
An Introduction to CELLULAR AUTOMATA

Hélène Vivien

2

Acknowledgment

∗

It is a pleasure to thank Serge Grigorieff for all his aid. It was he who
first suggested to me the study of cellular automata and who then supplied me
with a steadily increasing bibliography on the subject. Chapters 1 to 13 are
the result of my efforts to understand and put some order into this growing
heap. He read several preliminary drafts, forever suggesting complements and
improvements, making sure that certain precious results by workers in the field
were not forgotten. Without his constant help, his advice and the numerous
discussions I had with him, this book would never have been written. I am
happy to express my deep appreciation for all his help and encouragement.

3

Introduction

In common language, an automaton is a self propelled object, a mechanical
puppet, performing jerky movements from one position to another, head turned
left, arm up, . . . , as Olympia in Offenbach’s opera “The tales of Hoffman”.
Mathematically, it is only an abstract object, characterized by its state at any
instant and (possibly) changing state at different points of time. We are thus
given a set of states and a set of instants which will be the set of non-negative
integers. The passage from one state to the next is governed by the internal law
of the object.

A “cellular automaton” is an automaton which is formed of a large number
of cells, identical small automata, evolving in a synchronized manner and in-
terdependent : the state of a cell at a given time depends on the state of its
neighbouring cells at the previous instant. The state of the automaton is the
juxtaposition of the states of its component cells. The macroscopic evolution is
thus the result of innumerable microscopic movements. Even if the basic com-
ponent is very simple, with very few states, if the architecture of the whole is
simple and regular, and the rules that govern local interactions are simple also,
they result in an extremely complex and intricate global behavior.

The first one to study such systems is Stanislaw Ulam (1909-1984) who, after
World War II, uses the very first computers to simulate examples of cellular
automata [55]. His cells are the squares of an a priori infinite plane chessboard,
and have as neighbours the four adjoining squares or the eight surrounding ones.
The observation of the overall patterns formed by the states was a game, but
this game suggested the idea of some universe in reduction, complex, having its
own laws, and which could serve as a model for our real world.

His colleague at Los Alamos, John Von Neumann (1903-1957) is captivated
by the human brain and the mechanisms of life, one of whose chief character-
istics is its capacity to reproduce itself. At that time, in an industrial world,
machines capable of fabricating less sophisticated machines were common. But
Von Neumann tries to conceive one which can reproduce itself, a sort of assembly
system, capable of reaching out for necessary parts. The technical difficulties,
however, seem insuperable.

Ulam suggests he should avoid the impediments of the material world and
take cellular automata as models for achieving his aim. An idea which seems
quite natural nowadays, when we think that living organisms are made of cells.
Thus Von Neumann pursues his search of an autoreproductive machine within
Ulam’s framework. In so doing, he tackles all the problems which will be at the
origin of the future research in cellular automata.

In his idea the machine must comprise different parts, a “universal con-
structor”, capable of constructing any machine from a description, then the
“description” of the machine itself. There he comes across a logical problem
(about the place of the description in the machine), whose solution he finds in

4

the works of Alan Turing (1912-1954) : with the supervision of a third part, a
“universal Turing machine”, the process of reproduction is decomposed into two
successive phases, first the construction, then the duplication of the description.
At last, in 1952, Von Neumann succeeds in building his machine [59]. It is
a plane cellular automaton, the neighbours of each cell are the four adjoigning
squares, it has no less than 200,000 cells and 29 possible states (among which the
“empty” state). After some time the plane contains two replicas of the machine,
in the same configuration as it was at the start. This machine is complicated, it
contains a universal constructor and a universal Turing machine. But it is now
proved that there is no logical contradiction in the concept of a self reproduc-
ing machine, and that self-reproduction does not need supernatural means. His
machine will be improved by numerous successors, Moore in 1961 [40], Burks in
1964 [59, 4], Codd in 1968 [5]. It will be discovered later that the reproduction
of actual living organisms follow the pattern of Von Neumann’s solution. The
DNA of a cell contains the complete description of the cell minus its DNA, the
task of construction being entrusted to the ribosomes, that of supervision to the
enzymes.

While Von Neumann and his successors tried to find rules for a self-repro-
ductive machine, John Conway (b.1937) builds his “Game of Life” with an
entirely different intuition [7, 17, 18, 43]. As Ulam, he thinks that the checkered
plane evolving with simple rules is a reduced universe, nevertheless as rich and
complex as our real world. Trying out rules securing a balance in complexity he
finally works out extremely simple rules : there are only two states, a cell may
be live or dead. To revive or survive, a cell must have enough living neighbours,
2 or 3, but not too many, with 4 it is stifled. After having chosen his initial
configuration, the player has only to watch the automaton unfold its evolution,
and he is greeted with the enchanting spectacle of patterns that flicker, patterns
that sail along, patterns that destroy others, patterns that reproduce themselves,
. . . . But twelve more years were actually needed to exhibit a pattern capable
of self-reproduction as well as universal computability and constructability, in
1982.

Stephen Wolfram (b.1959) in his turn, and with the idea that cellular au-
tomata could act as models for chaos systems in theoretical physics, studies
one-dimensional models, i.e. lines of cells, with 2 states (white,black) or 3 (grey
added). White is the “quiescent” state, (a quiescent state has the property that
a quiescent cell having quiescent neighbours remains quiescent). In this case
the evolution with time of the c.a’s may be represented by plane diagrams. All
the possible transition rules may be duly numbered and exhaustively examined.
Systematical observing of the evolution of commonplace initial configurations
leads him to distinguish 4 classes of behavior, of increasing complexity : the
configurations tend to become 1)entirely white, 2)stable or periodic, 3)chaotic,
4)original, complicated and mortal in a stable scenery. There is no precise
definition of these types of behavior. (Nevertheless, Culik and Yu will prove
later that the problem of determining wether some c.a belongs to one partic-
ular class or not is undecidable [10]). In 1983-84, he publishes several papers
[61, 62, 63, 64], famous because of the visionary ideas he develops, namely that

5

the whole universe could well be governed by some simple program.
In the course of his works on c.a’s, Von Neumann had also met with a

crucial problem, the problem of synchronization : with information exchange
progressing from cell to cell, how can some cell give an order to all the other ones
at the same time. One measures the importance of this question to orchestrate a
collective task. It is Myhill [41], in 1957, who expresses this problem in the vivid
terms of the “Firing Squad” : find a (one-dimensional) c.a such that, starting
with a configuration where all the cells (the soldiers) are resting, except one (the
general), it comes to a configuration where all cells are suddenly in the same
(fire) state. This problem became famous with the works of Moore (1964) [40]
and Minsky [39]. A great number of solutions and generalizations of this problem
have been studied. The nicest and most economical in states is Mazoyer’s, the
most general one, for networks of automata with communication delays, was
given by Jiang in 1990.

Long after Von Neumann had built his machine, which comprised a uni-
versal Turing machine, A.R.Smith, in the 70’s, demonstrates elementarily that
one-dimensional c.a’s with only left and right neighbours are equivalent to Tur-
ing machines. The simulation of the latter by c.a’s immediately implies the
undecidable character of most aspects of c.a behavior.

Turing machines are interesting because of their rudimentary constitution,
but they are unpractical devices, and despairingly inefficient in realizing the
slightest task. In a c.a, a great number of cells work simultaneously, what is
called parallelism, which gives them power and speed. Thus, for a certain num-
ber of simple problems, very quick c.a algorithms have been found, as Atrubin’s
one which multiplies two integer numbers in real time. What is worth noticing
is that these algorithms often use elementary methods. Whereas in general,
efficient algorithms for computers are very tricky. Could the reason not be that
c.a’s can reproduce what we write on our two-dimensional paper ?

On a sheet of paper, we also solve many problems by using elementary
geometry. Well, precisely, one-dimensional c.a’s manage to reproduce these
solutions using “signals”, that is states that progress more or less quickly and
leave straight trajectories in the diagrams. The most surprising fact is that
c.a’s, which are discrete systems, producing discrete space-time diagrams, seem
to always faithfully implement the geometric solutions of the continuous world.

Another advantage of the geometric solutions is that when a c.a mimics a
geometric solution, we have a mathematical proof of the task it accomplishes.

Do we have other methods to find c.a algorithms ? If the set of states
happens to be equipped with an algebraic structure, and the rules for transition
are algebraically defined, that is in very particular circumstances, algebra may
be used.

Otherwise, we must admit the fact : the complex behavior of c.a’s remains
very difficult to master. This difficulty probably explains that massive par-
allelism has not been much used till now for building real machines. A first
attempt was the “connexion machine” of D.Hillis [26], capable of quick and
reliable computations. But this enterprise was not successful.

The structural efficiency of c.a’s does not prevent from trying to speed them

6

up, as we speed up Turing machines. As a matter of fact the first attempts at
doing this used a roundabout way through a special category of Turing machines.
Ibarra, Kim and Moran in 1985 [28], then Choffrut and Culik [11], thus proved
that language recognition could, roughly, be speeded up by an arbitrary factor.
Recently, Nicolas Reimen and Mazoyer have set up a proper c.a method [46]. It
is based on a weak speeding up result, needing a preliminary transformation of
the languages, which must be expressed with syllables. They had the idea that
the c.a could do this transformation itself. After that, remained the technical
difficulty of switching all the cells from this first task to the work of recognition,
for which an auxiliary synchronization was needed.

With this brief retrospect, one understands that no one book can cover all
the approaches to cellular automata. The only aspect treated in the books of
Burk and Codd [4, 5] is self reproduction. All the other aspects are studied
in numerous and scattered papers. The main ambition of this work is gath-
ering and unifying a certain number of existing results about c.a algorithms,
which naturally leads to complements and improvements. Our point of view is
resolutely geometrical. Elementary geometry is used

- to find algorithms (for language recognition, slowing down, speed-
ing up)

- to divide problems in smaller problems and progressively reduce
them to micro-problems (divide and conquer methods)

- to link partial solutions, that is solutions on different subsets of
the cells

- to simulate delays by distances

- finally, we even present c.a’s the states of which are geometrical
pieces.

The order of the book is from the simple to the more complex, introducing a
question as soon as we have the frame to put it and the means to solve it.

Chapter 1 starts with the finite linear c.a’s. They are precisely the required
framework for introducing the Firing Squad Synchronization Problem, and giv-
ing the first and simplest solution, that of Minsky.

Chapter 2 presents Mazoyer’s solution which is elegant and sophisticated. The
needed display of technics also introduces to the abstract notions to be devel-
oped in later chapters.

Chapter 3 clarifies some important notions related to semi-infinite linear c.a’s :
inputs and outputs, computing a function, recognizing a language. It also gives
fundamental examples of language recognition.

It is then possible to relate c.a’s with Turing machines, which is done in Chap-
ter 4, which ends with Atrubin’s real time algorithm to multipliy two integer
numbers.

Semi-infinite linear c.a’s are the required framework for many developments in

7

the next chapters.

Chapter 5 gives a precise definition of a signal. Different notions then appear,
those of waves and networks of signals, with the beautiful example of Fischer’s
c.a for recognizing prime numbers, and the gap theorem for waves.

In chapter 6, slowing down is studied. It may seem absurd at first view. But
we shall see that it is useful, next to speeding up, for intelligently driving our
c.a’s. This incidentally leads us to build a c.a which computes particular word
morphisms.

Chapter 7 is an exhaustive study of speeding up, for recognizers and for syn-
chronizers.

Chapter 8 is devoted to the study of the family of synchronization times. The
richness of this family allows for flexible use of the synchronization process.

Chapter 9 introduces the geometrical c.a’s, i.e. c.a’s the states of which are geo-
metrical pieces. Numerous examples give new and elegant methods for speeding
up.

Chapter 10 is a general study of n-dimensional c.a’s and of the languages that
they recognize. It is based on Cole [6].

In the last three chapters, communication delays are introduced. They consid-
erably complexify the behavior of c.a’s, in particular their synchronization.

Chapter 11 considers a line of two automata. Solutions for synchronizing these
two automata are presented, and they are proved to be almost optimal.

Chapter 12 considers a finite line of automata. A c.a synchronizing such a line
is presented, which mimics Minsky’s method of chapter 1.

In chapter 13 we first give the general definition of a network, without or with
communication delays. We show how automata placed at the nodes of the net-
work may solve graph problems. We then use this possibility to transform the
network into a fictive line. Applying the result of the preceding chapter to this
line, we obtain a c.a for synchronizing the network.

