is the set X(0,0). A
possible (00)-function therefore is

F (x1,1, x1,2, x2,1, x2,2) := x1,1 · x1,2 ⊕ x1,1 ⊕ x1,2 ⊕ x2,1 ⊕ x2,2.

Observe that both f and Ψ depend not on the exact value of X
but only on its hamming weight. As explained in Section 3, one
can exploit this to save memory by only storing only the hamming
weights of the elements in XZ . For example, one can rewrite the
sets XZ in (7) to

X(0,0) = {[00], [02], [21], [11]}
X(0,1) = {[01], [20], [22], [10], [12]}
X(1,0) = {[10], [12], [00], [02], [21]}
X(1,1) = {[11], [01], [20], [22]}

(8)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



116 ARMKNECHT, CAYREL, GABORIT AND RUATTA

Hereby, [w1, w2] denotes the set of all inputs (X1,X2) such that
the hamming weight of X1 is equal to w1 and the same for X2

and w2. We denote this kind of set as blockwise symmetric as the
inputs can be divided into blocks where each block is invariant
under permutations.

If one is interested to apply the iterated methods explained at
the end of Section 3, one needs to compute the sets XQ,Z and
XZ,Q. From Table 1, one derive immediately the sets XQ,Z . For
example, for Q = 1 and Z = 11, it holds that

X1,(11) = {[01], [20], [22]}

which is naturally a subset of X(11).

References

[1] Frederik Armknecht, Matthias Krause: Algebraic attacks on Combiners
with Memory, Proceedings of Crypto 2003, LNCS 2729, pp. 162-176,
Springer, 2003.

[2] Frederik Armknecht: Algebraic Attacks and Annihilators, Proceedings of
WEWORC 2005, LNI P-74, pp. 13-21, 2005.

[3] Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Knzli, Willi
Meier, Olivier Ruatta: Efficient computation of algebraic immunity for
algebraic and fast algebraic attacks, accepted to Eurocrypt ’06.

[4] Bluetooth SIG, Specification of the Bluetooth system, Version 1.1, 1 Feb-
ruary 22, 2001, available at http://www.bluetooth.com

[5] Alex Biryukov, Adi Shamir: Cryptanalytic Time/Memory/Data tradeoffs
for Stream Ciphers, Proceedings of Asiacrypt 2000, LNCS 1976, pp. 1–13,
Springer, 2000.

[6] Vladimor V. Chepyzhov, Ben Smeets: On A Fast Correlation Attack
on Certain Stream Ciphers, Proceedings of Eurocrypt 1991, LNCS 547
pp. 176–185, Springer, 1991.

[7] Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback, Proceedings of Crypto ’03, LNCS 2729, pp. 177–194, Springer,
2003.

[8] Courtois, Pieprzyk: Cryptanalysis of block ciphers with overdefined sys-
tems of equations, Asiacrypt 2002, LNCS 2501, pp. 267–287, Springer,
2002.

[9] Nicolas Courtois, Willi Meier: Algebraic attacks on Stream Ciphers
with Linear Feedback, Proceedings of Eurocrypt 2003, LNCS 2656,
pp. 345–359, Springer, 2003. An extended version is available at
http://www.cryptosystem.net/stream/

[10] Jean-Charles Faugère: A new efficient algorithm for computing Gröbner
bases (F4), Journal of Pure and Applied Algebra 139, 1-3 (1999),
pp. 61–68.



ALGORITHM TO FIND EQUATIONS FOR ALGEBRAIC ATTACKS 117

[11] Jean-Charles Faugère, Gwénolé Ars: An algebraic cryptanalysis of
nonlinear filter generators using Gröbner bases, 2003. Available at
http://www.inria.fr/rrrt/rr-4739.html

[12] Scott R. Fluhrer, Stefan Lucks: Analysis of the E0 Encryption Sys-
tem, Proceedings of Selected Areas of Cryptography ’01, LNCS 2259,
pp. 38–48, Springer, 2001.

[13] Jovan Dj. Golic: Cryptanalysis of Alleged A5 Stream Cipher, Proceedings
of Eurocrypt 1997, LNCS 1233, pp. 239–255, Springer, 1997.

[14] Thomas Johansson, Fredrik Joensson: Fast Correlation Attacks Based
on Turbo Code Techniques, Proceedings of Crypto 1999, LNCS 1666,
pp. 181–197, Springer, 1999.

[15] Thomas Johansson, Fredrik Joensson: Improved Fast Correlation Attacks
on Stream Ciphers via Convolutional Codes, Proceedings of Eurocrypt
1999, pp. 347–362, Springer, 1999.

[16] Matthias Krause: BDD-Based Cryptanalysis of Key stream Generators;
Proceedings of Eurocrypt 2002, pp. 222–237, LNCS 2332, Springer, 2002.

[17] Yi Lu, Serge Vaudenay: Faster Correlation Attack on Bluetooth
Keystream Generator E0, Proceedings of Crypto 2004, pp. 407–425, LNCS
3152, Springer, 2004.

[18] Yi Lu, Serge Vaudenay: Cryptanalysis of Bluetooth Keystream Generator
Two-Level E0, Proceedings of Asiacrypt 2004, pp. 483–499, LNCS 3329,
Springer, 2004.

[19] Yi Lu, Willi Meier, Serge Vaudenay: The Conditional Correlation Attack:
A Practical Attack on Bluetooth Encryption, Proceedings of Crypto 2005,
pp. 97–117, LNCS 3621, Springer, 2005.

[20] Willi Meier, Enes Pasalic, Claude Carlet: Algebraic attacks and decom-
position of Boolean functions, Eurocrypt 2004, LNCS 3027, pp. 474–491,
Springer, 2004.

[21] Willi Meier, Othmar Staffelbach: Fast Correlation Attacks on certain
Stream Ciphers, Journal of Cryptology, pp. 159–176, 1989.

[22] Rainer A Rueppel: Correlation immunity and the summation genera-
tor,Proceedings of Crypto 1985, pp. 260–272, LNCS 218, Springer, 1986.

[23] Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov: Ef-
ficient Algorithms for Solving Overdefined Systems of Multivariate Poly-
nomial Equations, Proceedings of Eurocrypt ’00, Springer LNCS 1807,
pp. 392–407.

[24] Erik Zenner: On the Efficiency of the Clock Control Guessing Attack,
Proceedings of ICISC 2002, LNCS 2587, Springer, 2002.

[25] Erik Zenner, Matthias Krause, Stefan Lucks: Improved Cryptanalysis of
the Self-Shrinking Generator ACISP 2001, LNCS 2119, Springer, 2001.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07





Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

AN INVERTER ARCHITECTURE FOR ECC-GF(2m)
BASED ON THE STEIN’S ALGORITHM

Mauŕıcio Araújo Dias1 and José Raimundo de Oliveira2

Abstract. This paper proposes an architecture which speeds
up modular inversion for x coordinate of elliptic curve points.
This is a programmable and scalable inverter based on Ste-
in’s algorithm. Its configurability is used to make possible
optimized circuitry solutions for different elliptic curves, fi-
nite fields and algorithms. The inverter can be used with the
majority of elliptic curve algorithms over binary finite fields
(GF(2m)). In this work, the m value is 113, 131 or 163. For
GF(2113), GF(2131) and GF(2163), the parameters chosen to
define the elliptic curves, as well as its points, are defined in
the NIST, IEEE P1363, IPSec, WAP, eCheck, ANSI X9.62
and ANSI X9.63 standards. As they represent the smallest
standardized finite fields, these m values were chosen in or-
der to avoid the development of excessively large circuits.
There is one implementation of the same inverter architec-
ture for each binary finite field chosen for this project. It
was developed by using the Altera’s Quartus II v5.0 Mega-
Functions. The implementations were made in an Altera’s
EP2S180F1020C4 Stratix II FPGA. By using this inverter
for GF(2113), GF(2131) and GF(2163), each modular inver-
sion was computed in, respectively, 324ns, 374ns, and 491ns.
To develop this project we considered that high performance
has priority over the area occupied by its circuit. Thus, we
recommend the use of this circuit in the cases for which no
area constraints are imposed but high-performance systems
are required.

1 DCA-FEEC-UNICAMP email: mauricioaraujodias@hotmail.com
2 DCA-FEEC-UNICAMP email: jro@dca.fee.unicamp.br

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



120 M. A. DIAS AND J. R. DE OLIVEIRA

1. Introduction

This work describes the development of an inverter architec-
ture for elliptic curve cryptography over binary finite fields (ECC-
GF(2m)) ([2], [11], [29]). The inverter algorithm is similar to the
divider algorithm presented by Wu et al. [16].

We propose a system that works with elliptic curve points, rep-
resented by affine coordinates and polynomial basis, implemented
by using combinatorial circuits, even though, the current tendency
of researches on cryptography implemented in hardware is to pro-
pose systems that work with elliptic curve points represented by
projective coordinates and normal basis, implemented by using
sequential circuits. This tendency aims to get smaller circuits.

Although, our option leads to more complex and larger circuits,
the combinatorial implementation increases significantly the per-
formance of the systems compared to sequential implementation
used in other systems.

The paper’s goal is to introduce a fast combinatorial circuit
adequate for commercial FPGAs. It can be used with some ECC-
GF(2m) algorithm, which must also be implemented by hardware.

It must be pointed out that all the algorithms that use elliptic
curves over finite fields require the computation of the point Q =
kP on E, where k is a large integer and P a point on the elliptic
curve E, defined by y2 + xy = x3 + ax2 + b [20]. One method to
compute the Q = kP operation is to sweep the binary decompo-
sition of the integer k, doubling on each digit (bit) and adding on
digits equal to one ([12], [21]).

The point doublings and the point additions are based on mod-
ular additions, multiplications, squaring and divisions [19]. These
operations are performed on coordinates of elliptic curve points. To
double P ′(P ′

X , P ′
Y ) or add the points P (PX , PY ) and P ′(P ′

X , P ′
Y )

of an elliptic curve, in order to obtain a new point Q(QX , QY ), it
is necessary to compute the following equations [3]:

To double:

S = PX + ((P ′
Y )/(P ′

X )) mod p (1)

QX = (S2 + S + a) mod p (2)

QY = (S(PX + QX) + PY + QX) mod p (3)



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 121

To add:

S = ((PY + P ′
Y )/(PX + P ′

X)) mod p (4)

QX = (S2 + S + PX + P ′
X + a) mod p (5)

QY = (S(PX + QX) + PY + QX) mod p (6)

In Equations (1) to (6), a is one of the parameters used to define
an elliptic curve and p represents the irreducible polynomial.