8

Contents

1 Finite lines - Synchronization 17
1.1 Introduction to cellular automata 17

1.1.1 Single automata . 17
1.1.2 Interaction with the outer world 18
1.1.3 Interactive automata . 19
1.1.4 A little vocabulary . 19

1.2 The firing squad synchronization problem 21
1.3 Minsky’s solution to the FSSP 22

1.3.1 Intuition . 22
1.3.2 First and fundamental signals 24
1.3.3 How to present transition function of a c.a ? 26
1.3.4 Minsky’s solution in case n = 2p 27
1.3.5 Minsky’s solution for the general case 29
1.3.6 Synchronization time . 32
1.3.7 The 2 ends-FSSP . 36

1.4 Minimal synchronizing time . 36
1.4.1 Minimal synchronizing time for the FSSP 36
1.4.2 Minimal synchronizing time for the 2e-FSSP 39

1.5 A solution in minimal time T1e(n) = 2n − 2 39
1.6 Minimal time solutions for the 2e-FSSP 40

1.6.1 C.a products . 40
1.6.2 Merging and splitting of states 41
1.6.3 First steps towards a minimal time solution to the 2e-FSSP 41
1.6.4 Combining the two solutions 44
1.6.5 General solutions by symmetry for the 2e-FSSP 45

1.7 The F.S.S.P with general anywhere in the line 46

2 Mazoyer’s minimal time solution for the F.S.S.P 49
2.1 Its general principle . 49
2.2 Position and delay for the new generals 50
2.3 End of the splitting process . 54
2.4 First waves . 56

2.4.1 Moving a state by pelting it with signals 56
2.4.2 A variation . 57

9

10 CONTENTS

2.4.3 Iterated waves . 58
2.4.4 Recursive generation of waves 59

2.5 The bundle of splitting rays . 61
2.6 Rules for setting up the Sk’s . 65

2.6.1 Generation of the pulling signals 65
2.6.2 Rules for the waves . 66
2.6.3 Starting of the Sk’s . 66

2.7 Creating the new lines . 67
2.8 Very small lines . 70
2.9 Collecting the rules for an 8-state solution 73
2.10 Reducing the number of states 75

3 Half-lines : generalities 79
3.1 A basic definition . 79

3.1.1 General structure . 79
3.1.2 Initial state - Input and output 80
3.1.3 Infinite linear c.a’s . 81
3.1.4 Halting the c.a . 81
3.1.5 Recognizing or computing 82
3.1.6 Product of cellular automatas 83
3.1.7 Site dependence . 83
3.1.8 Inputs and states . 84

3.2 Time for recognition . 84
3.2.1 Recognizing time . 85
3.2.2 Real time recognition - Computing time 85
3.2.3 A property of languages accepted in strict real time . . . 87

3.3 Parallel input . 89
3.3.1 Conceiving a parallel input 89
3.3.2 Constructing a parallel c.a from a sequential one 90
3.3.3 Constructing a sequential c.a from a parallel one 92

3.4 Three exemples . 94
3.4.1 A c.a for the language {anbn|n ∈ N∗} 94
3.4.2 A c.a for the language of square words 95
3.4.3 A c.a for the language of palindromes 103
3.4.4 A c.a for language a∗P3 106
3.4.5 No c.a recognizes X∗P3 in strictly real time 109
3.4.6 languages P , P3X

∗ and X∗P3 are accepted by parallel
c.a’s in large real time . 111

3.5 A particular case : treillis automata 117

4 Comparison with Turing machines 121
4.1 Simulation of a Tm by a c.a . 121
4.2 Simulation of a c.a by a Tm . 126
4.3 A cumulator c.a . 132
4.4 A multiplier c.a . 134

4.4.1 The usual multiplication algorithm 135

CONTENTS 11

4.4.2 A c.a producing numbers 135
4.4.3 A multiplier c.a . 138
4.4.4 In bases other than 2 . 138

4.5 Atrubin’s c.a for multiplication 139
4.5.1 The usual multiplication algorithm revisited 139
4.5.2 The multiplier c.a . 141
4.5.3 Number of states . 145
4.5.4 Comparison with Turing machines 146

5 Signals and waves 149
5.1 Definitions . 149

5.1.1 The notion of a signal . 149
5.1.2 Description of a signal . 152
5.1.3 Construction of signals . 153
5.1.4 Geometry of signals . 154
5.1.5 Networks of signals . 156
5.1.6 A curious example . 157
5.1.7 Waves . 161

5.2 Fischer’s c.a . 161
5.2.1 Geometrical solution . 162
5.2.2 Fischer’s c.a . 167
5.2.3 Proof . 170
5.2.4 Speeding up . 170

5.3 Waves generated by an impulse c.a 171
5.3.1 Functioning of an impulse c.a 171
5.3.2 Gap theorem for a wave 174

6 Slowing down 179
6.1 Weak slowing down . 179
6.2 Strong slowing down . 182
6.3 C.a computing a word morphism 186

6.3.1 A first simple model . 188
6.3.2 A more sophisticated model 190
6.3.3 An application . 194

6.4 A.c computing the semi-infinite word defined by a morphism . . 195
6.5 A special category of frequency signals 198
6.6 Slowing down with parallel input 201
6.7 Slowing down by a constant . 201

7 Speeding up 203
7.1 Weak speeding up . 203

7.1.1 For recognizers . 205
7.1.2 For synchronizers . 207

7.2 Strong speeding up for recognizers 208
7.3 Strong speeding up for parallel recognizers 211
7.4 Speeding up synchronizers . 215

12 CONTENTS

7.4.1 Conjugate signals of slopes b
a and − b

b−a , 0 ≤ a ≤ b 215
7.4.2 k-grouping guided by a signal 217
7.4.3 Fast synchronization . 218
7.4.4 Fast synchronization for one end-synchronizers 222

7.5 Speeding up by a constant for synchronizers 224

8 Synchronization times 227
8.1 General considerations . 227

8.1.1 Justification . 227
8.1.2 Which synchronizers ? . 227
8.1.3 Synchronization delays . 228

8.2 Summary of results already established 228
8.2.1 Starting points . 228
8.2.2 Slowing down and speeding up 229
8.2.3 Finite modifications . 230

8.3 Stretching the lines (spatial homothety) 231
8.4 Combining synchronization times 233

8.4.1 Min and max . 234
8.4.2 Sum . 234
8.4.3 Product . 236
8.4.4 Semi-differences . 236

8.5 The families of synchronization delays 240
8.6 Relations between the two families of synchronization delays . . . 242

9 Grouper c.a’s 247
9.1 Paradigmatic examples . 247

9.1.1 First exemple : the horizontal 3-grouper 248
9.1.2 Second exemple : the square diagonal grouper 252

9.2 Definition of grouper c.a’s, first formal approach 258
9.2.1 States of geometrical c.a’s 260
9.2.2 Transition rules . 261
9.2.3 Continuity condition . 262
9.2.4 Computability condition 263
9.2.5 Covering condition . 264
9.2.6 Borders . 267
9.2.7 Inputs . 267
9.2.8 Product R⊗A of a grouper c.a and a c.a 268

9.3 Examples and applications . 269
9.3.1 The horizontal k-grouper 269
9.3.2 The square diagonal grouper 272
9.3.3 The broken sticks diagonal grouper 277
9.3.4 The broken sticks grouper 278

9.4 An afterthought on our definition, second formal approach 280
9.5 Parallel input to set up an initial configuration 281

CONTENTS 13

10 n-dimensional c.a’s with arbitrary neighbourhoods 285
10.1 Description . 286

10.1.1 Definition . 286
10.1.2 Zn versus Nn . 288
10.1.3 Neighbourhoods and dimension 289
10.1.4 Real time . 292

10.2 Cole’s general theorem . 292
10.2.1 Here acceleration is weak 292
10.2.2 Characteristic elements of the accelerated c.a 293
10.2.3 A technical lemma . 294
10.2.4 Necessary conditions . 294
10.2.5 The theorem . 297

10.3 Application to weak speeding up 298
10.3.1 The weak speeding up theorem of Cole 298
10.3.2 Example : n = 1, k = 3, V = H1, W = H1 300
10.3.3 Strong speeding up of recognizers 300
10.3.4 Slowing down . 301

10.4 Application to neighbourhood changes 301
10.4.1 First result : neighbourhood can always be enlarged . . . 301
10.4.2 second result : neighbourhood H1 is universal 301
10.4.3 Third result : neighbourhood J1 is universal 302

10.5 Languages recognized by c.a’s in real time 307
10.5.1 Study of the syntactical equivalences 307
10.5.2 Cole’s criterion in dimension n 309
10.5.3 Converse of this criterion is false 310
10.5.4 Families formed by these languages 311
10.5.5 Closure properties of the Ln families 311
10.5.6 Power of c.a’s increase with their dimension 313
10.5.7 This power increases strictly 314

11 Synchronization of a pair with delay 329
11.1 Introduction of the notion of delay 329

11.1.1 Preliminary comment on couples and pairs 329
11.1.2 The notion of delay . 330
11.1.3 The clock signal . 331
11.1.4 The synchronization problem 332
11.1.5 Linear lower bounds for synchronization time 333

11.2 Transitions for successive divisions by 2 334
11.2.1 Period 0 . 335
11.2.2 Period 1 . 336
11.2.3 Following periods . 337

11.3 A first solution . 338
11.3.1 Locating period p . 338
11.3.2 The shifted signal . 339
11.3.3 Fire . 339
11.3.4 Short lines . 339

14 CONTENTS

11.3.5 Counting the states . 341
11.4 A family of solutions . 345

11.4.1 In period 0 . 345
11.4.2 In period 1 and following periods 347
11.4.3 Short lines . 349
11.4.4 Counting the states . 352
11.4.5 Reducing the synchronization time 354

11.5 Lower bounds for synchronization time 355
11.5.1 Periodicity of states and first result 356
11.5.2 A first proposition and a corollary 359
11.5.3 A second proposition and a consequence 360
11.5.4 Reflection on the notion of optimality 361

12 Synchronizing a line with non uniform delays 363
12.1 Some times which are computable with a pair of cells 366

12.1.1 Time T1(D) = 2D2. 366
12.1.2 Time T2(D) = 2D(D − 1). 366
12.1.3 Time T3(D) = 2D(D − 2). 367
12.1.4 Time T4(D) = 2D2 + D. 368
12.1.5 Time T5(D) = 2D2 + D − 1. 369
12.1.6 Time T6(D) = 2D2 + 2D − 2. 369
12.1.7 Time T7(D) = 2D(D − 2) + D − 1 = 2D2 − 3D − 1. . . . 369
12.1.8 Time T8(D) = 2D(D − 1) − 1. 369

12.2 Some times computable with three automata 369
12.2.1 Time T9(D, d) = 2D(2d − 2) 370
12.2.2 Time T10(D, d) = 2D2 + 2D − d 370

12.3 synchronization of a line of automata with delays in time 2∆2. . 373
12.3.1 Breaking in two a line with delay ∆ > 1. 373
12.3.2 Synchronization of the very small lines, with delay ∆ ≤ 1. 378
12.3.3 Locating the half-lines of delay 1 378
12.3.4 Postponing synchronization of half-lines 379

12.4 Comparison with Jiang’s general result 383

13 Synchronization of a network of finite automata 385
13.1 Definition of a network of finite automata 385
13.2 An automaton to set up a spanning tree 386

13.2.1 Recalling definitions for graphs 386
13.2.2 Rules in the case with no delays 387
13.2.3 The tree . 389
13.2.4 Timing in the ordinary case 389
13.2.5 Rules in the case with delays 390
13.2.6 Timing . 392

13.3 Improving/Completing the automaton 392
13.4 Automata solving graph problems 395
13.5 Making the tree into a line . 395
13.6 Synchronization of a network . 398

CONTENTS 15

13.6.1 The automaton . 398
13.6.2 Time for synchronizing in the ordinary case 399
13.6.3 Time for synchronizing in the case with delays 399

16 CONTENTS

Chapter 1

Finite lines -
Synchronization

Once and for all, we shall write c.a for cellular automaton !

1.1 Introduction to cellular automata

1.1.1 Single automata

A finite automaton is the mathematical model of some machine whose state
may change in time, the set of possible states being finite. Its behaviour is the
succession of its states throughout time. Its characteristical features are the set
of states, Q, and the rules for their changes. The number of states being finite,
there is no question of a continuous course, so the time-scale will be N. Changes
are ruled by the function δ mapping state of automaton a at time t, denoted
< a, t >, on state at time t + 1 :

< a, t + 1 >= δ(< a, t >).

The behaviour of the automaton is studied from an initial state, q0, it is the
sequence :

q0, δ(q0), δ2(q0), . . . , δn(q0), . . .

As just described, isolated and independent from any outer surrounding, our
automaton presents very little interest ; indeed, if k is the number of states in
Q, two out of the k + 1 states from time 0 to time k must be the same :

∃i, j 0 ≤ i < j ≤ k such that < a, i >=< a, j >,

so that a behaves periodically, with period no greater than k. Our automaton
is a mere clock.

17

18 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

1.1.2 Interaction with the outer world

The automaton will gain interest in communicating with the outer world, or
other automata, or both.
To begin with, let us give our automaton an input and an output :

- the set of possible inputs will be called the input alphabet denoted
X, and the state of a at a certain time will depend not only on its
state but also on its input at the preceding time :

< a, t + 1 >= δ(< a, t >, x(t))

where x(t) denotes input at time t

- the set of possible outputs wil be called the output alphabet , noted
Y , the output at a certain time depending only on the state :

y(t) = σ(< a, t >)

σ being the output function

- in these two cases “alphabet” is an appropriate denomination be-
cause inputs/outputs naturally gather into words.

Figure 1 presents the successive states of a piled up above state at time 0, so
the time scale is upwards.

With finite input alphabet and only two outputs, (1 and 0, or else “accepted”
and “rejected”), we have the classical theory of finite automata.

With finite output alphabet, we have the theory of General Sequential Ma-
chines .

1.1. INTRODUCTION TO CELLULAR AUTOMATA 19

1.1.3 Interactive automata

Our automaton may also communicate with a second automaton, or several
others, which we shall assume to be all identical and identical to the first one.
It then becomes the generic element of a colony, hence the name cell given to
each such automaton. In this colony, the state of each cell depends on the state
of some of the others, usually the nearest neighbours . We immediately imagine
the great many varieties of such colonies, called cellular automata (c.a for short),
that we can fancy to study.

If the basic cell has an input and an output, the cellular automaton will be
able to communicate with the outside. This gives us a glimpse on the numerous
situations for which cellular automata may serve as models, from cell clusters
to computer networks . . .

We shall begin our study with the simplest possible c.a : a finite number n
of cells, c1, . . . , cn , assembled in a line, where the state of each cell at time
t + 1 depends on its proper state at time t and the states at time t of its two
left and right neighbours :

< ci, t + 1 > = δ(< ci−1, t >, < ci, t >, < ci+1, t >)

for 1 < i < n. The mapping δ is called the transition function.
For i = 1 or n, no neighbour will be considered a particular state (not in Q)

called “border” state, denoted β, so that the transition function δ always has
three arguments :

< c1, t + 1 > = δ(β, < c1, t >, < c2, t >)

< cn, t + 1 > = δ(< cn−1, t >, < cn, t >, β)

Such a c.a will be called one-dimensional (or linear), finite, of scope1 (or
with first neighbours’ neighbourhood).

And with not more than these simplest of c.a’s shall we meet with a funda-
mental question, the synchronization problem, and get familiar with a number
of notions and techniques. But to begin with

1.1.4 A little vocabulary

Let now A denote some linear c.a of length n with set of states Q. An n-tuple
of states of the cells c1, . . . , cn will be called a configuration (of states) of c.a
A. The set of all possible configurations of A is Qn. Configuration of A at time
t will be denoted < A, t > or < (c1, . . . , cn), t >. Thus

< A, t >= (< c1, t >, . . . , < cn, t >).

The function ∆ which maps a configuration of states of the c.a on the con-
figuration of states at the next time is the global transition function. It is the

20 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

result of the local transition of each of the cells : if < A, t >= (q1, . . . , qn) then

< A, t + 1 > = ∆(< A, t >)
= (δ(β, q1, q2) . . . δ(qi−1, qi, qi+1) . . . δ(qn−1, qn, β)).

A calculus of the c.a is a sequence of configurations starting from an initial con-
figuration, to which the global transition is repeatedly applied, that is a sequence
of configurations of the c.a at times 0,1,2, This sequence is represented by
the space-time diagram (s.t.d for short) , illustrated in Figure 2 (where n = 3).

Note 1.1.1 Concerning this diagram, we insist that the notations : (c, t), for a
site in the diagram, and < c, t > for the state of this site, be clearly distinguished.
The first one is the place reserved in the diagram for information about cell c
at time t, the second one is the state of cell c at time t.

Among the possible states of the cells we shall always find a special and
quite important state, called the quiescent state, denoted e and satisfiying :

δ(e, e, e) = e δ(β, e, e) = δ(e, e, β) = e.

A set of cells in quiescent state will remain quiescent unless some neighbouring
cells are active and interfere, or the outer world intrudes through the inputs.

The c.a will be said to be synchronized in state q at time t if all of the cells
are in this same state q at that time :

∀i 1 ≤ i ≤ n < ci, t >= q.

1.2. THE FIRING SQUAD SYNCHRONIZATION PROBLEM 21

1.2 The firing squad synchronization problem

Abbreviation for this problem is F.S.S.P. The question is :

does there exist a set Q containing, (next to the quiescent state e),
a state G, a state ∗, and a mapping δ : Q3 �−→ Q

such that

each line of automata Ln, whatever its length n, starting in configu-
ration (G, e, . . . , e), will be synchronized at some time T (n) in state
∗, which should not appear anywhere before ?

(See Figure 3).

Function T : N∗ �−→ N∗ will be called the synchronizing time for the lines.
It is the number of transition steps necessary to pass from the initial state of
the line to the ∗ state, as well as the precise time when synchronization occurs
if the starting time was 0.

We can imagine cell 0 is a general (state G), the other cells are soldiers, all
alike, each of them communicating only with his two neighbours, and indeed
ignoring how many they can be. The general himself communicates only with

22 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

the soldier at his right. At time 0, as all soldiers sleep, the general gives an
order. The question is : is it possible to find rules for them to act so that they
finally all fire (state ∗) at the same time ?

For all its wording in the shape of a macabre, but quite evocative joke, this
problem is crucial and synchronization is, as we shall see later on, an essential
tool in the domain of cellular automata.

We insist that this synchronization problem does not relate to some c.a
considered by itself, but to some family of c.a’s made up from the same generic
cell (whose set of states is Q), having the same structure (finite line and scope
1), and the same transition function δ.

To synchronize some particular c.a of the family, for instance line Ln of
length n, is trivial : just consider the following automaton which counts up to
n

Q = {e, G = q1, q2 , . . . , qn = ∗}

δ(?, qi, ?) = qi+1 and δ(qi, e, e) = qi+1 , for i = 1, . . . , n − 1

where ? denotes any state in Q. Synchronization is achieved at time n−1, which
is actually the time needed for the last cell n to be drawn out of quiescent state.

In the actual problem, all lengths of lines are considered, Q and δ have no
knowledge of any length, what we express by saying that the “general” ignores
the number of soldiers in the line.

1.3 Minsky’s solution to the FSSP

It is the simplest one. It will lead us to introduce the notion of a signal, in its
most elementary form, that of a “threadlike” or “threadthin” or “thickness 1”
signal, on quiescent background.

1.3.1 Intuition

Minsky proceeds by a divide-and-conquer strategy : he breaks a line in two
half-lines, which are in turn broken in two and so on, until all lines have length
1 and then synchronization occurs.

How can we break the line in two ? Better intuition is gained when consid-
ering a continuous universe where the geometry of the solution can appear free
from the constraints of a discrete world. This was really the means by which
the idea first came (see Figure 4) : in (x, t) axis-system, a straight line of slope
3 and a straight line of slope 1 reflected by the vertical line of abciss l meet at
point of coordinates (l/2, 3l/2). The half-lines thus determined will be broken
by the same way, indefinitely.

1.3. MINSKY’S SOLUTION TO THE FSSP 23

The initial line of length l is broken into segments of length l/2i at time

3l

2
+

3l

22
+ · · · + 3l

2i
= 3l(1 − 1

2i
).

As i becomes infinite, length of the segments tends to 0 and the limit time is
3l. In Minsky’s solution for the discrete case, fractioning of the line will cease
sooner, so we expect a time less than 3n.

24 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

1.3.2 First and fundamental signals

In the discrete space-time diagrams continuous lines are approximated by dis-
crete signals : one or several states which, by way of the transition, propagate
through the cells along a precisely outlined path. Let us give a few examples :

Example 1 : a state Ar with transition rules

δ(e, e, Ar) = e δ(e, Ar, e) = e δ(Ar, e, e) = Ar

gives way, if the starting configuration is one cell in state Ar amidst qui-
escent cells, to a signal of slope 1, advancing rightwards one cell per time
unit (see on Figure 13). Observe that this is the maximum possible speed.

Symmetrically, a state Al with transition rules

δ(e, e, Al) = Al δ(e, Al, e) = e δ(Al, e, e) = e

gives way to a signal going leftwards at maximal speed 1.

Example 2 : 3 states Br1, Br2, Br3 with rules

δ(e, Br1, e) = Br2 δ(Br1, e, e) = δ(e, e, Br1) = e

δ(e, Br2, e) = Br3 δ(Br2, e, e) = δ(e, e, Br2) = e

δ(Br3, e, e) = Br1 δ(e, Br3, e) = δ(e, e, Br3) = e

give way, if the starting configuration is one cell in state Br1 amidst qui-
escent cells, to a signal of slope 3 in the space-time diagram, advancing at
a rate of one cell every three time units (see on Figure 13).

In Minsky’s c.a we shall also have the symmetrical signal Bl1, Bg2, Bg3 .

Example 3 : reflection of signals on the border

Ar reflects on the right border and becomes Al . Here two reflections are
possible, a slow reflection (figure 5a) with rules :

δ(Ar, e, β) = Ar δ(e, Ar, β) = Al

δ(e, Al, β) = e δ(Al, e, β) = e

and a fast reflection (figure 5b) with, instead of the first two rules, the
only rule :

δ(Ar, e, β) = Al

1.3. MINSKY’S SOLUTION TO THE FSSP 25

In Minsky’s c.a we shall have a symmetrical reflection of Al against the
left border.

Example 4 : Al and Ar when they meet

Ar and Al reflect against one another, rules are

δ(e, Ar, Al) = Al δ(Ar, Al, e) = Ar

δ(e, Al, Ar) = e δ(Al, Ar, e) = e

Looking at Figure 6a we see two possible ways of expressing these rules.
We can say that Al acts as a right border for Ar , and Ar as a left border
for Al . But we could also and more simply say that Ar and Al cross each
other without interfering. The first expression is more suitable in dealing
with Minsky’s c.a, as we shall see.

A natural question is “could we have a fast reflection of these two signals
against one another”, as shown in Figure 6b ? The answer is no, because

26 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

at time t + 1 cell c (resp.c + 1) cannot (scope is of one cell) perceive Al

(resp.Ar) approaching.

This is the reason why, in Minsky’s c.a, we cannot use the fast reflection
on the borders, as we shall see in section 1.3.3.

Example 4 : generation of signals

Let us say : state G (for symmetry reasons we shall henceforth prefer
notation Gr) generates two signals, Ar and (Br1, Br2, Br3). This lacks
precision, so we can add that in this process Gr plays the part of states
Ar and Br1 (Figure 7). Rules are

δ(β, Gr, e) = Br2 δ(Gr, e, e) = Ar.

We already guess that, in Minsky’s c.a, we shall have a symmetrical gen-
eration by a state Gl.

1.3.3 How to present transition function of a c.a ?

Through these four examples, it appears that transitions of a c.a can be de-
scribed in different manners :

- by listing the rules. When they are many, we group them into
tables, one table for each central state , the table associated to state
q describing the binary function (l, q, r) �→ δ(l, q, r), as in Figure 11

1.3. MINSKY’S SOLUTION TO THE FSSP 27

- by portions of space-time diagrams (see preceding figures), where
several rules appear together. These portions can be smaller or
bigger, from four sites showing one rule (Figure 8), to a complete
space-time diagram !

- by sentences, as : Ar is a rightwards speed 1 signal . . .

Exhaustive listing of the rules seems the more precise presentation, but it
is quite unreadable. Portions of space-time diagrams are more pleasant and
suggestive but may often contain repetitions (they certainly must contain no
contradictions !) and we may forget particular cases. Sentences may lack preci-
sion, but are quick and quite evocative. In building c.a’s we shall seldom use the
listing of rules, but this is certainly what is pertinent for a computer program.

1.3.4 Minsky’s solution in case n = 2p

Coming back to our problem, let us begin with the very simple case when n is
a power of 2 : n = 2p (Figure 9).

Signals Br and Al meet on both sides of the middle line at time 3n/2 − 1.
We decide that this meeting produces at the next time, on the same cells, states
Gl and Gr, which leads to transitions

δ(e, Br3, Al) = Gl δ(Br3, Al, e) = Gr

where Gg is a new state, which behaves symmetrically to Gr : it generates
signals Bg and Al, as announced in example 4.

Next we must take care that everything goes on at the middle as if it were
a new border for each half line, and this is clear if signals Ar and Al reflect
against each other as we have seen in example 3 (see Figure 9, times 19, 20).

28 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

Let us now observe in this same Figure, representing case n = 8, the end of
the process, when all lines have length 1 and are in state Gl or Gr. With rules

δ(β, Gl, Gr) = δ(Gl, Gr, Gl) = δ(Gr, Gl, Gr) = δ(Gl, Gr, β) = ∗,

we get synchronization.These rules lead to set for an original line of length 1

δ(β, Gr, β) = ∗,

so that, in case n = 1, the synchronization time is T (1) = 1.

1.3. MINSKY’S SOLUTION TO THE FSSP 29

By the way, as examples of rules that we would probably not bother to
mention in sentences but must add in the listing, are the rules expressing that
signals Br/Bl propagate normally, that is as if the background were quiescent,
even if the background is not quiescent, such as

δ(β, Br2, Ar) = Br3 δ(Bg2, Br2, Ar) = Br3

δ(Br3, e, Ar) = Br1 δ(Br1, e, Ar) = e . . .

Always in Figure 9 recurrence formula for even n appears clearly

T (n) =
3n

2
+ T (

n

2
).

Thus total synchronization time for n = 2p will be

T (2p) =
3
2
(2p) + T (2p−1)

= . . .

=
3
2
(2p + 2p−1 + · · · + 2) + T (1)

= 3.2p − 2 = 3n − 2

For the case n = 2p, we conclude that the 12 states :

e, ∗, Gr, Gl, Ar, Al, Bl1, Bl2, Bl3, Br1, Br2, Br3

are sufficient.

1.3.5 Minsky’s solution for the general case

In the process of repeatedly dividing lines, about one line out of two will have
odd length, so we must see how to break such a line.