The Equations (1) to (6) can be optimized in order to achieve
a single set of equations. For this purpose, we devise a mix of
Equations (1) and (4), (2) and (5), and, finally, (3) and (6), as
follows:

To double or add:

S = F + ((G + P ′
Y )/(H + P ′

X)) mod p (7)

QX = (S2 + S + PX + P ′
X + a) mod p (8)

QY = (S(PX + QX) + PY + QX) mod p (9)

In Equations (7) to (9), P ′
X and P ′

Y represent the coordinates
of the point that will be doubled or added; PX and PY represent
the coordinates of the standard point P , defined in [4]; QX and
QY represent the coordinates of a new point Q.

Equations (7) to (9) are used to either point doubling or point
addition. For point doublings, we have: F = PX , G = 0 and
H = 0, because PX = P ′

X and PY = P ′
Y for doublings. For point

additions, we have: F = 0, G = PY and H = PX .
Thus, Equations (7) to (9) represent a single set of equations

capable to perform either point doubling or point addition using
the same logic.

Among all operations that compose Equations (7) to (9), the
modular division is the hardest and slowest operation in the finite
field arithmetic.

A modular division can be replaced by a modular inversion
followed by a multiplication. That is, ((G+P ′

Y )/(H +P ′
X )) mod p

is equivalent to ((G + P ′
Y ) × (H + P ′

X) − 1) mod p. It must be
pointed out that modular inversion is a particular case of modular
division, for which the dividend is a constant value equal to 1.

This way, the algorithm used to perform a modular inversion
can be the same algorithm used to compute a modular division
with the dividend equal to 1.

Thus, the aforementioned equations are modified as follows:

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



122 M. A. DIAS AND J. R. DE OLIVEIRA

To double or add:

S = F + ((G + P ′
Y ) × (H + P ′

X) − 1) mod p (10)

QX = (S2 + S + PX + P ′
X + a) mod p (11)

QY = (S(PX + QX) + PY + QX) mod p (12)

Despite the challenge to implement a complex and large circuit,
the way chosen to make the implementation allows to obtain re-
sults that show a high-performance inverter architecture that can
be put in a single chip, even for large finite fields.

This observation allows to suppose that architectures working
with elliptic curve points represented by projective coordinates
and normal basis, when implemented by using combinatorial cir-
cuits instead of sequential circuits, allow to achieve a better bal-
ance between performance and area results.

The remainder of the paper is organized as follows. Section 2
summarizes related work. Section 3 briefly explains the use of
Stein’s Algorithm to perform a modular inversion. The use of Al-
tera Mega-Functions to implement an optimization of the Stein’s
algorithm is described in Section 4. Section 5 provides a brief de-
scription of the inverter implementations in a FPGA. The results
achieved by these implementations are presented in Section 6. Fi-
nally, Section 7 contains the conclusions.

2. Related Work

Researchers have been working in the development of new al-
gorithms, in order to achieve less complex and faster modular
divisions and inversions. They have based their works on three
different methods to perform modular divisions and inversions
over GF(2m): Little Fermat’s Theorem, Gaussian Elimination and
Greatest Common Divisor (GCD).

In late 80’s, Itoh and Tsujii [10] proposed an algorithm based
on Little Fermat’s Theorem to compute the modular inversion.
Their algorithm used normal basis instead of polynomial basis.

In 1992, Hasan and Bhargava [9] presented a bit-serial divider,
based on Gaussian Elimination applied to systems of linear equa-
tions.

Albeit the improvement achieved by these two works, our im-
plementations of these algorithms generate excessively large and



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 123

slow combinatorial circuits; thus, the two methods do not meet
the features expected to our work.

A third method yields better results. The works that use this
method are commented next.

From 2001 to 2003, Eberle, Gura, Shantz, Gupta, et al. de-
scribe implementations of iterative transformations of the GCD
based on Euclid’s algorithm ([6], [7], [13]).

An implementation of our inverter using the Euclid’s algorithm
achieves high performance results but the area of the circuit is still
larger than that of available commercial FPGAs.

Alternatively, it is possible to work with the GCD method
based on the Stein’s algorithm. The first description of this algo-
rithm was in 1967 by Stein [14]. In 2004, Wu et al. [16] published
an important optimization of the Stein’s algorithm, designed to
avoid its complex degree comparisons of polynomials. Recently,
Dormale and Quisquater [5] presented optimizations for this al-
gorithm using bit-serial implementations. These three papers are
the bases of this work.

3. The Stein’s Algorithm

Our implementations of all aforementioned algorithms allow
us to conclude that the Stein’s method for finding the Greatest
Common Divisor of two integers is the best choice for calculating
the modular inversion for this work. It is important to define which
implementation of the Stein’s method better satisfies the speed
and area requirements for this project. A variety of optimizations
have been proposed ([5], [8], [15], [16], [17], [18]) based on Stein’s
algorithm [14]. The Algorithms 3.1 and 3.2 describe two of these
optimizations.

In Algorithm 3.1, P ′
X and p represent, respectively, the value

that will be inverted and the irreducible polynomial. The deg()
function returns the polynomial degree. The + and /2 operations
can be understood, respectively, as xor and one bit right shift.

It must be pointed out that, albeit the optimizations, Algo-
rithm 3.1 still presents the operation if deg(A) ≥ deg(B), which
is a degree comparison of polynomials. This operation’s complex-
ity decreases the algorithm performance.

Algorithm 3.2 is similar to the divider algorithm designed by Wu
et al. [16] to avoid the complex degree comparisons of polynomials.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



124 M. A. DIAS AND J. R. DE OLIVEIRA

Algorithm 3.1.
(A, B) ← (P ′

X
, p)

(U , V ) ← (1, 0)

while A #= 0 and B #= 1
if A0 = 1

if deg(A) ≥ deg(B)
(A, B) ← (A + B, U + V )

else
(A, B) ← (A + B, A)
(U , V ) ← (U + V , U)

endif
endif
A ← A/2
U ← (U/2) mod p

endwhile

Algorithm 3.2.
(A, B, U , V ) ← (P ′

X
, p, 1, 0)

(DCC, FLAG, slice) ← (2, 1, 2m − 1)

while slice > 0
if A0 = 1

if FLAG = 1 and DCC0 = 0
(A, B) ← (A + B, A)
(U , V , FLAG) ← (U + V , U , 0)

else
(A, B) ← (A + B, U + V )

endif
endif
(A, U) ← (A/2, (U/2) mod p)
if FLAG = 0 and DCC0 = 0

DCC ← DCC/2
else

(DCC, FLAG) ← ((DCC × 2), 1)
endif
slice ← slice − 1

endwhile

In Algorithm 3.2, the degree comparison of polynomials is re-
placed by FLAG and DCC variables. It allows Algorithm 3.2 to
achieve the same results faster than Algorithm 3.1. Algorithm 3.2
needs at most 2m − 1 iterations to perform a modular inversion.

4. The Combinatorial Circuit

Algorithm 3.2 represents the bases of the combinatorial circuit
presented in this paper. When its code is represented using a
schematic, it constitutes a slice, which is exactly equal to a single
iteration of the Algorithm 3.2. Whereas Algorithm 3.2 requires at
most 2m−1 iterations to perform a modular inversion, we need to
link serially 2m−1 slices in order to create a combinatorial circuit
of modular inversion.

All slices are identical. Each slice has six inputs and six outputs:
Ain, Bin, Uin, Vin, DCCin, Aout, Bout, Uout, Vout and DCCout (all
of them are m + 1 bits wide); FLAGin and FLAGout (both are
1 bit wide). The outputs of the first slice are connected with
the inputs of the second slice; the outputs of the second slice are
connected with the inputs of the third slice and so on.

The inputs of the first slice are started as follows: (Ain, Bin,
Uin, Vin, DCCin, FLAGin) ← (P ′

X , p, 1, 0, 2, 1). A few hundreds



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 125

of nanoseconds later, the output Vout presents the modular inverse
of P ′

X in the last slice.
The schematic of a slice is shown by figures and briefly de-

scribed in the remainder of this section. Each gate represents
graphically a Quartus II Mega-Function.

Figure 1 shows the so called “control unit” of the slice. This
“control unit” has logical gates controlling the AUX and FLAGout

signals, which are responsible for determining the dataflow among
the slice components.

Figure 1. FLAG and AUX handling.

The multiplexer in Figure 2 represents the DCC counter in the
slice. When FLAGout is 1, the DCCin value is left shifted one bit;
when FLAGout is 0, the DCCin value is right shifted one bit (as
a Johnson counter).

Figure 2. DCC handling.

Figure 3 shows that Ain xor Bin operation occurs according to
Ain0, in order to generate Aout. Before the xor operation, Ain and
Bin are both right shifted one bit.

Figure 3. A handling.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



126 M. A. DIAS AND J. R. DE OLIVEIRA

Figure 4 shows that Uin xor Vin operation occurs according to
Ain0, in order to generate the intermediate value U . The U and
p values are both right shifted one bit. Once shifted, they are both
submitted to an xor operation in order to generate Uout.

Figure 4. U handling.

When AUX is 0, the Bin value is placed in the Bout output,
without any change. Otherwise, the Bout output presents the Ain

value, as shown in Figure 5.

Figure 5. B handling.

As presented in Figure 6, the Vin input is placed in the Vout out-
put when AUX is 0. Otherwise, the Uin goes to the Vout output.

Figure 6. V handling.

Figures 1 to 6 compose the schematic of any of the 2m−1 slices
that constitute the combinatorial circuit proposed in this work.



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 127

5. Implementations

The schematic of our circuit was developed, compiled and sim-
ulated using the Quartus II software v5.0 for Altera’s FPGA [1].
This software was executed on a PC Pentium 4, running at 3.2GHz,
with 1GB of RAM and 30GB of HD.

There is one implementation for each finite field (GF(2m)) cho-
sen for this work. In this project, the m value is 113, 131 or 163.

These implementations allow to evaluate how much time the
circuit needs to calculate a modular inversion for each of the three
different inverter implementations.

For GF(2113), GF(2131) and GF(2163), the parameters chosen
to define the elliptic curves, as well as its points, are defined in the
NIST, IEEE P1363, IPSec, WAP, eCheck, ANSI X9.62 and ANSI
X9.63 standards [4].

In order to insert this combinatorial circuit in a more practical
context, we have developed a cryptosystem that can be imple-
mented, for example, in the form of a PC-board adapter.

Figure 7 shows how our combinatorial circuit for modular in-
version can be implemented in the PC-board adapter in order to
compose this cryptosystem.

Figure 7. Basic diagram of the PC-board adapter.

The same Figure 7 presents all the basic diagram of the PC-
board adapter, used to exemplify a possible implementation of

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



128 M. A. DIAS AND J. R. DE OLIVEIRA

the cryptosystem. It shows the on-board elements and the PC’s
components that communicate with the adapter.

The cryptosystem was implemented in the EP2S180F1020C4
and EP2S90F1508C3 FPGAs, due to high performance and den-
sity requirements. The first implements only the modular inver-
sion; the latter implements the remainder of operations presented
in Equations (10) to (12).

Moreover, the second FPGA also implements a cryptographic
algorithm, a random number generator (RNG), some general pur-
pose registers and the logic of the bus interface. All these elements
are commented next.

This cryptosystem does not work with a specific algorithm.
Any ECC-GF(2m) algorithm can be described in VHDL and im-
plemented in the FPGA. The algorithm must generate some sig-
nals in order to control the point doublings and the point additions
operations. It must also work with elliptic curve points represented
by affine coordinates and polynomial basis.

The adapter does not work with an exclusive random number
generator. On the contrary, it allows the implementation of dif-
ferent types of random number generators.

The implementation of the general purpose registers must also
be flexible. It allows to define the width of the registers according
to the chosen finite field.

Finally, the bus interface must be described and implemented
according to the type of bus used in the PC (PCI, AGP or other).

The cryptosystem uses our inverter architecture and these other
elements present in the adapter in order to perform the Q =
kP operation.

In a practical example, a program that implements the Diffie-
Hellman key-exchange model is executed by the CPU of a PC.
The model needs a point Q, calculated by using the Q = kP equa-
tion. In order to achieve a better performance, the program calls
our cryptosystem to perform the Q = kP operation. When the
adapter starts working, the program sends the point P ′ to the
adapter through the PC bus. In the adapter, the private key k
is generated by the random number generator. The cryptosys-
tem uses the private key k and the point P ′ in order to calculate
Q = kP ′, according to the cryptographic algorithm logic, that
will use our combinatorial circuit. At the end of the process, the
adapter sends the Q point back to the program through the PC
bus. With the help of our cryptosystem, this program can obtain



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 129

the point Q = kP in a few hundreds of microseconds, as it will be
presented in next section.

As a general rule, the implementations and tests done aim to
obtain results to show how our combinatorial circuit can improve
the ECC.

6. Results

The results achieved with the aforementioned implementations
are shown in Table 1, 2, 3 and 4.

Table 1 presents the results of the simulation of the inverter ar-
chitecture for GF(2113), GF(2131) and GF(2163) implementations.
Each line in the first column identifies a binary finite field used in
that implementation. In the remainder of the columns, the rows
refer to each of these finite fields. The second column shows the
number of pins used in the FPGA. The third column presents the
number of slices serially linked in the circuit. The area of the cir-
cuit is represented in number of LUTs (FPGA’s look-up tables) in
Column 4. The circuit delay, presented in Column 5, informs how
many nanoseconds the circuit needs to compute a modular inver-
sion. Finally, Column 6 shows how many days, hours, minutes
and seconds are necessary to compile the inverter architecture.

Finite
Field

Number
of

Pins

Number
of

Slices

Number
of

LUTs

Circuit
Delay
(ns)

Compilation
Time

(dd:hh:mm:ss)

113 229 225 60,361 324 01:18:41:19
131 265 261 82,082 374 03:04:51:36
163 329 325 128,265 491 10:03:31:41

Table 1. Results of three implementations of the
inverter architecture.

Table 2 shows the performance of different implementations for
modular inversion. The first column identifies three different im-
plementations with their respective references. Column 2 shows
the time (in microseconds) necessary to calculate a modular in-
version for each implementation.

Based on the results shown in Column 2, it is possible to con-
clude that our combinatorial circuit for modular inversion presents
high performance.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



130 M. A. DIAS AND J. R. DE OLIVEIRA

Implementations Modular Inversion Time (µs)

Ext. Euclides [28] 2.509
Itho-Tsujii [28] 0.760
Our Inverter 0.490

Table 2. Results of three implementations for
modular inversion.

Table 3 shows the performance of different software or hard-
ware (S/H) implementations. There are implementations working
with elliptic curve points represented by either affine or projective
coordinates and either polynomial or normal bases.

Implementations S/H Finite
Fields

Plataforms
Q = kP

(ms)

Montgomery [22] S GF(2163) UltraSparc 64-bit 13.50

Almost Inv. [23] S GF(2155) DEC Alpha 64-bit 7.80

Coprocessor [24] H GF(2155) VLSI (ASIC) 3.90

Coprocessor [25] H GF(2155) Xilinx XC4020XL 18.40

ECP [26] H GF(2167) Xilinx XCV400E 0.21

Montgomery [27] S GF(2163) Sun Fire 280R 3.11

Cryptographic
Processor [27] H GF(2163)

Xilinx Virtex-II
XCV2000E-7

0.14

Our
Cryptosystem H GF(2163)

Altera Stratix II
EP2S180F1020C4
EP2S90F1508C3

0.10

Table 3. Performance of hardware/software implementations.

The first column identifies eight different implementations listed
on the table with their respective references. In the remainder
of the columns, the rows refer to each of these implementations.
Column 2 classifies each row as a software (S) or hardware (H) im-
plementation. The finite fields are presented in the third column.
Column 4 presents the platforms used to develop each of the im-
plementations. Finally, Column 5 shows the time (in milliseconds)
necessary to calculate Q = kP for each implementation.

Based on the results presented in Column 5, it is possible to
conclude that our cryptosystem, using our combinatorial circuit



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 131

for modular inversion, can perform the Q = kP operation signifi-
cantly fast.

Table 4 presents results achieved by executing a program, which
implements the Diffie-Hellman key-exchange model, with or with-
out the help of our cryptosystem. The program was executed on a
PC Pentium 4, running at 3.2GHz, with 1GB of RAM and 30GB
of HD.

Diffie-Hellman

Finite
Field

Without our
cryptosystem (s)

With our
cryptosystem (µs)

113 1 125
131 2 161
163 5 244
Table 4. Time necessary to execute a program
with or without our cryptosystem.

Each row in Table 4 refers to a binary finite field presented in
the first column. Column 2 shows the time, in average, neces-
sary to execute the program without our cryptosystem. Column 3
presents the time, in average, necessary to execute the same pro-
gram with the help of our cryptosystem.

Based on the results presented in Table 4, it is possible to con-
clude that the program execution with the help of our cryptosys-
tem is significantly faster than the program execution without the
help of our cryptosystem.

7. Conclusions

This paper has introduced an ECC-GF(2m) inverter architec-
ture, based on Stein’s algorithm. It is recommended for high speed
but with no area constraints cryptographic systems, which work
with affine coordinates and polynomial basis.

The performance of the inverter was demonstrated by using
three different implementations done in Altera’s EP2S180F1020C4
Stratix II, each of which for GF(2113), GF(2131) and GF(2163).

By using this inverter architecture for GF(2113), GF(2131) and
GF(2163), the results achieved for each modular inversion are, re-
spectively, 324ns, 374ns and 491ns.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



132 M. A. DIAS AND J. R. DE OLIVEIRA

The aforementioned implementations meet two key features:
programmability and configurability. The first feature allows im-
plementations to be programmed to work with more efficient ECC-
GF(2m) algorithms in the future. The second feature allows to
update the inverter performance and size to meet future require-
ments, by reconfiguration.

References

[1] Altera Corporation. Quartus II, Programmable Logic Development System
& Software. Data Sheet, ver. 1.01, 1999.

[2] I. Blake, G. Seroussi and S. Nigel. Elliptic Curves in Cryptography, Cam-
bridge University Press, 1999.

[3] Certicom Research. SEC 1: Elliptic Curve Cryptography, Standards for
Efficient Cryptography, Version 1.0, www.certicom.com, 2000.

[4] Certicom Research. SEC 2: Recommended Elliptic Curve Do-
main Parameters, Standards for Efficient Cryptography, Version 1.0,
www.certicom.com, 2000.

[5] G. M. Dormale, J-J. Quisquater. Novel Iterative Digit-Serial Modular Di-
vision over GF(2m). http://www.dice.ucl.ac.be/crypto/files/pub-
lications/pdf254.pdf, 2005.

[6] H. Eberle, N. Gura, S. C. Shantz and V. Gupta. A Cryptographic Proces-
sor for Arbitrary Elliptic Curves over GF(2m). Sun Microsystems Labo-
ratories, SMLI TR-2003-123, May 2003.

[7] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein,
E. Goupy, D. Stebila. An End-to-End Systems Approach to Elliptic Curve
Cryptography. CHES 2002, LNCS 2523, pp. 349-365, 2002.

[8] J. Goodman and A. P. Chandrakasan. An Energy-Efficient Reconfigurable
Public-Key Cryptography Processor. IEEE J. Solid-State Circuits, vol. 36,
pp. 1808-1820, Nov. 2001.

[9] M. A. Hasan and V. K. Bhargava. Bit-Serial Systolic Divider and Multi-
plier for Finite Fields GF(2m). IEEE Transaction on Computers, vol. 41,
no. 8, pp. 972-980, 1992.

[10] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative
Inverses in GF(2m) Using Normal Bases. Information and Computation,
vol. 78, pp. 171-177, 1988.