At time 3	n/2
 − 1 situation is (Figure 10)

Br1 Al

middle cell right neighbour

For the next time, (which is 3	n/2
), we have two possible choices :

1. consider two half lines of length �n/2� and then set a two-sided general
on the middle cell, which will belong to the two half lines. In this case,
recurrence formula is

T (n) =
⌊

3n

2

⌋
+ T (

⌈n

2

⌉
)

30 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

2. consider two half lines of length 	n/2
 and then set up, one unit of time
later, a state M (middle) with Gl on its left and Gd on its right. This is
done via the following rules :

δ(e, Br1, Al) = GG

δ(e, e, GG) = Gl δ(e, GG, e) = M δ(GG, e, e) = Gr.

In this case, recurrence formula is :

T (n) =
⌊

3n

2

⌋
+ 1 + T (

⌊n

2

⌋
).

We choose the second formula, which will lead to much simpler calculations.
(This choice was made in Figure 10).

At the beginning (Figure 12, time 0) we have a single Gr state. After the
first breaking in two of the line, this Gr has disappeared, replaced by GlGr (or
GlMGr) (Figure 12, time 21) in the middle of the line. In the same way, at each
successive breaking in two of the sublines, each Gl (resp.Gr) will be replaced by
GlGr (or GlMGr) in the middle of the subline it commands (Figure 12, time
32, 37). Moreover sublines, all along the process, all have the same length. It
is then clear that the breaking in two process will stop when the sublines have
length 1, configuration of the line then being a sequence of alternating Gl and
Gr’s, possibly separated by isolated M ’s.

We want this line to give a fire line at next time : as in the case of even
lines and sublines, states Gl / Gr having two states Gr / Gl as left and right
neighbours will give the fire state. But we have a little problem with the M
states, because we don’t want to get the fire state ∗ from the GlMGr triples
produced all along by state GG when odd sublines are broken in two . So we
must complicate things a bit, by adjoining two states G∗

l and G∗
r , that state

GG will produce when it approaches a border or an M state, that is when the
present subline-length is 2, and next subline-length will be 1. More precisely,
we set

δ(β or M, e, GG) = G∗
l δ(GG, e, β or M) = G∗

r .

These states will satisfy

δ(G∗
l , M, Gr) = δ(Gl, M, G∗

r) = δ(G∗
l , M, G∗

r) = ∗.

Finally, all triples formed with states Gl, Gr, G∗
l , G∗

r and M , except GlMGr,
will give the fire.

We shall sum up all the rules in tables, in Figure 11, which will definitely
convince us that such tables, first do not help us understand how the c.a works,
and second will be quite impossible to establish when the number of states
increases.

We can count the states, which are now 16, because we have added GG, M ,
G∗

r and G∗
l .

1.3. MINSKY’S SOLUTION TO THE FSSP 31

32 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

In Figure 12 are represented the particular cases of the smallest lines and
Figure 13 and 14 represent cases n = 14 and n = 16.

1.3.6 Synchronization time

Let us now calculate the time for synchronization. The recurrence formulas for
even and odd n can be written :

T (2p) = 3p + T (p) T (2p + 1) = 3p + 2 + T (p)

that is, for ε = 0 or 1

T (2p + ε) = T (p) + 3p + 2ε.

Let us write n in basis 2

n = 2k + εk−12k−1 + εk−22k−2 + · · · + ε1.2 + ε0 (εk = 1)

where εi = 0 or 1, i = 0, . . . , k − 1 . Using Horner’s classical factorization of
polynomials (see Donald KNUTH [32]) n appears as the result of multiplications
by 2 and additions of 1 (if εi = 1) or 0 :

n = {[. . . ((2.1 + εk−1)2 + εk−2) . . .]2 + ε1}2 + ε0

1.3. MINSKY’S SOLUTION TO THE FSSP 33

34 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

1.3. MINSKY’S SOLUTION TO THE FSSP 35

From this we deduce :
for n1 = 2 + εk−1

T (n1) = T (1) + 3 + 2εk−1

for n2 = 2n1 + εk−2 = 22 + 2εk−1 + εk−2

T (n2) = T (n1) + 3n1 + 2εk−2

. . .
for ni = 2ni−1 + εk−i = 2i + 2i−1εk−1 + · · · + εk−i

T (ni) = T (ni−1) + 3ni−1 + 2εk−i

. . .
for n = nk = 2k + 2k−1εk−1 + · · · + ε0

T (n) = T (nk−1) + 3nk−1 + 2ε0

so

T (n) = T (1) + 3[1 + n1 + . . . + nk−1] + 2[εk−1 + εk−2 + . . . + ε0] =

= 1 + 3[(1 + 2 + · · · + 2k−1) + εk−1(1 + 2 + · · · + 2k−2) + · · · + ε1] + 2(εk−1 + · · · + ε0) =

= 1 + 3[(2k − 1) + εk−1(2k−1 − 1) + · · · + ε1(2 − 1)] + 2(εk−1 + · · · + ε0).

We finally obtain

T (n) = 3n − 2 −
k−1∑
i=0

εi = 3n − 1 −
k∑

i=0

εi = 3n − 1 − |bin(n)|1

where |bin(n)|1 denotes the number of 1’s in the binary decomposition of n. We
may notice that εi = 1 if and only if 	n/2i
 is odd (ε0 = 1 if n is odd) so
|bin(n)|1 − 1 is also the number of times in the process when we have to break
odd line or sub-lines (for k there are no more lines to break). This formula
yields, in case n = 2p (no odd lines)

T (n) = 3n − 2

and in case the binary decomposition of n has only 1’s, that is if n = 2k+1 − 1,

T (n) = 3n − 2 − k = 3n − 1 − log(n + 1).

Let us just mention here results of the same sort of calculations using the first
recurrence formula of 1.3.5 :

T (n) =
⌊

3n

2

⌋
+ T (

⌈n

2

⌉
).

36 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

Writing n as

n = 2k+1 − 0.2k − ηk−12k−1 − ηk−22k−2 − · · · − η1.2 − η0 (ηk = 0)

(where ηk = 0, ηk−1, ηk−2, · · · , η1, η0 are the 1-complements of the binary digits
of n − 1) we obtain

T (n) = T (1) + 3(n − 1) + (ηk−1 + · · · + η1 + η0)
= 3n − 2 + |bin(n − 1)|0

This time is a bit more than the preceding, so we had all the reasons to choose
the second solution.

1.3.7 The 2 ends-FSSP

We shall end by mentioning the 2e-FSSP, which is the same problem except
that there are two generals, one at each end of the line (2e stands for two ends).
And we shall distinguish the synchronizing times for the two problems, from
now on, by denoting them respectively T1e and T2e .

An obvious solution consists in first parting the line in two with 2 fast signals
(of slope 1 and -1) sent respectively by the two generals. If length of the line is
even, n = 2p, at time p cell p knows it is the last of the first half-line of length p,
(while symmetrically cell p + 1 knows it is the first of the other half-line). Two
symmetrical simple Minsky synchronizations of the two half-lines can then be
achieved in time :

T2e(n) = p − 1 + T (p) = p − 1 + 3p − 1 − |bin(p)|1
= 4p − 2 − |bin(p)|1
= 2n − 2 − |bin(n)|1 < 2n − 2

If length of the line is odd, n = 2p+1, at time p cell p+1 knows it is the middle
cell. Two simple Minsky synchronizations of the two overlapping half-lines of
length p + 1 can be achieved in time

T2e(n) = p − 1 + T (p + 1) = p − 1 + 3(p + 1) − 1 − |bin(p + 1)|1
= 4p + 1 − |bin(p + 1)|1
= 2n − 1 − |bin(p + 1)|1 < 2n − 1

As a matter of fact such synchronizing times that have complicated expressions
are not very useful. But we shall come back to the 2e-FSSP problem later, in a
more interesting case.

1.4 Minimal synchronizing time

1.4.1 Minimal synchronizing time for the FSSP

In this section we do not consider the line consisting of a single cell, for which
the following proof is not correct. Thus, denoting Ln the line of length n, our

1.4. MINIMAL SYNCHRONIZING TIME 37

family of c.a’s is (Ln)n≥2. They all start with initial configuration (G, e, . . . , e).
As a consequence of the transition rules for the quiescent state the end cell n
of Ln necessarily remains in quiescent state from time 0 to time n− 2 included
(see Figure 15). At time T1e(n) the whole line, cell n included should be in fire
state, so certainly

T1e(n) > n − 2, or T1e(n) ≥ n − 1.

Before we go further, let us record a little obvious lemma :

Lemma 1.4.1 If two lines have the same states on cells c− 1, c, c + 1 at time
t (where c − 1 / c + 1 may be the left / right border) then they have the same
state on cell c at time t + 1.

Let us now consider, together with Ln, a second longer line Ln′ , n′ > n :
up to time n − 2 included, the nth cells of both lines are likewise in quiescent
state. A simple iteration of the preceding lemma proves that all their cells from
1 to n are in the same states up to time n − 2 included. Then all the sites
(cell c, time t) for

t = (n − 2) + i c ≤ n − i 1 ≤ i ≤ n − 1

are also in the same states. In particular

cell number 1 at time 2n − 3.

Let us then consider some n′ greater than 2n (Figure 15) : according to our
previous result, cell 1 of Ln′ cannot be in fire state at time 2n − 3. Then cell 1
of Ln cannot either ! From this results that

T1e(n) > 2n − 3, that is T1e(n) ≥ 2n − 2.

We shall see later that this is the greatest lower bound for the synchronizing
times of the Ln’s.

For n = 1, T1e(n) is of course greater than 2n − 2 = 0, but 0 is not the
greatest lower bound, which must be at least 1 because state G is not the fire
state !

38 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

1.5. A SOLUTION IN MINIMAL TIME T1E(N) = 2N − 2 39

1.4.2 Minimal synchronizing time for the 2e-FSSP

We shall reason in quite the same way for the 2e-FSSP (Figure 16).
Here the line consisting of one single cell is discarded because at least two

cells are needed. Initial configuration of line Ln, n ≥ 2, is (G, e, . . . , e, G). Let
us first notice that for an odd line n′ = 2p + 1, site (cell p+1,time p-1) has
quiescent state, so :

T2e(2p + 1) ≥ p.

Consider now Ln and Ln′ , n′ > n. At time 0, their cells 1 to n − 1 are in the
same states. Then their sites (n − 1 − t, t) for t ranging from 0 to n− 2 are also
in the same states, particularly cells 1 at time n − 2.

So now let us have n′ = 2n + 1. As T2e(n′) ≥ n (from first result), cell 1 of
Ln′ cannot be in fire state at time n − 2, so cell 1 of Ln cannot either. Thus

T2e(n) ≥ n − 1.

Again, we shall see later that this is the greatest lower bound for the synchro-
nizing times of the 2e − Ln’s.

1.5 A solution in minimal time T1e(n) = 2n − 2

(More precisely max(1, 2n − 2) if we should include line of length 1).
Several solutions have been imagined, with less and less states, each bringing

new technical ideas :

• 1962, E.Goto, a few thousands of states

• 1966, A.Waksman, 16 states

• 1967, R.Balzer, 8 states

• 1987, J.Mazoyer, 6 states.

We choose to give Mazoyer’s solution, which has the least number of states
till now, and is particularly instructive, being obtained through two contrasted
methods, the first a solid logical construction, followed by a craftsman tinkering.
Final result is remarkably simple. We shall leave this for a separate chapter
because explanations are really long.

Should we expect new and better solutions ?
A three-state (necessarily G, ∗ and e) solution cannot be dreamed of, as can

be seen by examining the possible s.t.d’s for lines of length 2 and 3.
A four-state solution can not be hoped for : J.B.Yunès [67] destroyed this

hope, if ever we had it, by systematically exploring possibilities through a back-
tracking program.

Does there exist a five-state solution ? Till now this is an open problem.
However, there are 5-state solutions for particular families of lengthes, for in-
stance for lines of length 2k for some k (J.MAZOYER, unpublished)

40 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

1.6 Minimal time solutions for the 2e-FSSP

The idea which comes naturally is that of developing any one of the minimal time
solutions for the FSSP together with the symmetrical solution, thus obtaining
an s.t.d formed by two halves, each being the s.t.d of a half line with one general,
the symmetry axis working as border line for each (Figure 17).

Only the fitting together of these two halves will be somehow difficult, and
we shall need for this a little skill in pottering with states. Two lemmas will
help us, quite obvious but better clearly and distinctly expressed, and we shall
also need c.a products. So let us prepare our tools.

1.6.1 C.a products

Let A1 and A2 be two linear c.a’s with the same number n of cells, having sets
of states and transition functions :

(Q1, δ1) and (Q2, δ2).

Their product is the c.a having set of states Q1 ×Q2 and as transition function
the product of δ1 and δ2 :

δ[(g1, g2), (q1, q2), (d1, d2)] = (δ1(g1, q1, d1), δ2(g2, q2, d2)).

It simply results from the simultaneous and parallel running of the two c.a’s.
We can draw its s.t.d by placing side by side, or on top of one another, the sites
of the two s.t.d’s. But why not, simpler still, keep the two s.t.d’s side by side
but separate ! Note that we can make the product of more than two c.a’s.

If the resulting c.a’s are often very complex, the product operation in itself
is very easy. It is particularly useful and we shall use it extensively.