[11] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Aca-
demic Publishers, 1993.

[12] IEEE P1363/D13 (Draft Version 13). Standard Specification for Public
Key Cryptography. IEEE Inc., 1999.

[13] S. C. Shantz. From Euclid’s GCD to Montgomery Multiplication to the
Great Divider. Sun Microsystems Laboratories, SMLI TR-2001-95.

[14] J. Stein. Computational problems associated with Racah algebra. J. Com-
putational Physics, vol. 1, pp. 397-405, 1967.



AN INVERTER ARCHITECTURE FOR ECC-GF(2m) 133

[15] N. Takagi. A VLSI Algorithm for Modular Division Based on the Binary
GCD Algorithm. IEICE Trans. Fundamentals, vol. E81-A, pp. 724-728,
May 1998.

[16] C. H. Wu, C. M. Wu, M. D. Shieh and Y. T. Hwang. High-Speed, Low-
Complexity Systolic Designs of Novel Iterative Division Algorithms in
GF(2m). IEEE Trans. on Computers, vol. 53, no. 3, pp. 375-380, 2004.

[17] Y. Watanabe, N. Takagi, and K. Takagi. A VLSI Algorithm for Division
in GF(2m) Based on Extended Binary GCD Algorithm. IEICE Trans.
Fundamentals, vol. E85-A, pp. 994-999, May 2002.

[18] Y. Watanabe and N. Takagi. A VLSI Algorithm for Division on GF(2m)
Based on Binary Method. Proc. 2000 Eng. Sciences Soc. Conf. IEICE,
A-3-15, p. 82, Sept. 2000

[19] E. D. Win, A. Bosselaers, S. Vandenberghe, P. D. Gersem and J. Van-
dewalle. A Fast Software Implementation for Arithmetic Operations in
GF(2n). Advances in Cryptology - ASIACRYPT’96, Lecture Notes in
Computer Science 1163, pp.65-76, Springer-Verlag, 1996.

[20] F. Morain and J. Olivos. Speeding up the Computations on an Elliptic
Curve Using Addition-Subtraction Chains. Rapport INRIA, issue 983,
March 1989.

[21] P. Guillot and O. Orcière. Speeding up Elliptic Curve Computations Using
Addition-Substraction Chains and Horner Rule. Thomson-CSF Commu-
nications, March 4, 1998.

[22] J. López and R. Dahab. Fast Multiplication on Elliptic Curves over
GF(2m) without Precomputation. Workshop on Cryptographic Hardware
and Embedded Systems (CHES) 1999, LNCS 1717, pp. 316-327g, 1999.

[23] R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck. Fast Key Ex-
change with Elliptic Curve Systems, In D. Coppersmith, editor, Advances
in Cryptography, Crypto 95, volume LNCS 963, Springer-Verlag, 1995.

[24] G. B. Agnew, R. C. Mullin and S. A. Vanstone. An Implementation of El-
liptic Curve Cryptosystems over F2155, IEEE Journal on Selected Areas
in Communications, 11(5):804-813, 1993.

[25] S. Sutikno, R. Effendi and A. Surya. Design and Implementation of Arith-
metic Processor F2155 for Elliptic Curve Cryptosystems, The 1998 IEEE
Asia-Pacific Conference on Circuits and Systems, pages 647-650.

[26] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic
Curve Processor for GF(2m). Workshop on Cryptographic Hardware and
Embedded Systems (CHES) 2000, LNCS 1965, pp. 41-56, 2000.

[27] H. Eberle, N. Gura, S. C. Shantz and V. Gupta. A Cryptographic Proces-
sor for Arbitrary Elliptic Curves over GF(2m). Sun Microsystems Labo-
ratories, SMLI TR-2003-123, May 2003.

[28] M. A. N. Cervantes, K. P. G. Avila and F. R. Henriquéz. Inversion Modu-
lar en Campos Finitos Binarios. Centro de Investigación y Estudios Avan-
zados del IPN, DIE-SC, 2006.

[29] D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryp-
tography, Springer Professional Computing, 2004.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07





Boolean Functions: Cryptography and Applications BFCA’07

Fonctions Booléennes : Cryptographie & Applications

COMPUTING MöBIUS TRANSFORMS OF BOOLEAN
FUNCTIONS AND CHARACTERISING COINCIDENT

BOOLEAN FUNCTIONS

Josef Pieprzyk1 and Xian-Mo Zhang1

Abstract. The Möbius transform of Boolean functions is
often involved in cryptographic design and analysis. This
work is composed of two parts. In the first part we com-
pute Möbius transform by different methods and study its
cryptographic properties. In the second part we focus on
the special case when a Boolean function is identical with
its Möbius transform. We call such functions coincident.
We further characterise coincident functions and study their
cryptographic properties.

Key Words: Boolean Functions, Möbius transform, Coincident
Functions

1. Introduction to This Work

Recent developments in algebraic analysis of ciphers put an
emphasis on methods and techniques that treat a cryptographic
system as a collection of Boolean functions, describe them by their
algebraic normal forms (ANFs), and then examine their algebraic
properties such as sparseness, algebraic degree, number of overde-
fined relations, number of monomials, etc. A prerequisite for an
efficient algebraic analysis is the ability to represent Boolean func-
tions and their relations by their short algebraic forms. Moreover,
most of time the designers of Boolean functions are working with
their truth tables and the translation from a truth table to its

1 Centre for Advanced Computing - Algorithms and Cryptography, Depart-
ment of Computing, Macquarie University, Sydney , NSW 2109, Australia,
email: josef,xianmo@ics.mq.edu.au

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



136 JOSEF PIEPRZYK, XIAN-MO ZHANG

unique algebraic normal form (ANF) is not immediate. The aim
of this work is to investigate the Möbius transform and its sig-
nificance in Cryptography. What is interesting about the Möbius
transform is that it allows to define a class of Boolean functions
whose ANFs can be written easily from their truth tables (and
vice versa). This nice property can be useful for analysis and de-
sign of small cryptographic S-boxes. More importantly, it could
be used to justify security level of a cryptographic scheme if its
truth table is big enough so it is impossible to construct its truth
table and as the results, it is impossible to determine its ANF.

It is a well-known fact that a Boolean function f of n variables
(x1, . . . , xn) can be uniquely represented a polynomial in Formula
(1) where g is also a function of n variables that characterises f .
We call g the Möbius transform of f . In this work we denote this
relation by g = µ(f). We present methods to compute µ(f) and
study cryptographic properties of µ(f). We further propose the
concept of coincident functions. A Boolean function f is called
coincident if f is identical with µ(f). We consider an example,
f(x1, x2, x3) = x3 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2x3. From the ANF of
f , we know the truth table of µ(f): (01101101). On the other
hand, by computing, we know the truth table of f : (01101101).
Then f is a coincident function on (GF (2))3. In general we can
obtain the ANF/truth table of a coincident function from its truth
table/ANF without computing. We characterise the coincident
functions and examine their cryptographic properties.

2. Introduction to Boolean Functions

Throughout the paper we use the following notations. The
vector space of n-tuples of elements from GF (2) is denoted by
(GF (2))n. We write all vectors in (GF (2))n as (0, . . . , 0, 0) =
α0, (0, . . . , 0, 1) = α1, . . ., (1, . . . , 1, 1) = α2n−1, and call αi the
binary representation of integer i, i = 0, 1, . . . , 2n − 1. A Boolean
function f is a mapping from (GF (2))n to GF (2) or simply, a
function f on (GF (2))n. We write f more precisely as f(x) or
f(x1, . . . , xn) where x = (x1, . . . , xn). The truth table of a function
f on (GF (2))n is a (0, 1)-sequence defined by (f(α0), f(α1), . . . ,
f(α2n−1)), The Hamming weight of a (0, 1)-sequence ξ, denoted
by HW (ξ), is defined as the number of nonzero coordinates of ξ.
In particular, if ξ is the truth table of a function f , then HW (ξ)



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 137

is called the Hamming weight of f , denoted by HW (f). f is said
to be balanced if HW (f) = 2n−1. The Hamming distance between
functions f and g on (GF (2))n, denoted by d(f, g) is defined as
d(f, g) = HW (f ⊕g). The function f can be uniquely represented
by a polynomial

f(x1, . . . , xn) =
⊕

α∈(GF (2))n

g(a1, . . . , an)xa1
1 · · · xan

n (1)

where α = (a1, . . . , an), and g is also a function on (GF (2))n,
called the Möbius transform of f . The polynomial representa-
tion of f is called the algebraic normal form (ANF) of the function
f and each xa1

1 · · · xan
n is called a monomial (term) in the ANF of f .

The algebraic degree, or degree, of f , denoted by deg(f), is defined
as deg(f) = max(a1,...,an) {HW (a1, . . . , an) | g(a1, . . . , an) = 1}.
f is called affine if its ANF has the following form: f(x) =
a1x1⊕· · ·⊕anxn⊕c where x = (x1, . . . , xn), a1, . . . , an, c ∈ GF (2)
are constant. In particular f is called linear if c = 0.

3. Computing µ(f) by Matrix

Notation 1. Let Rn denote the set of all functions on (GF (2))n.
In this work we write µ(f) = g where g is the Möbius transform
of f , defined in Formula (1).

By definition, it is easy to verify that the Möbius Transform µ
is a one-to-one linear mapping from Rn to Rn.

Notation 2. We define 2n × 2n (0, 1)-matrix, denoted by Tn:
the ith row of Tn (n ≥ 1) is the truth table of xa1

1 · · · xan
n where

(a1, . . . , an) is the binary representation of the integer i. In addi-
tion, we define T0 = 1.

Theorem 3.1. Tn, defined in Notation 2, satisfies

Ts =

[

Ts−1 Ts−1

O2s−1 Ts−1

]

, where O2s−1 denotes the 2s−1 × 2s−1 zero

matrix, s = 1, 2, . . ..

Proof. We prove the theorem by induction on n. By definition, the
0th row of T1 is the truth table of the constant function f(x1) =
x0

1 = 1 and the 1st row of T1 is the truth table of the function

f(x1) = x1. Then T1 =

[

1 1
0 1

]

. Recall Notation 2 where T0 = 1.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



138 JOSEF PIEPRZYK, XIAN-MO ZHANG

Then the theorem holds for n = 1. Assume that the lemma is
true when 1 ≤ n ≤ s − 1. Let n = s. Consider the monomial
xa1

1 · · · xas
s . There exist two cases to be considered: a1 = 0 (Case

1) and a1 = 1 (Case 2). In Case 1 xa1
1 · · · xas

s = xa2
2 · · · xas

s . By
the induction assumption, the ith row of Ts−1 is the truth table of
xa2

2 · · · xas
s . Due to the relation between Ts and Ts−1, it is easy to

verify that the ith row of Ts is the truth table of xa1
1 xa2

2 · · · xas
s with

a1 = 0. In Case 2 xa1
1 · · · xas

s = x1x
a2
2 · · · xas

s . Due to the relation
between Ts and Ts−1, it is easy to verify that the ith row of Ts is
the truth table of xa1

1 xa2
2 · · · xas

s with a1 = 1. !

Example 3.2. By using Theorem 3.1, we can construct T1, T2,
T3, . . .. T1 has two rows (1 1) and (0 1). T2 has four rows (1 1 1
1), (0 1 0 1), (0 0 1 1) and (0 0 0 1). T3 has eight rows: (1 1 1 1 1
1 1 1), (0 1 0 1 0 1 0 1), (0 0 1 1 0 0 1 1), (0 0 0 1 0 0 0 1), (0 0 0
0 1 1 1 1), (0 0 0 0 0 1 0 1), (0 0 0 0 0 0 1 1) and (0 0 0 0 0 0 0 1).
It is noted that (1, 0, 1) is the binary representation of integer 5.
By the definition of Tn, the 5th row of T3, (0 0 0 0 0 1 0 1), is the
truth table of x1

1x
0
2x

1
3 = x1x3.

Lemma 3.3. (i) T 2
s = I2s where I2s is the 2s×2s identity matrix,

(ii) (Ts ⊕ I2s)2 = 02s , (iii) Ts(Ts ⊕ I2s)= (Ts ⊕ I2s)Ts =Ts ⊕ I2s ,
where s = 1, 2, . . ..

Proof. (i) can be proved by induction. (ii) and (iii) are immediate
consequences of (i). !

Theorem 3.4. Let f and g be functions on (GF (2))n. Denote
the truth tables of f and g by ξ and η respectively. Then the
following statements are equivalent: (i) g = µ(f), (ii) f = µ(g),
(iii) ηTn = ξ, (iv) ξTn = η.

Proof. Assume that (i) holds. We now prove (iii). We recall that
η = (g(α0), g(α1), . . . , g(α2n−1)). By the definition of Tn, ηTn is
the truth table of f . Then ηTn = ξ. This proves (iii). Assume
that (iii) holds. Let g′ = µ(f) and η′ be the truth table of g′. Since
we have proved (i) =⇒ (iii), we know that η′Tn = ξ. Comparing
η′Tn = ξ with ηTn = ξ, since Tn is invertible, we know η′ = η and
then g′ = g. We then have proved (i). Therefore (i) ⇐⇒ (iii).
Symmetrically, (ii) ⇐⇒ (iv). Due to (i) of Lemma 3.3, (iii) ⇐⇒
(iv). The proof is completed. !

It is noted that the equivalence between (i) and (ii) of Theorem
3.4 was previously proved in [3]. However we regain it here by



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 139

using a different concept. Theorem 3.4 enables us to compute the
truth table/ANF from the ANF/truth table of a function by using
the matrix Tn.

Example 3.5. Assume that we know the ANF of f on (GF (2))3:
f(x1, x2, x3) = 1 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3. Set g = µ(f). From
the ANF of f , we know that g has the truth table (10111001). By
using Theorem 3.4, (10111001)T3= (11010011) is the truth table of
f . Conversely, assume that we know the truth table of function f
on (GF (2))3: (11010011). By using Theorem 3.4, (11010011)T3=
(10111001) is the truth table of the µ(f). Therefore we obtain the
ANF of f : f(x1, x2, x3) = 1 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3.

Theorem 3.6. µ2 is the identity transformation, or, µ−1 = µ.

Proof. The theorem is true due to (i) of Lemma 3.3. !

4. Computing µ(f) by Polynomials

Notation 3. For any α ∈ (GF (2))n, we define a function Dα on
(GF (2))n as follows: Dα(x) = (1⊕a1⊕x1) · · · (1⊕an ⊕xn) where
x = (x1, . . . , xn), α = (a1, . . . , an).

Furthermore, it is known that for any function f on (GF (2))n,
we have

f(x) =
⊕

α∈(GF (2))n

f(α)Dα(x) (2)

For any two functions f and f ′ on (GF (2))n,
f(x) ⊕ f ′(x) =

⊕

α∈(GF (2))n(f(α) ⊕ f ′(α))Dα(x) and

f(x) · f ′(x) =
⊕

α∈(GF (2))n(f(α) · f ′(α))Dα(x) where the second

formula holds due to the fact that Dα(β) =

{

1 if β = α
0 if β )= α

.

Lemma 4.1. For any α ∈ (GF (2))n, we have (i) µ(Dα)(x) =
xa1

1 · · · xan
n where α = (a1, . . . , an), (ii) µ(xa1

1 · · · xan
n ) = Dα(x).

Proof. Due to Theorem 3.6, (i) and (ii) are equivalent. Therefore
we only need to prove (ii). Let α = (a1, . . . , an) be the binary
representation of an integer i. It is noted that the truth table of
Dα(x) is all-zero vector of length 2n except for the ith coordinate.
By the definition of Tn, the truth table ξ of xa1

1 · · · xan
n is the ith

row of Tn. According to Theorem 3.4, η = ξTn is the truth table

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



140 JOSEF PIEPRZYK, XIAN-MO ZHANG

of µ(xa1
1 · · · xan

n ). Due to (i) of Lemma 3.3, η is all-zero vector of
length 2n except for the ith coordinate. Therefore µ(xa1

1 · · · xan
n )

and Dα(x) have the same truth table and then (ii) holds. !

Due to Formula (2) and Lemma 4.1, we can state as follows.

Theorem 4.2. Let f be a function on (GF (2))n. Then µ(f)(x) =
⊕

α∈(GF (2))n f(α)xa1
1 · · · xan

n .

5. Computing µ(f) by Recursive Relations

Theorem 5.1. As we know, any function f on (GF (2))n can
be expressed as f(x) = x1g(y) ⊕ h(y) where x = (x1, . . . , xn) and
y = (x2, . . . , xn). Then µ(f)(x) = x1(µ(g)(y)⊕µ(h)(y))⊕µ(h)(y).

Proof. Let ξ, η, ζ denote the truth tables of f , g and h respectively.
It is easy to verify that ξ = (ζ, η ⊕ ζ). Let ξ′ denote the truth
table of µ(f). According to Theorem 3.4, the truth table of µ(f)
can be computed as ξTn = (ζ, η ⊕ ζ)Tn= (ζTn−1, ηTn−1). Again,
due to Theorem 3.4, ζTn−1 and ηTn−1 are the truth tables of
µ(h) and µ(g) respectively. Therefore, it is easy to verify that
µ(f)(x) = x1(µ(g)(y) ⊕ µ(h)(y)) ⊕ µ(h)(y). !

By Theorem 5.1, we can reduce the size of Möbius Transform.

6. Properties of Möbius Transforms

6.1. Computing µ(f) after a Permutations on Variables

Notation 4. Let f be a function on (GF (2))n. Let P be a per-
mutation on {1, . . . , n}. Define the function fP as fP (x1, . . . , xn)
= f(xP (1), . . . , xP (n)).

Theorem 6.1. Let f be a function on (GF (2))n and g = µ(f).
Then µ(fP ) = gP where P is defined in Notation 4.

Proof. Due to (1), f can be expressed as f(x1, . . . , xn)=
⊕

α∈(GF (2))n g(a1, . . . , an)xa1
1 · · · xan

n where α = (a1, . . . , an). Then

fP (x1, . . . , xn)=
⊕

α∈(GF (2))n g(a1, . . . , an)xa1
P (1) · · · x

an

P (n). It is

noted that xa1
P (1) · · · x

an

P (n) is identical with x
a

P−1(1)

1 · · · x
a

P−1(n)
n where

P−1 denotes the inverse of P . Set aP−1(i) = bi and then ai = bP (i),
i = 1, . . . , n. Therefore g(a1, . . . , an)xa1

P (1) · · · x
an

P (n) is

identical with g(bP (1), . . . , bP (n))x
b1
1 · · · xbn

n . Then we have proved



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 141

that fP (x1, . . . , xn) =
⊕

β∈(GF (2))n g(bP (1), . . . , bP (n))x
b1
1 · · · xbn

n

where β = (b1, . . . , bn). By definition, we know that the Möbius
transform of fP is gP , or in other words, µ(fP ) = gP . !

We note that the permutation P in Theorem 6.1 defined on
{1, . . . , n} cannot be extended to be a permutation on (GF (2))n.
This can be seen from the following example. It is easy to verify
that f(x1, x2) = x1⊕x1x2 has the Möbius Transform µ(f)(x1, x2) =
x2. Set a nonsingular linear transformation on (GF (2))2: x1 = y2,
x2 = y1 ⊕ y2. It is easy to see that f(x1, x2) = y1y2 whose Möbius
Transform is y1y2.

6.2. A Lower Bound on deg(f) + deg(µ(f))

Theorem 6.2. Let f be a nonzero function on (GF (2))n. Then
deg(f) + deg(µ(f)) ≥ n.

Proof. We prove the theorem by induction on n. It is easy to verify
the theorem is true for n = 1 because µ(f1) = f2, µ(f2) = f1 and
µ(f3) = f3 where f1(x1) = 1⊕x1, f2(x1) = 1 and f3(x1) = x1. We
assume that the theorem holds for 1 ≤ n ≤ s − 1. Consider the
case of n = s. Let f be a function on (GF (2))s. We can express f
as f(x) = x1g(y) ⊕ h(y) where x = (x1, . . . , xs), y = (x2, . . . , xs),
g and h are functions on (GF (2))s−1. According to Theorem 5.1,
µ(f)(x) = x1(µ(g)(y) ⊕ µ(h)(y)) ⊕ µ(h)(y). There exist two cases
to be considered: g )= h (Case 1) and g = h (Case 2).