1.6. MINIMAL TIME SOLUTIONS FOR THE 2E-FSSP 41

1.6.2 Merging and splitting of states

Technical lemma 1.6.1 (Merging of states) It is possible to make one state
out of two (or more), if there does not exist triples of states (eventually appearing
in the s.t.d) that would thereby merge without their images by δ merging.

For instance if there exist states q and q′ such that δ(q1, q, q
′) = p1 and

δ(q2, q, q
′) = p2 �= p1 we cannot merge q1 and q2. On the contrary such rules as

δ(q1, q, q
′) = p1 and δ(q2, q, q

′) = p1

or

δ(q1, q, q
′) = q1 and δ(q2, q, q

′) = q2

cannot hinder merging q1 and q2.

Technical lemma 1.6.2 (Splitting of states) It is always possible to split a
state in two (or more), we must just define transition for the new triples, in
accordance with the original rules.

For instance, if δ(p, q, q) = r and q is split into q1 and q2, we must define

δ(p, qi, r) = r for i, j = 1, 2.

If δ(p, q, p) = q and we split q into q1 and q2, we must choose δ(p, q1, p) and
δ(p, q2, p) in {q1, q2}.

1.6.3 First steps towards a minimal time solution to the
2e-FSSP

Our starting point is (Q, δ) a solution for the FSSP in minimal time T1e(n) =
2n − 2 (and T1e(1) = 1). We shall denote ∆ the transition function of the
solution we are trying to build.

Splitting e and G in original and newly appeared states

Out of state e of time 0 we create two quiescent states, e, e′ as follows. We
modify δ so that every transition (p, q, r) �→ e with (p, q, r) �= (e, e, e) is replaced
by transition (p, q, r) �→ e′. However, transition (e, e, e) �→ e is not modified
(Figure 16).

We also split state G into state G of time 0 and another state G′ at all
times different from 0. These precautions will spare us changing the initial
configuration in the future.

42 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

Splitting the other states in left and right states

This we do for all states q of Q, except e, G and ∗ :

q gives ql and qr.

(e′ gives el and er).

(G′ gives Gl and Gr).

Transition for the left triples will be δ, and for the right ones the symmetrical
rule

∆(gl, ql, dl) = δ(g, q, d)l ∆(gr, qr, dr) = δ(d, q, g)r

∆(β, ql, dl) = δ(β, q, d)l ∆(gr, qr, β,) = δ(β, , q, g)r

We postpone defining ∆ for mixed triples.

To obtain the s.t.d of (Q, δ) from the left general up to time 	n/2
 − 1, and
the symmetrical s.t.d from the right general, we introduce transition rules

∆(β, G, e) = δ(β, G, e)l ∆(e, G, β) = δ(β, G, e)r

∆(G, e, e) = δ(G, e, e)l ∆(e, e, G) = δ(G, e, e)r

1.6. MINIMAL TIME SOLUTIONS FOR THE 2E-FSSP 43

and

∆(gl, ql, e) = δ(g, q, e)l ∆(e, qr, dr) = δ(d, q, e)r

∆(gl, e, e) = δ(g, e, e)l ∆(e, e, dr) = δ(d, e, e)r

Now what will happen in the middle ?

In case the c.a has odd length n = 2p + 1

clearly, at time p−1 the r-states can play the part that border states played for
line Lp+1. Likewise l-states for the half line [p + 1, n]. This leads us to produce
at time p two states

δ(q, e, β)l, δ(q, e, β)r

that we shall join in a double state, so that we have

∆(ql, e, qr) = (δ(q, e, β)l, δ(q, e, β)r)

and, for the case p = 1, n = 3

∆(G, e, G) = (δ(G, e, β)l, δ(G, e, β)r).

From time p up, the double states on central cell will behave as if they were
carried by two distinct cells. The s.t.d looks quite like the s.t.d of a line of
length p + 1 with its symetrical image in a mirror (Figure 18). The two halves
synchronize at time

T1e(p + 1) = 2(p + 1) − 2 = 2p = n − 1.

In case the c.a has even length n = 2p, with p > 1

let us compare what happens in this line with what happens in the half-line
(with only one general G) of length p : in the latter, the right border has
already influenced state of site (p, p − 1) because

< p, p − 1 >= δ(< p − 1, p − 2 >, e, β)

whereas state < p, p − 1 > of our double line is (Figure 18)

∆(< p − 1, p − 2 >l, e, e) = δ(< p − 1, p − 2 >, e, e)l.

Only at time p − 1 does cell p know it is the last one of the half-line, whereas
if there were a real border it would know this from time 0. For this reason we
shall delay the starting of (Q, δ) by one unit of time (for instance we decide,
as in Figure 19, that G becomes H and H really acts as general), without
delaying the l and r marking ! The r/l-states acting as borders for the left/right
configurations we then obtain exactly the s.t.d of Lp with the symmetrical s.t.d.

44 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

Synchronizations so appear at time

1 + T1e(p) = 1 + 2p − 2 = 2p − 1 = n − 1

Now here we are with two solutions, both incomplete, the first one will fail
on the first ggd or gdd triples in case the line has even length and the second
one on the first (ql, e, qr) triple in case the line has odd length. Of course, the
generals cannot choose at time 0 because they do not know the number of the
soldiers, except in case n = 2, p = 1, for which we decide

∆(β, G,G) = ∆(G, G, β) = ∗.

1.6.4 Combining the two solutions

A simple manner of managing the above problem is to run the two solutions
simultaneously, so as to be sure to have the good one at hand when the middle
cells become active and we can drop the bad one. This is precisely a product
of the two c.a’s. In Figure 20, sites of the even solution are represented above
sites of the odd solution.

1.6. MINIMAL TIME SOLUTIONS FOR THE 2E-FSSP 45

In the present case the product must however be arranged a little and com-
pleted :

- first it appears only at time 1, (and not for state e), so as to preserve
initial configuration

- then, for certain triples transition is not defined (above in the odd
case, below in the even case) : on the figure blanks are to be seen,
that we can declare as some sort of breakdown state, which will be
a permanent state, and an infectious state also (that is, if a triple of
states has a breakdown in it , its image is a breakdown state)

- lastly, we identify all couples in which at least one of the states is
the fire state, and this will be the fire state of our final c.a.

Now the synchronizing time of this c.a is n− 1, the minimal time, for every
n, n = 2 included

T2e(n) = n − 1.

1.6.5 General solutions by symmetry for the 2e-FSSP

If we apply the same construction to any 1e-synchronizer, in time T1e not nec-
essarily minimal , we obtain a 2e-synchronizer in time

T2e(n = 2p + 1) = T1e(p + 1) for p ≥ 1
T2e(n = 2p) = T1e(p) + 1 for p > 1
T2e(2) = 1 (or any value we choose).

46 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

This synchronizing time is roughly the 1e-time of half the lines, which of course
is not necessarily half the time of the lines.

1.7 The F.S.S.P with general anywhere in the
line

Here too we shall make use of any minimal time solution of the FSSP, but this
time on either side of the general. As in the preceding section, we begin by
differentiating the initial quiescent state e then splitting the states and rules in
two, with the same l and r notations.

Initial configuration is (see Figure 21)

n1

(
︷ ︸︸ ︷
e, . . . , e, G, e, , e︸ ︷︷ ︸)

n2

where n1 and n2 are the lengths of the left and right half lines with the general
included, so

n = n1 + n2 − 1

The idea we have is very simple : we shall delay the synchronization processes
of the left and right half lines until respective times 2n2 and 2n1 so they should
end at the same time. How can we organize this ?

State l having two quiescent neighbours sends two signals, L leftwards and R
rightwards, which will reflect on the borders and come back on the headquarter
cell at times 2n2 − 2 and 2n1 − 2 respectively. It also becomes at time 1 a
triple state that we denote GβG. The idea with this triple state is that it will
behave as would two cells separated by some borders. The l-component states
are sleeping generals, the right one will wake up when receiving signal R and
become GrGlGl, the left one will wake up when receiving signal L and will
become Gl. Two independant synchronizing processes take place, in which of
course signals L and R do not interfere, they just juxtapose in product states.
It is now left for us to identify state ∗β∗ with the fire state ∗, and the entire
line is synchronized, at time

2n1 − 2 + 2n2 − 2 = 2n − 2.

1.7. THE F.S.S.P WITH GENERAL ANYWHERE IN THE LINE 47

Let us not forget a few particular cases : if l is at the left end, it will directly
act as Gr, if it is at the right end it will act as Gl, and for the case when we
have just one cell

∆(β, G, β) = ∗.

48 CHAPTER 1. FINITE LINES - SYNCHRONIZATION

synchronizing time is then

T (n) = max(1, 2n − 2).

The solution for the synchronization problem for the family of finite lines
with general anywhere on the line that we have just given has a synchronizing
time which depends only on the length of the line. This time is the best possible
for such a solution, as indeed it is the least possible in case the general is at one
of the two ends. Clearly a lesser synchronizing time can be obtained in other
situations : for instance if the general is at the middle of an odd line of length
n we could synchronize in n − 1 steps. Should we add as second parameter the
position p of the general, existence of a better solution is not excluded.

REFERENCES

Finite automata are extensively studied in a wide range of works,
out of which we shall mention :

[14, EILENBERGSamuel]
[20, GINZBURG Abraham]
[52, STERN Jacques]

and more briefly in

[27, HOPCROFT-ULLMAN].

Sequential machines are studied in

[19, GINSBURG Seymour].

The first minimal time solution for the FSSP is to be found in

[21, GOTO Eiichi].

In fact, this technical report seems quite impossible to find, but the
solution was rewritten by Umeo in

[56, UMEO Hiroshi].

A systematic rehearsal of all possible four state solutions for the
FSSP is presented in

[67, YUNES Jean-Baptiste].

Chapter 2

Mazoyer’s minimal time
solution for the F.S.S.P

As mentioned in chapter 1, it is, among all known minimal time solutions, the
one with the lesser number of states.

Let us remind that the minimal time is T (n) = max(1, 2n − 2).

2.1 Its general principle

Time 2n − 2 is exactly the time neces-
sary for the general, who ignores the length
n of the line, to call the last soldier and get
his response back, call and response being
transmitted at the maximal speed of one cell
per unit of time (Figure 1).
All the solutions (since Goto [21]) proceed
through an induction on the length of the
lines, which successively split in smaller and
smaller lines. They differ by the way this
splitting process is set up.
In Mazoyer’s solution the general generates
(or so it seems) a bundle of rays which will
determine on the response signal a sequence
of new generals, each of them starting to
command the part of the line at his right
(Figure 2). On each sub-line a similar pro-
cess then takes place iteratively.
The process ends by the firing of all the
smallest lines, (and of the small part of the
line which remains on the left).

49

50CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.2 Position and delay for the new generals

Splitting of the line must occur at the right time for all sub-lines to fire at time
2n − 2 (Figure 3).

Let us forget for a while the rigidity of the discrete world, and solve a little
geometric problem illustrated on Figure 4 : how to choose G1 so that F1’s
second coordinate be that of F ? A moment reflexion gives the solution :

2.2. POSITION AND DELAY FOR THE NEW GENERALS 51

E0G1 =
1
3
E0F.

Similarly we must then have

G1G2 =
1
3
G1F

. . .

GiGi+1 =
1
3
GiF

. . . .

Let us now return to our line of cells. Let n1 be the first cell which must
become a general in receiving the response signal. Coordinates of the sites of
interest being indicated on Figure 5, we want to have

4n − 3n1 − 1 = 2n − 2

3n1 = 2n + 1.

n and n1 being integers, this equation may have no solution. We thus decide
that the new general on n1 will wait some delay d1 before commanding, so that
our new equation becomes

4n − 3n1 − 1 + d1 = 2n − 2

3n1 = 2n + 1 + d1.

52CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.2. POSITION AND DELAY FOR THE NEW GENERALS 53

54CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

d1 will be chosen equal to 0, 1 or 2 according to the value of n, so that the
second member should be a multiple of 3. If

n = 3p + i with i = 1, 2 or 3

we get

d1 = i − 1 and n1 = 2p + i. (2.1)

So the first new general appears on site

< n1 = 2p + i , t1 = 2n − 1 − n1 = 4p + i − 1 = n + p − 1) >

and is activated with delay d1 = i − 1 (d1 = 0, 1 or 2). Length of the new line
so created is

n − n1 + 1 = p + 1

and the length of the portion of the original line remaining on the lefthand side
is

n1 − 1 = 2p + i − 1.

At this point we can ensure that, if line of length n − n1 + 1 synchronizes in
minimal time 2(n − n1 + 1) − 2 = 2n − 2n1 , the right part of the initial line
synchronizes at time

(2n − 1 − n1 + d) + (2n − 2n1) = 4n − 3n1 + d − 1 = 2n − 2.

We shall find the next general, G2, by the same calculations where E1 re-
places E0 and n1 − 1 replaces n. So, if

n1 − 1 = 3p1 + i1 with i1 = 1, 2 or 3

we have

n2 = 2p1 + i1 d2 = i1 − 1

where d2 is the delay for activation of G2. The next right portion of line begins
with this new general and ends just before the first new general. And so on.
Until when ?

2.3 End of the splitting process

Until lines are too small to be split, be it new lines or the remaining portion of
line on the left.