We now consider Case 1. Case 1 is composed of three cases:
deg(µ(g)) > deg(µ(h)) (Case 1.1), deg(µ(g)) < deg(µ(h)) (Case
1.2) and deg(µ(g)) = deg(µ(h)) (Case 1.3).

For Case 1.1, deg(f) + deg(µ(f))≥ 1 + deg(g) + 1 + deg(µ(g)⊕
µ(h)) = 1+ deg(g)+ 1+ deg(µ(g)). By the induction assumption,
deg(g) + deg(µ(g)) ≥ s − 1 and then deg(f) + deg(µ(f))≥ 1 + s.

For Case 1.2, deg(f)+deg(µ(f))≥ deg(h)+1+deg(µ(g)⊕µ(h))
= deg(h)+ 1+ deg(µ(h)). By the induction assumption, deg(h)+
deg(µ(h)) ≥ s − 1 and then deg(f) + deg(µ(f))≥ s.

For Case 1.3, deg(f) + deg(µ(f))≥ 1 + deg(g) + deg(µ(h)) =
1 + deg(h) + deg(µ(h)). By the induction assumption, deg(h) +
deg(µ(h)) ≥ s − 1 and then deg(f) + deg(µ(f))≥ s.

We next consider Case 2. In Case 2, deg(f) + deg(µ(f))=
1+deg(g)+deg(µ(h))= 1+deg(h)+deg(µ(h)). By the induction as-
sumption, deg(h)+deg(µ(h)) ≥ s−1 and then deg(f)+deg(µ(f))≥

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



142 JOSEF PIEPRZYK, XIAN-MO ZHANG

s. We have proved that the theorem is true for n = s. Therefore
we have proved the theorem. !

It is noted that the lower bound in Theorem 6.2 can be reached.
For example, if f(x) = (1 ⊕ x1) · · · (1 ⊕ xn) = Dα0(x) where α0

denotes the zero vector in (GF (2))n, according to Lemma 4.1,
µ(f) is the constant one. Then deg(f) + deg(µ(f)) = n + 0 = n.

7. Concept of Coincident Boolean Functions

In this section we propose a special kind of Boolean functions.

Definition 7.1. Let f be a function on (GF (2))n. If f and µ(f)
are identical, or in other words, f(α) = 1 if and only if xa1

1 · · · xan
n is

a monomial in the ANF of f , for any α = (a1, . . . , an) ∈ (GF (2))n,
then f is called a coincident function.

By Definition 7.1 and Theorem 3.4, we can conclude

Theorem 7.2. Let f be a function on (GF (2))n and g = µ(f).
Denote the truth tables of f and g by ξ and η. Then the following
statements are equivalent: (i) f is coincident, (ii) g is coincident,
(iii) ξTn = ξ, (iv) ηTn = η, (v) f and g are identical, (vi) ξ and
η identical.

Example 7.3. Consider the function f on (GF (2))4:
f(x1, x2, x3, x4)= x2x4 ⊕x2x3 ⊕x1x2 ⊕x1x3x4 ⊕x1x2x4 ⊕x1x2x3.
From the ANF of f , we know that the truth table of µ(f) is
(0000011000011110). By computing, the truth table of f is also
(0000011000011110). Then f is coincident on (GF (2))4.

Since any coincident function is identical with its Möbius Trans-
form, we can have the truth table/ANF of a coincident function
from its ANF/truth table without computing.

8. Characterisations and Constructions of Coincident
Functions (by Matrix)

Notation 5. Set T ∗
n = Tn ⊕ I2n , n = 1, 2, . . ..

Due to Theorem 7.2, we can state as follows.

Theorem 8.1. Let f be a function on (GF (2))n and g = µ(f).
Then the following statements are equivalent: (i) f is coincident,



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 143

(ii) g is coincident, (iii) the truth table ξ of f satisfies ξT ∗
n = 0

where 0 denotes the all-zero vector of length 2n, (iv) the truth table
η of g satisfies ηT ∗

n = 0.

Lemma 8.2. (i) T ∗
n =

[

T ∗
n−1 Tn−1

O2n−1 T ∗
n−1

]

, n = 1, 2, . . .,

(ii) (T ∗
n)2 = 02n , (iii) TnT ∗

n = T ∗
nTn = T ∗

n .

Proof. (i) is obvious due to the relation between Tn and T ∗
n . (ii)

and (iii) are equivalent to (ii) and (iii) of Lemma 3.3 respectively.
!

Theorem 8.3. Let f be a function on (GF (2))n. Then the fol-
lowing statements are equivalent: (i) f is coincident, (ii) the truth
table of f can be expressed as (ζT ∗

n−1, ζ) where ζ is a (0, 1)-
vector of length 2n−1, (iii) the truth table of f can be expressed
as (ζT ∗

n−1, ζ ⊕ ϑT ∗
n−1) where ϑ is a (0, 1)-vector of length 2n−1.

Proof. Assume that (i) holds. Denote the truth table of f by
(ξ1, ξ2) where each ξi is a (0, 1)-vector of length 2n−1. Due to The-

orem 8.1, we know that (ξ1, ξ2)T ∗
n = (ξ1, ξ2)

[

T ∗
n−1 Tn−1

O2n−1 T ∗
n−1

]

=

0 where 0 denotes the all-zero vector of length 2n. Therefore
ξ1T ∗

n−1 = 0 and ξ1Tn−1 ⊕ ξ2T ∗
n−1 = 0. From the two equations, we

know that ξ1(T ∗
n−1⊕Tn−1)⊕ ξ2T ∗

n−1 = 0 and then ξ1⊕ ξ2T ∗
n−1 = 0

or ξ1 = ξ2T ∗
n−1. Thus the truth table of f can be expressed as

(ξ2T ∗
n−1, ξ2). This proves that (ii) holds. We then have proved

(i) =⇒ (ii). Assume that (ii) holds, i.e., the truth table of f can
be expressed as (ζT ∗

n−1, ζ). Let ϑ be any (0, 1)-vector of length
2n−1. Set ζ = ζ ′ ⊕ ϑT ∗

n−1. Due to Lemma 8.2, ζT ∗
n−1 = ζ ′T ∗

n−1.
Therefore (ζT ∗

n−1, ζ)= (ζ ′T ∗
n−1, ζ

′ ⊕ ϑT ∗
n−1) and then (iii) holds.

We then have proved (ii) =⇒ (iii). Assume that (iii) holds, i.e.,
the truth table of f can be expressed as (ζT ∗

n−1, ζ ⊕ϑT ∗
n−1) where

both ζ and ϑ are (0, 1)-vector of length 2n−1. By using Lemma
8.2, we know that (ζT ∗

n−1, ζ⊕ϑT ∗
n−1)T

∗
n = 0. Due to Theorem 8.1,

f is coincident. This proves (iii) =⇒ (i). !

Theorem 8.4. Let f be a function on (GF (2))n. Then f is co-
incident if and only if the truth table of f can be expressed as ηT ∗

n

where η is a (0, 1)-vector of length 2n.

Proof. The sufficiency is true due to Theorem 8.1 and Lemma
8.2. We now prove the necessity. Assume that f is coincident.
According to Theorem 8.3, the truth table of f can be expressed

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



144 JOSEF PIEPRZYK, XIAN-MO ZHANG

as (ζT ∗
n−1, ζ) where ζ is a (0, 1)-vector of length 2n−1. By using

Lemma 8.2, it is easy to verify that (ζT ∗
n−1, ζ) = (ζTn−1, 0)T ∗

n .
This proves the necessity. !

We can state Theorem 8.4 equivalently.

Theorem 8.5. Let f be a function on (GF (2))n. Then f is co-
incident if and only if the truth table of f is a linear combination
of rows of T ∗

n .

By the way, we can construct coincident functions by using
Theorems 8.3, 8.4 and 8.5.

9. Enumeration of Coincident Functions

Lemma 9.1. All the 2n−1 rows of the matrix
[

T ∗
n−1 Tn−1

]

form
a basis of rows of T ∗

n , where n = 1, 2, . . ..

Proof. Due to Lemma 8.2, T ∗
n =

[

T ∗
n−1 Tn−1

02n−1 T ∗
n−1

]

. Again, due to

Lemma 8.2,

[

I2n−1 02n−1

T ∗
n−1 I2n−1

] [

T ∗
n−1 Tn−1

02n−1 02n−1

]

=

[

T ∗
n−1 Tn−1

02n−1 T ∗
n−1

]

.

It is noted that Tn−1 has a rank 2n−1. The proof is completed. !

Due to Theorem 8.5 and Lemma 9.1, we have Theorems 9.2
and 9.3 where Theorem 9.2 is an improvement on Theorem 8.5.

Theorem 9.2. Let f be a function on (GF (2))n. Then f is co-
incident if and only if the truth table of f is a linear combination
of rows of

[

T ∗
n−1 Tn−1

]

, where n = 1, 2, . . ..

Theorem 9.3. There precisely exist 22n−1
coincident functions

on (GF (2))n that form a 2n−1-dimensional linear subspace of Rn

where Rn is defined in Notation 1.

Example 9.4. According to Theorem 9.3, there precisely ex-
ist 223−1

= 16 coincident functions on (GF (2))3. According to
Theorem 9.2, all the linear combinations of rows of [T ∗

2 , T2] =








0 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1









are the truth tables of coincident

functions on (GF (2))3: (01111111), (00010101), (00010011),
(00000001), (00000111), (00000110), (01101010), (00010100),



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 145

(01101101), (01101011), (01111110), (01101100), (01111000),
(01111001), (00010010), (00000000). We directly write the ANFs
of the 16 coincident functions on (GF (2))3: x3 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕
x1x3⊕x1x2⊕x1x2x3, x2x3⊕x1x3⊕x1x2x3, x2x3⊕x1x2⊕x1x2x3,
x1x2x3, x1x3 ⊕ x1x2 ⊕ x1x2x3, x1x3 ⊕ x1x2, x3 ⊕ x2 ⊕ x1 ⊕ x1x2,
x2x3 ⊕ x1x3, x3 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2x3, x3 ⊕ x2 ⊕ x1 ⊕ x1x2 ⊕
x1x2x3, x3 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2, x3 ⊕ x2 ⊕ x1 ⊕ x1x3,
x3 ⊕ x2 ⊕ x1 ⊕ x2x3, x3 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3, x2x3 ⊕ x1x2, 0

10. Characterisations and Constructions of Coincident
Functions (by Polynomial)

Definition 10.1. Define a mapping Ψ from Rn to Rn, where Rn

is defined in Notation 1: Ψ(f) = h if and only if ξT ∗
n = ζ where

f, h ∈ Rn, ξ and ζ are truth tables of f and h respectively.