Figure 6 shows the timing constraints for the very small lines.

2.3. END OF THE SPLITTING PROCESS 55

If we apply the preceding formulas for n = 2, or n = 3 (see Figure 6), the
right part of the line, which is reduced to the only last cell, will not synchronize
at the right time. On the contrary, for n = 4 everything works out smoothly,
the new general is on cell 3, he acts with no delay, the new line on the righthand
side has length 2, and if it synchronizes as a line of length 2 should, this will be
at the right time for the original line of length 4.

So we decide that we shall split only lines of length

n ≥ 4.

If n = 3p + i, with i = 1, 2 or 3, then condition n ≥ 4 amounts to p ≥ 1. So the
lengthes of the new line and the remaining line are respectively

p + 1 ≥ 2

2p + i − 1 ≥ 2p ≥ 2.

So all the splittings will result in lines of length 2 or 3.
At this point we can guarantee that, if lines of length 2 and 3 do synchronize

in time 2 and 4, then the entire line, except perhaps the last remaining portion
(of length 2 or 3) on the left of the line itself and of all created sublines, will
indeed synchronize in minimal time.

56CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.4 First waves

Before we go ahead, let us make a halt to introduce what we shall call waves, by
giving an example which will help understand the solution. A more systematic
study will be done in chapter 4.

2.4.1 Moving a state by pelting it with signals

Let A be a c.a with, next to the quiescent state, a stable state S, and states A1,
A2, . . . , Aq, which represent left signals of speed 1 (we do not write down the
corresponding rules). These signals are generated on the left of the quiescent
area by some state A1 and rules

A2 A3 . . . A1

A1 e e A2 e e . . . Aq e e

To make s.t.d’s more clear, in figures we just indicate the indexes of the A-
signals. In Figure 7 q = 3, we have 3 A-signals.

Now, contradicting the perfect stability of state S, we suppose that for cer-
tain indexes, for iεI ⊂ {1, . . . , n}, S is pulled to the right by Ai, that is we have
rules

e S that is e S
e S Ai S Ai e e S Ai e

In Figure 7, I = {1, 2}, so A1 and A2 pull S to the right, while A3 leaves it
stable.

Let us observe the evolution of this c.a if it starts in a configuration

e, . . . , e, S, e, . . . , e, A1, e, e,

State S appears to submit to the action of the Ai signals, instead of moving by
its proper strength, as did the first signals encountered in chapter 1. For this
reason, and thinking of how waves in the sea are moved by the wind, we choose
to call it a wave.

It is easy to observe that, if I has p elements (i.e p out of q A-signals pull
S to the right), then, q right moves of the diagonal generate one sequence
A1, A2, . . . , Aq, which in turn determines p right moves of S and q − p stand
stills, so that finally, from the hitting site of A1 to the hitting site of Aq, S goes
p cells further in 2q − p time-steps, so the speed of the wave is p/2q − p.

2.4. FIRST WAVES 57

2.4.2 A variation

We shall now slightly change the rules. First we add rules

Ai

? Ai e

where ? is any state. With this rule the area between the quiescent area and
the S wave is completely filled with the A-signals.

Now the new rules for the right moves for the i indexes in I will be

S
S Ai Ai+1

For the other j indexes AjAj+1 leaves S unmoved, as well as all other AiAj or
AiAi couples (this precision for later use in more complex s.t.d’s).

Lastly, we make our S wave a bit thicker by deciding that state S is stable
except when it has another S at its right. Rules are thus

S e
e S A e S S

Starting from the same configuration, our new s.t.d is the one of Figure 8.

58CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.4.3 Iterated waves

We shall now suppose that at the left of S in the starting configuration we have
state A1, and that we have the same rules of conservation and regeneration of
the A-signals by state S as we had by state e, that is

Ai

? Ai S

and

A2 A3 . . . A1

A1 S S A2 S S . . . Aq S S

Then, at the left of the S wave we have a new wind of A-signals. If we have
another S state at the left in the starting configuration, then these A signals
will act on this state and form a new S wave. This process can be repeated.
Figure 9 gives an illustration

2.4. FIRST WAVES 59

We may observe that the S-waves form a pattern of steps one cell broad and
having various heights. Passing from one wave to the next one, q − p steps out
of q disappear, the successive waves progressively straighten up.

2.4.4 Recursive generation of waves

We shall now add rules which will enable the A signals to generate new waves
when they reach the left border (denoted β), and also A states at the left of
these waves :

S Aq

β ? A1 β S S

For q = 3, starting with initial configuration A3, e, e, . . . , we obtain the rippled
s.t.d of Figure 10.

60CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

Let us now replace state S by state e, and add a new stable state G on the
left border, which will do the generation of the new waves and Aq-states that
the border previously did. For q = 3 we obtain the s.t.d of Figure 11. In this
figure we have coloured the border of the quiescent area like the other waves,
thus pointing out that it may now be considered the first wave.

2.5. THE BUNDLE OF SPLITTING RAYS 61

2.5 The bundle of splitting rays

Figure 2 suggests that the sequence of new generals should be determined on
the response signal (equation x + t = 2n− 1) by rays sent by G. At the present
stage of analysis of the s.t.d to be realized, we are in fact proceeding the other
way round : having determined where the new generals should be positioned

62CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

we shall determine the rays, Σ1, Σ2, . . . , Σk, . . . as the locuses of the sites G1,
G2, . . . , Gk, . . . when the length of the line varies. In fact to sites Gk we shall

prefer sites Dk , their left neighbours. For all lengthes, these are situated on
the anti-diagonal (of slope −1) just under the response signal, the one coming
out of D0, the site under E0 (see Figures 5 and 12).

G1 =< n1, t1 > is obtained from E0 =< n = 3p + i, t > as follows

n1 = 2p + i = n − p t1 = t + p and delay d1 = i − 1

So D1 is obtained from D0 =< n = 3p + i, τ > (where τ = t − 1) by

D1 =< n − (p + 1), τ + (p + 1) > delay for G1 : d = i − 1.

And generally Dk+1 will be obtained from Dk =< nk = 3pk + ik, τk > by

Dk+1 =< nk − (pk + 1), τk + (pk + 1) > delay for Gk+1 : dk+1 = ik − 1.

Let Σ0 be the locus of sites D0, which is the diagonal starting from site
< 2, 0 >. The above formula about Dk+1 allows to successively construct Σ1,
Σ2, . . . , Σk, from the initial Σ0 ray (Figure 13).

From the locus of sites D0, which is the diagonal starting from site < 2, 0 >,
we shall by this way be able to successively construct the locuses of D1, D2, . . . ,
Dk,. . . (Figure 13).These locuses will each have one site on each return diagonal
from sites D0, that is one diagonal out of two.

We go from one site D0 to the next (corresponding to a line having one cell
more) by a move of �d = (1, 1) (Figure 13) :

D0(n + 1) = D0(n) + (1, 1).

According to wether these two sites correspond to the same p or to successive
p’s, we shall pass from one site D1 to the next by the same move �d or by the
move 2�v = (0, 2) :

D1(n + 1) =
{

D1(n) + (1, 1) if n �= 3 (mod 3)
D1(n) + (0, 2) if n = 3 (mod 3)

We immediately see by induction that, for all the Σk, we pass from one site to
the next by one of these two moves : moves 2�v remain moves 2�v (because the
two sites correspond to the same p), and some of the moves �d become moves 2�v,
so that as k increases the Σk tend to straighten up.

2.5. THE BUNDLE OF SPLITTING RAYS 63

64CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.6. RULES FOR SETTING UP THE SK ’S 65

The first site of each Σk+1 comes from the first site of Σk on cell 4 (we don’t
split lines with less than four cells) : it is therefore on cell 2 (see Figure 6), and
its time is even (by induction).

We shall now ”fill” the Σk’s, by adding to each of their sites the site just one
time-step before, thus obtaining the Sk’s of Figure 14. These Sk’s have one site
on each return diagonal, we go from one of their sites to the next by one of the
moves �h = (1, 0) or �v = (0, 1). They look like stairs, the steps of which are one
cell broad and have various heights.

For one �h move out of three, that means one step out of three, p increases
by one unit, so the next signal will straighten up.

We know from preceding section how we can implement successive Sk waves,
with the help of 3 signals, denoted here A, B and C. These states must be
produced on the left of each Sk, and guide the next one. The first wave S0 is
the staircase just under the diagonal, indicated on Figure 14.

We now picture the successive Sk’s, created one after the other by the parallel
pushing of the A, B, C signals, as the crest of waves by the blowing wind. But
instead of doing cheap poetry, we had better have a precise look at how the
waves start, and write all the rules down.

2.6 Rules for setting up the Sk’s

A little warning first : we shall try to explain the reasons for the rules more
than write them in full detail. It may happen that a next rule that we introduce
contradicts a preceding one in some cases. But if the object of the rules is clearly
understood, these ambiguities will be easy to resolve, and anyway a final precise
table with all the rules is given at the end.

We have pointed out that a wave has no proper dynamism, and our first
wave, the border of the quiescent area, locus of D0, is made of quiescent states.
As we have done in the last example of preceding section (Figure 11), we shall
use the quiescent state for all the waves.

2.6.1 Generation of the pulling signals

Here we have 3 signals, that we shall denote A, B and C. We recall the rules
written in preceding section.
A, B, C travel left at maximal speed, as long as they don’t bump on e (the
wave state)

A B C
? �e A ? �e B ? �e C

where ? is any state to be found on the left (A, B, C or e) and � e any state
except e (possibly A, B or C).
They stay alongside of e

A B C
? A e ? B e ? C e

66CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

where ? is any state to be found on the left (we shall see later that it may be
H, A, B, or C).
They produce next state when e steps rightwards

B C A
A e e B e e C e e

2.6.2 Rules for the waves

e keeps steady, except in case there is a step on the right

e �e
? e X ? e e

where X is A, B or C, and �e cannot be e.
e is pulled to the right by AB and BC, but not by CA :

e e
e A B e B C

(in these cases B and C do not travel left).

2.6.3 Starting of the Sk’s

2.7. CREATING THE NEW LINES 67

We know that the first sites of all Σk’s and Sk’s are on cell 2. They will be
produced by state G, which is permanent (when the neighbouring states are not
G’s), with the help of an auxiliary state H. This state H will produce the bud
for the waves, and start the A, B, C signals.

The first Dk+1 comes from the first Dk on cell 4. The latter results from a
right step of the last Dk on cell 3, and the first Dk on cell 3 results from a right
step of the last Dk on cell 2. This is illustrated in Figure 15.

G will produce H when Sk leaves cell 2, H will stay alongside e as long as
Sk stays on cell 3, it will produce state A and state e when Sk leaves cell 3.
Rules for this are

H H A e
G e e G H e H e e G H A

With these rules, all sites Dk on cell 4 send signal A, then sites Dk on cell
5(/6) will send signal B(/C), and more generally the signal under the response
signal of the line carries the information on the length of the line, A if n = 3p+1,
B if n = 3p + 2 or C if n = 3p + 3.

It is interesting to observe that the s.t.d we have now obtained is exactly
the same as the one in Figure 11, except that we have state H instead of the
first A3 state. As far as the generation of our Sk waves is concerned H could
be replaced by C, but other reasons will prevent us from doing this.

2.7 Creating the new lines

We must now organize the outcoming of the new generals and the start of the
new lines.

68CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.7. CREATING THE NEW LINES 69

Let us begin with the first general G1. The main diagonal, from which the
signals start, reaches the right border in state B, C or A (Figure 16a). G1 must
appear on the return diagonal, right of site D1 of S1, which is quiescent. So at
this time we must have all we need for creating the general : and what we shall
use is, at the right of state e under D1, two states in inverse order

AC, BA or CB.

It is the approaching of the border that will reverse generation of the states on
the return diagonal, with rules (Figure 16b)

C A B
A e β B e β C e β

The general will then be created by rules

G G G
e A C e B A e C B

(here again we have a new rule contradicting the drifting left of states A, B and
C).

Now, remains the question of the delay for activation, 0,1 or 2 according to the
value of i = 1,2 or 3 in the length n = 3p + i of the line, or to the state A, B or
C under the response signal, or now to the state on the response signal, C, A
or B. We decide that the general will be activated by a new signal R produced
after signal C, C being in turn produced after A, and A after B. Rules for this
are (Figure 17)

R C A
A C β preceeded if necessary by B A β and C B β

The general will start acting as soon as he has R on his right by rule

H
G R e

Quietness comes back after R :

e e e
C R β C R e R e e.

(This R state cannot be simply replaced by the quiescent state, because of
rule

B
C e β

which would result in the reappearance of signal B, and also because quietness
cannot come back after states A, B and C).

70CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

The new general will act as right border for the remaining left part of the
line.

We now hope that the same rules can make the Sk’s to produce the following
generals. Let us see if it is the case. First of all we must ascertain that the
response signal keeps going straight on, or, to be more accurate, that reflection
on the newly created general continues the initial response signal : well, on the
left of the new general we have a quiescent state, the state of site D1 ; the state
presently at the left of the S1 wave (X on Figures 16, 17) will reflect against G
at the next time with the same rules, except we have G instead of the border
(see below), this occurring on the return diagonal of G1, which coincides with
the initial response signal, as we wish.

C A B
A e G B e G C e G

A C R e
C B G B A G A C G C R G

For cases at the end of the process when the newly created line has length 2
only, we must add rules

A C R
G B β or G G A β or G G C β or G

We don’t care any more for the length of the line, the number of new lines
that have broken off, rank of the next Sk wave. The only important things are
that the response signal is where it should be, that it carries the information
requested, and that the next Sk wave is correctly set up, all matters we hold
now for sure.

2.8 Very small lines

It remains for us to examine how lines of length 2 and 3 behave, be they original
lines, or new lines, or remaining lines. It is in these lines that the fire finally
appears.

2.8. VERY SMALL LINES 71

Figure 18 shows the s.t.d’s that very small initial lines must obey. Corre-
sponding rules are :

∗
β G β

G ∗ ∗
G e β β G G G G β

H G G ∗
H e β G H H H H β G G G

For the remaining lines, the right border must be replaced by G, so we add

G H G
G e G H e G H H G

at last, for a new line of length 2 we must add

G
G R β or G

It is time to mention here that state H, which characterizes the very small
lines, obeys rules different from that of C. This is the reason why H cannot be
replaced by C.

Rules having been established so as to launch the desired induction process
and achieve this properly, and lines in which successively break the initial line
all synchronizing in the desired time, we are now guaranteed that any line
synchronizes in time 2n − 2.

An example of a complete s.t.d is given in Figure 19.

72CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

2.9. COLLECTING THE RULES FOR AN 8-STATE SOLUTION 73

2.9 Collecting the rules for an 8-state solution

Each of the following tables concerns one central state, in the left column the
left state is to be found, and on the upper row the right state.

Some obvious rules, mainly stability of certain states, have not been ex-
plained. But they naturally appear in the tables, which rehearse all cases.

If certain triples of states do not appear, or the place of the resulting state
remains empty, the reason is that they never occur in the s.t.d’s. But in this
first rehearsal we may have listed rules that are in fact never used.

e | e β G A B C
− + − − − − − − −
e | e e e e e e
β | e e e e
G | H G G e e e
H | A H H e e e

|
A | B C C e e e
B | C A A e e e
C | A B B e e e
R | e

G | β G ? H | e β G H A R | e β G
− + − − − − + − − − − − − + − − −
β | ∗ ∗ G G | H G e G | H G G
G | ∗ ∗ G H | G G C | e e e
? | G G G

A | e β G A B C B | e β G A B C
− + − − − − − − − + − − − − − −
e | A A e G e | B G B e
β | A A B C β | B A B C
G | A C C A B C G | B A A A B C
H | A A B C H | B A B C
A | A A B C A | B A B C
B | A C C A B C B | B A B C
C | A A B C C | B A A A B C
R | A A B C R | B A B C

74CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

C | e β G A B C R
− + − − − − − − −
e | C A G C
β | C A B C
G | C R R A B C R
H | C A B C
A | C R R A B C R
B | C A B C
C | C A B C
R | C A B C

It is recommended to work out an example for oneself !
We shall now examine tables closely so as to eliminate all rules that are

never used, the best way for doing this being to write a program making the
s.t.d’s for all wished lengthes :

e | e β G H A B C R G | e β G H A B C R
− + − − − − − − − − − + − − − − − − − −
e | e e e e e e | G G G G
β | β | G ∗ ∗ G
G | H G G e G | ∗ ∗
H | A H H e H | G G G
A | B C C e e A | G G G G
B | C A A e e e B | G G G G
C | A B B e e e C | G G G G
R | e e e R | G G G

H | e β G H A R | e β G
− + − − − − − − + − − −
G | H G e G | H G G
H | G G C | e e e

A | e β G H A B C R B | e β G H A B C R
G A B C

− + − − − − − − − − − + − − − − − − − −
e | A A e G e | B G B e
β | β |
G | C C G |
H | A H |
A | A A B C A | B B
B | C C C B | B A B C
C | A A C | A A A
R | R |

2.10. REDUCING THE NUMBER OF STATES 75

C | e β G H A B C R
− + − − − − − − − −
e | C A G C
β |
G | C R R R
H |
A | C R R R
B | C C
C | C A B C
R |

2.10 Reducing the number of states

Two among the 8 states e, G, F , A, B, C, H and R, the two last ones, appear
very seldom and in special circumstances. Mazoyer has contrived and succeeded
in replacing them by certain of the other states.

How ? First, the starting state of the B-signals is changed for G, so Aee
produces G and Gee produces C. With AAG producing B state B is restored,
and with AGe producing B the second B-signal starts with B.

Then state R is replaced by state B. After B quietness can come back if
Bee produces e, which is now possible since signal C is now generated by Gee.

When such changes are made, a careful and detailed review of all rules
where the states involved appear must then take place, to make sure that no
contradiction has been introduced in the rules, and there is no alteration of the
synchronizing process.

At last state H has been replaced by states C and B depending on the step
parity, and this leads to a complete altering of the process on cells 2 and 3. But
all other cells work as before.

The resulting c.a has 6 states only (β is not a state), and as a consequence
its transition tables are very much reduced :

e | e β G A B C G | e β G A B C
− + − − − − − − − + − − − − − −
e | e e e e e e | G G G
β | β | A ∗ G G
G | C A A e e e G | B ∗ ∗ G G
A | G C C e e A | B e G G
B | e e e e e e B | B G G G G
C | A G G e e e C | A A A G G

76CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

A | e β G A B C B | e β G A B C
− + − − − − − − − + − − − − − −
e | A e G e | B G B e
β | G β |
G | C C G | C G G C B
A | A B A B C A | G B B e
B | G C C G C B | G B A B C
C | A A C | e e e A

C | e β G A B C
− + − − − − − −
e | C G A G C
β |
G | B B B
A | B B B B
B | C G C
C | C B A B C

All this tinkering has not changed the fire line, so the new automaton with
6 states synchronizes in minimal time. Figure 20 shows synchronisation by this
automaton of the same line, of length 23, which was synchronized in Figure 19.

As we have not explained the last changes that have been made in the states
we can not consider that we have given a proof that this automaton is a solution.
But the proof is given in [35], and has moreover been checked by a mechanical
means, the Coq proof assistant, by Jean Duprat [13].

2.10. REDUCING THE NUMBER OF STATES 77

78CHAPTER 2. MAZOYER’S MINIMAL TIME SOLUTION FOR THE F.S.S.P

Chapter 3

Half-lines : generalities

Half-line is an abbreviation for : semi-infinite linear c.a with scope 1.

3.1 A basic definition

3.1.1 General structure

The title makes it clear that we shall deal here with a line of cells with set of
indexes N. The state of a particular cell depends on its proper state and the
states of its two left and right neighbours at the preceding time-step. The set
of states (which is finite, and contains a quiescent state e) will still be denoted
Q, and the transition function δ (with δ(e, e, e) = e).

But this basic structure needs to be completed in many ways so as to suit
various purposes and uses. Each author writing on the subject has adopted the
definition best suitable for his results. The main variations between different
authors concern inputs and outputs. We shall try here to give a definition
general enough, natural enough, and simple enough to serve as a reference.

The following simple observations will give some support to our choices.
Our c.a’s are abstract machines meant to be models for real machines or

organisms. The advantage of machines is that they work by themselves, and as
for organisms, they live by themselves. This does not prevent outside interfer-
ence, but it should be limited. As a matter of fact, should some outside actor
interfere at all places and all times, we could no more speak of autonomy. Such
an actor is then left to interfere at some determined time, and that will be at
starting time, or at some determined place, where it can introduce data that will
contribute to the running of the machine while being processed by it. Result,
or results, will samely be collected at some determined place, progressively as
work proceeds, or at the end, when the machine stops. It will not be forbidden
to open the machine, to put it in a determined state, to let it work and open
it again to see what has happened, but this seems more how a repairer would
act than a user. We rather imagine the user introducing information at some
precise input place, and collecting results at some precise output place. Finally,

79

80 CHAPTER 3. HALF-LINES : GENERALITIES

let us observe that the starting state of the machine should always be the same
(otherwise the result would be unpredictable and undetermined), while the out-
side actor introduces data which vary (otherwise we could make them, once and
for all, part of the machine). We shall keep these remarks in mind in the sequel.

3.1.2 Initial state - Input and output

Initial state is the configuration of states of the cells at time 0, the starting
time. It seems that it could be any infinite sequence of states in Q, but in fact
we shall restrict ourselves to “impulse” starting states, of the form

(q0, e, e,)

where only cell 0 is non-quiescent (Figure 1).

There is only one input cell, cell 0, which is therefore different from the
others, which are all alike. So we must consider two transition functions,
δ : Q3 �−→ Q for ordinary cells,

< c, t + 1 >= δ(< c − 1, t >, < c, t >, < c + 1, t >)

and δ0 : X × Q2 �−→ Q for cell 0, where X is the input alphabet

< 0, t + 1 >= δ0(x(t), < 0, t >,< 1, t >).

Input goes on without interruption while the c.a works, but nothing forbids
introducing in X a void symbol, which will allow all interruptions wished for,

3.1. A BASIC DEFINITION 81

as well as the ending of inputs. It may occur that an end marker ∗ is also added
to X. We naturally suppose that

δ0(−, e, e) = e, where − is the void symbol.

Cell 0 is also the only one with an output. Output will depend only on state
of cell 0 (Moore’s choice). The output alphabet will be denoted Y , it is finite,
and the output function will be σ : Q �−→ Y . As for inputs, Y may contain a
void symbol and an end marker.

We have chosen here the simplest possible output function. Let us give just
one example of some other possibility : an output function taking the input
into account

σ : X × Q �−→ Y

(Mealy’s choice) would allow a very simple machine (with very few states) to
handle numerous inputs with as numerous outputs produced.

Input and output as we have just described them are called sequential, es-
pecially if other ways for introducing and retrieving data are considered. In
our opinion they are the only genuine input and output, so unless otherwise
mentioned, input and output will always be sequential. The so-called parallel
input is dealt with in section 3.3.

3.1.3 Infinite linear c.a’s

Definition is the same except that set of indexes for the cells is Z, inputs enter
and outputs exit through central cell 0, which is also the one where impulse
initial states are set.

We shall not study such infinite c.a’s, the reason being that they can be
reduced to semi-infinite c.a’s if we “fold” them in two by the middle : it is
very easy to understand what this means, so explanations are not really needed,
let us only mention that states on cell 0 will still be states of Q, while cells
i, for positive i, will have double states, i.e states of cells i and −i together,
with matching transition function. The set of states of the semi-infinite c.a is
Q ∪ Q × Q.

Let us mention another way of folding the infinite c.a’s : by bringing cells
−1,−2, . . . , −i, . . . over cells −0,−1, . . . , i − 1, Then the set of states of
the semi-infinite c.a is only Q × Q.

3.1.4 Halting the c.a

Two ways for halting can be thought of :

- halting when input ceases : δ0 is not defined if input is the end
marker or inputs have come to an end. If n is the length of the word
of inputs, halting time is then necessarily n (Figure 2).

82 CHAPTER 3. HALF-LINES : GENERALITIES

- halting with a halting state : among the states of Q some are
halting states. They constitute subset Qa, on which δ0 is not defined.
Halting time has then no relation with the length of the input word
(Figure 2).

Halting is thus determined on cell 0. We may observe that the next cells go
on working for a while, stopping one after the other, cell c at time th + c if th
is the halting time of cell 0.

3.1.5 Recognizing or computing

As all models of abstract machines, c.a’s can be used in two ways, as acceptors
or as computers.

If a c.a works as a computer, the result for an input word of X∗ is the word
of Y ∗ given by the output function σ of the sequence of states of cell 0, up to
the halting time.

If a c.a works as acceptor, it accepts words of X∗ which as input words lead
to a halting considered accepting :

- if the c.a halts because input ends, it will accept or reject de-
pending on value of the output function (so on the state of cell 0
when it halts) ; most of the time this function has the two values 1
(accepting) and 0 (rejecting).

- if the c.a halts with a halting state, subset Qa divides in two parts,
accepting states and rejecting states. It can occur that some input
words, which therefore will not be accepted, never lead to a halting
state.

3.1. A BASIC DEFINITION 83

3.1.6 Product of cellular automatas

As in the case of finite lines, it is the c.a obtained by running simultaneously two
(or more) c.a’s having of course the same structure, here that of a semi-infinite
line.

If the two c.a’s have state sets and transition functions :

(Q, q0, δ0, δ) and (P, p0, γ0, γ)

the product has state set Q × P , (whose elements we shall denote q × p rather
than (q, p)), impulse initial state q0 × p0, and transition function

∆(ql × pl, q × p, qr × pr) = δ(ql, q, qr) × γ(pl, p, pr)

for ordinary cells. We don’t give transition function ∆0 for cell 0, as different
ways for combining inputs may be thought of. Halting, and output, are defined
depending on the task to be achieved.

Product, which is theoretically a most simple operation, will be our most
important means for constructing, with already existing c.a’s, new ones, having,
inevitably, a great number of states : |Q| × |P |. A product of c.a’s was already
implemented in chapter 1.

3.1.7 Site dependence

Figure 3 shows the s.t.d of a semi-infinite c.a, where we have indicated, for any
site whatever, sites from which its state results and sites that its state influences,
which we can call its dependance triangle and its influence triangle.