By Definition 10.1, Ψ is a linear mapping.

Lemma 10.2. Let f be a function on (GF (2))n. Then Ψ(f) = h
if and only if f ⊕ µ(f) = h where Ψ is defined in Definition 10.1.

Proof. Let ξ and ζ be the truth tables of f and h respectively.
It is clear that Ψ(f) = h ⇐⇒ ξT ∗

n = ζ ⇐⇒ ξ ⊕ ξTn = ζ ⇐⇒
f ⊕ µ(f) = h. !

Theorem 10.3. Let h be a function on (GF (2))n. Then the fol-
lowing statements are equivalent: (i) h is coincident, (ii) there
exists a function f on (GF (2))n such that h = Ψ(f), i.e., h =
f ⊕ µ(f), (iii) Ψ(h) is the zero function.

Proof. Due to Theorem 8.4, (i) ⇐⇒ (ii). Due to Theorem 8.1, (i)
⇐⇒ (iii). !

Due to Lemma 4.1 and Theorem 10.3, we can state as follows.

Lemma 10.4. For any α = (a1, . . . , an) ∈ (GF (2))n, Dα(x) ⊕
xa1

1 · · · xan
n is coincident.

Again, by using Theorem 10.3 and Lemma 4.1, we can state
more generally.

Theorem 10.5. Let h be a function on (GF (2))n. Then h is coin-
cident if and only if h is a linear combination of all the functions in
the form Dα(x) ⊕ xa1

1 · · · xan
n where α = (a1, . . . , an) ∈ (GF (2))n.

Due to Formulas (1), (2) and Definition 7.1, we conclude

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



146 JOSEF PIEPRZYK, XIAN-MO ZHANG

Theorem 10.6. Let f be a function on (GF (2))n whose ANF
of f is given as f(x) =

⊕

α∈(GF (2))n g(α)xa1
1 · · · xan

n where α =
(a1, . . . , an) ∈ (GF (2))n and g = µ(f). Then the following state-
ments are equivalent: (i) f is coincident,
(ii) f(x) =

⊕

α∈(GF (2))n f(α)xa1
1 · · · xan

n ,
(iii) f(x) =

⊕

α∈(GF (2))n g(α)Dα(x).

By the way, we can construct coincident functions by using
Theorems 10.3, 10.5 and 10.6.

Notation 6. Let β = (b1, . . . , bn) and α = (a1, . . . , an) be (0,
1)-vectors. Then β * α means that if bj = 1 then aj = 1. In
particular, β ≺ α means that β * α but β )= α.

The following result can be found in p.372 of [1].

Lemma 10.7. Let f be a function on (GF (2))n and
α = (a1, . . . , an) be a vector in (GF (2))n. Then the term xa1

1 · · · xan
n

appears in the ANF of f if and only if
⊕

β%α f(β) = 1.

Theorem 10.8. Let f be a function on (GF (2))n. Then f is
coincident if and only if for any α ∈ (GF (2))n,

⊕

β≺α f(β) = 0.

Proof. Let g = µ(f). Due to Lemma 10.7, g(α) =
⊕

β%α f(β) for
any α ∈ (GF (2))n. Then f is coincident ⇐⇒ f = g ⇐⇒ for each
α ∈ (GF (2))n, f(α) =

⊕

β%α f(β) or
⊕

β≺α f(β) = 0. !

11. Characterisations and Constructions of Coincident
Functions (by Recursive Formulas)

Theorem 11.1. Let f be a function on (GF (2))n. Then f is
coincident if and only if there exists a function g on (GF (2))n−1

such that f(x) = x1g(y) ⊕ Ψ(g)(y) where Ψ has been defined in
Definition 10.1. Furthermore, if f is nonzero then g is nonzero.

Proof. Since f can be expressed as f(x) = x1g(y) ⊕ h(y) where
both g and h are functions on (GF (2))n−1, due to Theorem 5.1,
µ(f)(x) = x1µ(g⊕h)(y)⊕µ(h)(y). It is noted that f is coincident
⇐⇒ f = µ(f) ⇐⇒ g = µ(g ⊕ h) and h = µ(h) ⇐⇒ h = µ(h) and
h = µ(g) ⊕ g ⇐⇒ h = µ(g) ⊕ g (due to Theorem 10.3). Due to
Lemma 10.2, g ⊕ µ(g) = Ψ(g). This proves the main part of the
theorem. Clearly if f is nonzero then g is nonzero. !

Recursively applying Theorem 11.1, we state as follows.



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 147

Theorem 11.2. Let f be a function on (GF (2))n. Then f is
coincident if and only if there exists a function fi on (GF (2))n−i,
i = 1, . . . , n, such that f(x1, . . . , xn) = x1f1(x2, . . . , xn) ⊕
x2f2(x3, . . . , xn) ⊕ · · · ⊕ xn−1fn−1(xn) ⊕ fn(xn) where
xifi(xi+1, . . . , xn) ⊕ · · · ⊕ xn−1fn−1(xn) ⊕ fn(xn) =
Ψ(xi−1fi−1(xi, . . . , xn)⊕· · ·⊕xn−1fn−1(xn)⊕fn(xn)), i = 2, . . . , n.

By the way, we can construct coincident functions by using
Theorems 11.1 and 11.2.

12. Properties of Coincident Functions

12.1. General Properties

Theorem 12.1. Let f be a function on (GF (2))n and P be a
permutation on {1, . . . , n}. Then f is coincident if and only if fP

is coincident, where fP is defined in Notation 4, i.e.,
fP (x1, . . . , xn)=f(xP (1), . . . , xP (n)).

Proof. Set g = µ(f). Assume that f is coincident. Then g is
identical with f and then fP = gP . By Theorem 6.1, µ(fP ) = gP .
Then we have µ(fP ) = fP and then fP is coincident. The converse
is true because we can set fP = f ′ then f ′

P−1 = f . !

We note that the permutation P in Theorem 12.1 defined on
{1, . . . , n} cannot be extended to be a permutation on (GF (2))n.
This can be seen from the following example. From Example 9.4,
f(x1, x2, x3) = x1x2x3 is coincident on (GF (2))3. Set a nonsin-
gular linear transformation on (GF (2))3: x1 = y1 ⊕ y2, x2 = y2,
x3 = y3. It is easy to see that f(x1, x2, x3) = y1y2y3 ⊕ y2y3 is not
coincident on (GF (2))3.

Theorem 12.2. Let f be a function on (GF (2))n and P be a per-
mutation on {1, . . . , n}. Set f ′(xP (1), . . . , xP (n))= f(x1, . . . , xn).
Then f is coincident if and only if f ′ is coincident.

Proof. The theorem is true due to the equivalence between (i) and
(iii) in Theorem 10.6. !

A difference between Theorems 12.1 and 12.2 is that the per-
mutation P in Theorem 12.1 replaces xj by xP (j) while P in Theo-
rem 12.2 regards xP (j) as the jth variable but does not change the
function f . For example, if f(x1, x2, x3) = x1x2 ⊕ x2x3, P (1) = 2,
P (2) = 3 and P (3) = 1, then fP (x1, x2, x3) = x2x3 ⊕ x3x1 but

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



148 JOSEF PIEPRZYK, XIAN-MO ZHANG

f ′(x2, x3, x1) = x1x2 ⊕ x2x3 where f ′ is mentioned in Theorem
12.2.

Theorem 12.3. Let f be a nonzero coincident function on
(GF (2))n. Then each variable xj appears in a monomial of the
ANF of f .

Proof. By Theorem 11.1, f(x) = x1g(y) ⊕ Ψ(g)(y) where g is a
function on (GF (2))n−1. Since f is nonzero, g is nonzero. Then
x1 appears in a monomial of the ANF of f . Therefore, if we regard
any other variable xj as the 1st variable, By Theorem 12.2, the
new function f ′ is also coincident. By the same reasoning, xj

appears in a monomial of the ANF of f ′ as well as x1 in f . !

Corollary 12.4. Let f be function on (GF (2))n and g = µ(f). If
f is a coincident function then f(0) = 0 and g(0) = 0.

Proof. Due to Theorem 8.4, the truth table of f can be expressed
as ξT ∗

n . It is noted that the leftmost column of T ∗
n is the all-zero

column. Then the first coordinate of ξT ∗
n turns out to be zero.

This proves that f(0) = 0 and then g(0) = 0. !

Theorem 12.5. Let f be a coincident function on (GF (2))n.
Then either the ANF of f has every linear term xj , or, the ANF
does not have any linear term.

Proof. Assume that the ANF of f has a linear term xj0 where 1 ≤
j0 ≤ n. Let i0 ∈ {1, . . . , n} − {j0}. Without loss of generality, we
assume that i0 < j0. Let γi denote the vector in (GF (2))n whose
ith coordinate is one and all other coordinates are zero. Let γi,j

denote the vector in (GF (2))n whose ith and jth coordinates are
one and all other coordinates are zero. According to Theorem 10.8,
⊕

β≺γi0,j0
g(β) = 0. More precisely, g(0)⊕g(γj0)⊕g(γi0) = 0. Due

to Corollary 12.4, g(0) = 0. Since the ANF of f has a linear term
xj0, g(γj0) = 1. Therefore we know that g(γi0) = 1. This means
that the ANF of f has a linear term xi0 . Since i0 is arbitrarily
included in {1, . . . , n} − {j0}, we have proved the theorem. !

Lemma 12.6. Let f be a coincident function on (GF (2))n. Then
for any integer r with 1 ≤ r ≤ n − 1 and the r-subset {1, . . . , r}
of {1, . . . , n}, f(x1, . . . , xn)|x1=0,...,xr=0 is a coincident function on
(GF (2))n−r.

Proof. According to Theorem 11.1, f(x) = x1g(y)⊕Ψ(g)(y) where
Ψ has been defined in Definition 10.1. Then f(0, x2, . . . , xn) =



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 149

Ψ(g)(x2, . . . , xn). Due to Theorem 10.3, Ψ(g) is a coincident func-
tion on (GF (2))n−1, i.e., f(0, x2, . . . , xn) is a coincident function
on (GF (2))n−1. Applying the same reasoning to Ψ(g), we know
that f(0, 0, x3, . . . , xn) is a coincident function on (GF (2))n−2. Re-
peatedly, we can prove that f(0, . . . , 0, xr+1, . . . , xn) is a coincident
function on (GF (2))n−r . !

Theorem 12.7. Let f be a coincident function on (GF (2))n.
Then for any integer r with 1 ≤ r ≤ n − 1 and any r-subset
{j1, . . . , jr} of {1, . . . , n},
f(x1, . . . , xn)|xj1=0,...,xjr =0 is a coincident function on (GF (2))n−r.

Proof. Let {j1, . . . , jr}∪ {jr+1, . . . , jn}={1, . . . , n}. We define a
function f ′: f ′(xj1 , . . . , xjn)= f(x1, . . . , xn). According to Theo-
rem 12.2, f ′ is coincident. Applying Lemma 12.6 to f ′, we have
proved the theorem. !

12.2. A Lower Bound on Degree of Coincident Functions

Lemma 12.8. There precisely exist 22n−1−1 coincident functions
on (GF (2))n having a degree n and there precisely exist 22n−1−1

coincident functions on (GF (2))n having a degree less than n.

Proof. Due to Theorem 8.5, the truth table of a coincident func-
tion f on (GF (2))n is a linear combination of rows of T ∗

n . It is
noted that the rightmost column of T ∗

n contains ones. Then there
precisely 50% such linear combinations whose last coordinate is
one. By Definition 7.1, for any coincident function f on (GF (2))n,
deg(f) = n if and only if f(1, . . . , 1) = 1. Therefore there precisely
50% coincident functions on (GF (2))n having a degree n. There-
fore, due to Theorem 9.3, we have proved the corollary. !

We next indicate that all coincident functions have a high de-
gree even for coincident functions whose degree are less than n.

Theorem 12.9. Let f be a coincident function on (GF (2))n.
Then deg(f) ≥ -1

2n.. More precisely, (i) deg(f) ≥ 1
2n where n

is even, (ii) deg(f) ≥ 1
2(n + 1) where n is odd.

Proof. According to Theorem 6.2, deg(f)+deg(µ(f)) ≥ n. On the
other hand, since f is coincident, f and µ(f) are identical. Then
2deg(f) ≥ n and then deg(f) ≥ 1

2n. In particular, when n is odd,
it is noted that deg(f) ≥ 1

2n. Since n is odd and deg(f) is integer,
deg(f) ≥ 1

2(n + 1). Summarily, deg(f) ≥ -1
2n.. !

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07



150 JOSEF PIEPRZYK, XIAN-MO ZHANG

We now indicate that the lower bound in Theorem 12.9 is tight.
For example, f(x1, x2, x3, x4) = x2x4⊕x2x3⊕x1x4⊕x1x3 is a coin-
cident function on (GF (2))4 having a degree two. f(x1, x2, x3) =
x3 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2 is a coincident function on
(GF (2))3 having a degree two.

13. Coincident Functions with High Nonlinearity and High
Degree

The nonlinearity Nf of a function f on (GF (2))n is defined
as Nf = mini=1,2,...,2n+1 d(f, ψi) where ψ1, ψ2, . . ., ψ2n+1 are all
the affine functions on (GF (2))n. It is well-known that for any
function f on (GF (n))n, the nonlinearity Nf of f satisfies Nf ≤

2n−1 − 2
1
2n−1. We can define bent functions, introduced first by

Rothaus [2], equivalently as follows: a function f on (GF (n))n is
said to be bent if the nonlinearity Nf reaches the maximum value

Nf = 2n−1 − 2
1
2n−1. Obviously bent functions on (GF (2))n exist

for even n.

13.1. Construction 1 (for Case of Even Variables)

The following statement can be verified straightforwardly.

Lemma 13.1. Let f1, f2 and f3 be functions on (GF (2))n. Then
d(f1, f3) ≤ d(f1, f2) + d(f2, f3).

Theorem 13.2. Let f(x1, . . . , x2k) = x1x2 ⊕ · · · ⊕ x2k−1x2k. Set
h = f ⊕ µ(f). Then (i) h is a coincident function on (GF (2))2k ,
(ii) Nh ≥ 22k−1 − 2k−1 − k, (iii) deg(h) ≥ 2k − 2.

Proof. Due to Theorem 10.3, h is coincident. Let ξ and η be the
truth tables of f and µ(f) respectively. Then ξ ⊕ η is the truth
table of h. Let ψ be an affine function on (GF (2))2k and ) be the
truth table of ψ. By the definition of nonlinearity, d(ξ, )) ≥ Nf .
On the other hand, it is obvious that HW (η) = k. Therefore
d(ξ⊕η, ξ) = k. Due to Lemma 13.1, d(ξ, )) ≤ d(ξ, ξ⊕η)+d(ξ⊕η, )).
Then Nf ≤ k + d(ξ ⊕ η, )) or d(ξ ⊕ η, )) ≥ Nf − k. Since ψ is an
arbitrarily affine function, Nh ≥ Nf − k. It is well-known that
f is bent. Then Nf = 22k−1 − 2k−1. We then have proved that
Nh ≥ 22k−1−2k−1−k. Due to Theorem 6.2, deg(f)⊕deg(µ(f)) ≥
2k. Since deg(f) = 2, we know that deg(µ(f)) ≥ 2k − 2. Clearly
deg(h) = deg(µ(f)), We have proved the theorem. !



MöBIUS TRANSFORMS AND COINCIDENT BOOLEAN FUNCTIONS 151

13.2. Construction 2 (for Case of Odd Variables)

Theorem 13.3. Let
f(x1, x2, . . . , x2k+1) = x2x3⊕x4x5 · · ·⊕x2kx2k+1. Set h = f⊕µ(f).
Then (i) h is a coincident function on (GF (2))2k+1, (ii) Nh ≥
22k − 2k − k, (iii) deg(h) ≥ 2k − 1.

Proof. By using the same reasoning in the proof of Theorem 13.2,
we have Nh ≥ Nf − k. Set f ′(x2, . . . , x2k+1) = x2x3 ⊕ x4x5 · · · ⊕
x2kx2k+1. Then f ′ is a bent function on (GF (2))2k and then Nf ′ =
22k−1−2k−1. It is easy to see that Nf = 2Nf ′ = 22k−2k. Therefore
we have proved that Nh ≥ 22k − 2k − k. Due to Theorem 6.2,
deg(f) ⊕ deg(µ(f)) ≥ 2k + 1. Since deg(f) = 2, we know that
deg(µ(f)) ≥ 2k + 1− 2 = 2k − 1. Clearly deg(h) = deg(µ(f)), We
have proved the theorem. !

Both coincident functions in Theorems 13.2 and 13.3 are highly

nonlinear, comparing to the maximum nonlinearity 2n−1 − 2
1
2n−1

of functions on (GF (2))n. Obviously the two coincident functions
are also of high algebraic degree.

14. Conclusions

We have established relations between Boolean functions and
their Möbius transforms so as to compute the truth table/ANF
from the ANF/truth table of a function in different conditions
and find new properties of Boolean functions. We have proposed
a special kind of Boolean functions, so-called coincident functions,
and extensively studied such functions.

References

[1] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting

Codes. North-Holland, Amsterdam, New York, Oxford, 1978.
[2] O. S. Rothaus. On “bent” functions. Journal of Combinatorial Theory, Ser.

A, 20:300–305, 1976.
[3] Y. Zheng, X. M. Zhang, and Hideki Imai. Restrictions, terms and non-

linearity of boolean functions. Theoretical Computer Science, 226:207–223,
1999.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07







BFCA’07 - Proceedings
About the book
Held during May, 2007, in Paris, BFCA’07 was the third
workshop about Boolean Functions and their applications
(notably in cryptography). During two days, many different
international scientists met each other and talked about their
work. This book contains the acts of the proceedings of the
conference.

À propos de cet ouvrage
En Mai 2007 s’est tenu à Paris, BFCA’07, le troisième atelier sur
le thème des Fonctions Booléennes et de leurs applications (en
particulier cryptographiques). Pendant deux jours, de nombreux
chercheurs internationaux s’y sont rencontrés et y ont parlé de
leurs travaux. Cet ouvrage est composé des articles associés
aux différentes conférences qui s’y sont tenues.

About the editors :
Jean-Francis Michon is Computer Science Professor and
Director of the LITIS (Computer Science Laboratory) at
University of Rouen, France.
Pierre Valarcher is Computer Science Assistant Professor and
Member of the LACL (Computer Science Laboratory) at
University of Paris-East, France.
Jean-Baptiste Yunès is ComputerScienceAssistant Professor
and Member of the LIAFA (Computer Science Laboratory) at
University of Paris 7 - Denis Diderot, France.
With the collaboration of :
Frederik Armknecht, Pierre-Louis Cayrel, Joan-Josep Climent, Deepak Kumar Dalai,
José Raimundo de Oliveira, Maurı́cio Araújo Dias, Ali Doğanaksoy, Philippe Gaborit,
Francisco J. Garcı́a, Sylvain Guilley, Philippe Hoogvorst, Subhamoy Maitra,
Renaud Pacalet, Josef Pieprzyk, Verónica Requena, Olivier Ruatta, Sumanta Sarkar,
Elif Saygı, Zülfükar Saygı, Johannes Schmidt, İsa Sertkaya, Xian-Mo Zhang