84 CHAPTER 3. HALF-LINES : GENERALITIES

3.1.8 Inputs and states

Input xt at time t contributes to determine the state of cell 0 at time t + 1
and as a consequence influences the later run of the c.a (Figure 3). It has been
digested by the c.a, and has disappeared as such.

In fact, more complicated treatments may be set up : it will be possible for
inputs to travel inside the c.a, so as to be used at some other place than cell 0,
or at some later time. Indeed the c.a states may be complex elements, formed
of several components, one or more of these being stored inputs, which the c.a
may then pass from one cell to the next. This storing and transporting of the
inputs is then part of the c.a’s work. Numerous examples of this will be met in
the sequel.

3.2 Time for recognition

In this section we are concerned only with c.a’s used as recognizers and with
the languages that they recognize.

3.2. TIME FOR RECOGNITION 85

3.2.1 Recognizing time

The time T (w) needed by the c.a (or any other machine) for recognizing some
word w depends on this particular word. Let us first observe that if some word
w is accepted before it is entirely read, then all extensions of a prefix of this
word are also accepted ; the shortest prefix u of w such that all its extensions
are accepted appears then to be more interesting a word thanw itself, and this
word cannot be accepted before it is completely read.

To be very precise, let us observe that any language (set of words) accepted
by a c.a or another machine may be partitioned as

L = L1X
∗ ∪ L2

where L2 is the subset of words of L which have at least one extension not in L
and L1 is the set of words of L that are minimal among those having all their
extensions in L. (Proper) extensions of words of L1 thus do not belong to L1,
and every word in L2 has at least one (proper) extension that does not belong
to L2 : so, in order to be accepted, words of L1 and words of L2 must be entirely
read. So from now on we shall consider only such languages, whose words all
have an extension not in the language. As for language L, a word belongs to it
either if it is in L2 or if one of its prefixes is in L1.

Now then, to read to its end a word u = x1 . . . xn of length n, n units of
time are necessary. Time for recognition T (u), which is the number of transition
steps from initial state to accepting, will therefore be no less than n, the length
of u

T (u) ≥ |u|.

If we should acknowledge that the input word is ended one more unit of time
would be needed.

Length of a word is only one aspect of its particular value, but an essential
one : it is customary, justified, and anyway we cannot do otherwise in a general
study, to admit that recognition time depends only on the length of input words.
(It probably is the most frequent case and when it isn’t results should indeed
be precisely reexamined). Recognition time will consequently be expressed as
T (n) and so we admit that

T (n) ≥ n.

3.2.2 Real time recognition - Computing time

Acceptance of a word takes place as c.a halts, and we have distinguished two
halting modes.

Let us examine first the case when halting occurs as input ends, and accep-
tance is by an accepting value of the output function :

Accepting time is n = |u| (Figure 4). At time n, value of the output
function tells if, in case input comes to an end, word x0 . . . xn−1 will

86 CHAPTER 3. HALF-LINES : GENERALITIES

be accepted, without our knowing yet if it is continued by xn
So all along we know if the part of word already read belongs to the
language or not : that is interactive recognition, and strict real time

T (n) = n

Let us now examine the case when accepting is by an accepting halting state :

can recognition time be n ? no, because halting state would occur
before we know what input comes after the n-th letter, xn−1 and we
have excluded this situation (Figure 5).

The quickest imaginable recognition will be if entering of the end
marker, or first empty input, systematically brings a halting state,
and then

T (n) = n + 1

in this case we shall speak of large real time.

Of course recognition can also occur later.

3.2. TIME FOR RECOGNITION 87

The first definition is strictly more demanding.

For computers, we shall likewise consider only computations involving the
whole input word, so computing time cannot be less then the length of the input
word. Generally, the result has not necessarily the same length as the input, so
halting will be by halting state, and minimum time will then be n + 1.

3.2.3 A property of languages accepted in strict real time

Let L be some language on alphabet X. Syntactic equivalence mod L for words
of X∗, which we shall denote ≡L, is defined by

w ≡L w′ if and only if ∀u ∈ X∗ wu ∈ L ⇔ w′u ∈ L.

In the same way we define, for any integer k, syntactic equivalence ≡L
k by

w ≡L
k w′ if and only if ∀u ∈ X∗ such that |u| ≤ k wu ∈ L ⇔ w′u ∈ L.

So two words are separated by ≡L
k if and only if there exists a word u of length

not more than k which extends the one in a word of L and the other in a word
not in L.

Let now L be a language accepted in strict real time by some c.a with h states
(h ≥ 2). If two words w and w′ are in two different classes of ≡L

k , indeed their
exists some word u, of length not more than k, such that wu is accepted and

88 CHAPTER 3. HALF-LINES : GENERALITIES

w′u is not (or vice versa) : state immediately following input of wu is accepting,
while state immediately following input of w′u is rejecting. But these two states
depend only on word u and states of cells 0, 1, . . . , |u| after entering of words
w and w′ respectively (Figure 6) ; length of u being no greater than k, these
cells are part of the k + 1 cells 0, 1, . . . , k. c.a having h states, the number of
possible configurations of states for these k + 1 cells is at most hk+1, so index
of ≡L

k cannot exceed hk+1.

Criterion 3.2.1 (Cole) if a language L is accepted by some c.a having h states
in strict real time, then for all k ≥ 0, index of equivalence ≡L

k is no greater than
hk+1.

If for some language L we find a number k such that ≡L
k has more than hk+1

classes, this language can not be accepted by any c.a with h states in strictly
real time.

We obtain a similar result for large real time

Criterion 3.2.2 if a language L is accepted by some c.a having h states in real
time (large), then for all k ≥ 0, index of equivalence ≡L

k is no greater than hk+2.

3.3. PARALLEL INPUT 89

Proof is the same.

The criterion as presented here is the particular case, in dimension 1, of
Cole’s criterion in dimension n, to be demonstrated in chapter 10. In section
10.5.3 we also prove that the converse of this criterion is false.

3.3 Parallel input

Even if our opinion is that such an input as we shall describe next is not a model
for a real input, it may be interesting to consider as a theoretical input, or as
a possible stage, all the more because many works take as a starting point a
parallel situation.

3.3.1 Conceiving a parallel input

See Figure 7 : initial state is quiescent (it is out of question to mix everything
up, initial states and inputs) and input word is u = x0x1 . . . xn−1. State of a
cell at time 1 depends on

- input for this cell at time 0, (but not on input of neighbouring
cells)

- states of cell itself and left and right neighbours at time 0, which
all are the quiescent state (or the border for cell 0)

Transition function of time 0 is δ0 : Q3 ×X �−→ Q (it is on purpose that here 0
is an exponent and the inputs are written on the right, to mark the distinction
from the sequential case)

< 0, 1 >= δ0(β, e, e, x0)

< i, 1 >= δ0(e, e, e, xi).

As for the sequential case, X must contain a void symbol which serves as ”no
input”.

Let us name ei the states δ0(β or e, e, e, xi). Naturally δ0(β or e, e, e,−) = e.
The subset

E = {ei = δ0(e, e, e, x) | x ∈ X}

of Q is in one-to-one correspondance with the input alphabet ; at time 1 we have
a pseudo-initial state which is an image of the input word. Authors which use
parallel input just declare without making fuss that input alphabet is a subset
of Q and place the input word as initial state, which comes to starting from our
time 1 situation.

90 CHAPTER 3. HALF-LINES : GENERALITIES

This parallel input is sometimes used by some authors to set up a particular
configuration, and very often used for recognition purposes. As the input word
is entirely known from time 1, the accepting times have good chance of being
better. Nevertheless, accepting is by cell 0, and cell 0 cannot know of the last
letter xn−1 before time n and know that the input word is ended before time
n+1, and this knowledge is essential if all the extensions of word x1 . . . xn should
not be accepted. So accepting time is T (n) ≥ n+1, at best it is large real time.

In what precedes we have claimed that initial state should be quiescent. But
we shall be a little less rigorous and admit that it can be what we have called an
impulse initial state, mixing up of initial state and input being in this particular
case extremely limited.

The question we now put is : can we use a parallel recognition to build a
real sequential recognition ? The reverse question seems to have no very great
interest, we deal with it first.

3.3.2 Constructing a parallel c.a from a sequential one

Let A be the sequential c.a we have at first, Q, q0, δ and δ0 its set of states,
initial state and transition functions.

3.3. PARALLEL INPUT 91

The parallel c.a A′, after having absorbed the input word, will simply send
its letters left, (at the right of the cells in Figure 8, that is as right components

of the new states), so they will arrive against cell 0 one after the other ; then
they can be used as were the inputs of A.

States and principal rules of A′ will be :

Q′ = Q ∪ Q × X, initial state q0.

For the new states formed of a state of A and an input letter we choose here
notation : q × x rather than (q, x).
At time 0

δ′
0(β, q0, e, x) = δ0(x, q0, e)

δ′
0(q0, e, e, x or ∗) = δ(q0, e, e) × x or ∗

δ′(e, e, e, x or ∗) = e × x or ∗

then inputs travel left to cell 2

δ′(l × z, q × y, r × x) = δ(l, q, r) × x

92 CHAPTER 3. HALF-LINES : GENERALITIES

δ′(l, q × y, r × x) = δ(l, q, r) × x

and then at last

δ′(β, q, r × x) = δ0(x, q, r)

It is easy to check that A′ works correctly, even if input word has only one letter :
x0∗. From time n + 1 on, its s.t.d is the same as s.t.d of A. If A accepts by
accepting halting state, the recognition time will be the same. But if A accepts
in strictly real time, A′ will not do quite as well : if we decide that any state for
which output function is accepting produces an accepting state when it detects
the end marker (or no more input), we shall obtain what we have called the
large real time.

3.3.3 Constructing a sequential c.a from a parallel one

Clearly the new automaton A′ will have the parallel c.a A as essential feature,
but the latter cannot start working until it is presented the input word neatly
settled on cells 0, 1, Furthermore, the only way to start this working on
the row of cells will be by the fire state of a synchronization .

To prepare all this we shall need new states with several components, states
or inputs, which we shall evocate with images rather than define with scientific
precision, hoping to make clear how they work without a tedious listing of
numerous rules.

The new states will have a low part (Figure 9) reserved for the penetrating
of the inputs : an input finding this space empty settles in the right corner ;
if the right corner is already occupied, it settles in the left corner, then travels
from this left corner to the left corner of the next cell on the right until it finds
a free right corner. At time 2n−1(/2n+1) all the inputs (as well as end marker
∗) are in the right corners of cells 1 to n, available for the parallel automaton.

Now we need the synchronous starter that our new c.a must set of his own,
internally. The way to do it will be a F.S.S.P synchronization process (see chap-
ter 1) started by the entering of the end marker in cell 0. This synchronization
must extend on a number of cells equaling length of the input, and then bump
on a border, or rather some state acting as a border : any state having in its
right corner nothing yet or the end marker will do. synchronization will develop
independently from the travelling of the inputs, in the upper part of the sites,
in minimal time (that is number of transition steps)

S(n) = max(1, 2n − 2).

3.3. PARALLEL INPUT 93

94 CHAPTER 3. HALF-LINES : GENERALITIES

In this upper part we shall keep a little place where the q0 impulse of A′ will
stay waiting. Fire state appears at time n + 1 + 2n − 2 = 3n − 1, at time 3 if
n = 1 . Now we decide that this state (for the end marker its proximity will
suffice) wakes all the sleeping elements up, q0 and the inputs, so that from time
3n up we have exactly the s.t.d of A from time 1. The recognizing time of A′ is
therefore

T ′(n) = T (n) + 3n − 1

T ′(1) = T (1) + 3 if n = 1.

The number of states added to Q is in proportion with the square of the
number of input letters, and with the number of states for synchronization,
that makes a lot !

For a conclusion, let us point out that a parallel c.a, which disposes of the
whole information since time 0, has a serious advantage over a sequential one.

3.4 Three exemples

The three are examples of recognition in strict real time, second and third
examples are from Cole [6].

3.4.1 A c.a for the language {anbn|n ∈ N∗}

Cells will behave as little files containing at most three letters a or b. States
will thus be triples, possibly partly empty (on the right). When a cell is full,
its right element is pushed out towards the neighbouring cell, and when it isn’t,
it attracts an element from the right cell. Inputs stuff in cell 0 before they are
pushed on the right, except if input is a b and cell 0 contains a’s : then this b
disappears along with an a. Besides, (in order to exclude words containing ba),
as soon as a b is entered it is memorized in a corner of cell 0 and entering an
a makes accepting definitetively impossible : for example it can change this b
in a permanent x. Output function has value 1 if cell 0 is empty, so with no
memorized x (Figure 10). In the meanwhile states have become quadruples.

3.4. THREE EXEMPLES 95

3.4.2 A c.a for the language of square words

Alphabet X is of course supposed to have at least 2 letters.

We find the geometric idea in Figure 11 : from two points of axis Oy having
ordinates y et y′ = y + p two lines are issued, one is broken by reflections and
has slopes 1,-1 et 3, the other has slope 1, they intersect on the line of slope
-1 issued from point of ordinate 2p. These two lines will be the trajectories for
the inputs, which will bring them to meet at the point where we shall compare
them.

Comparisons of inputs xi and xi+p for i = 0, . . . p − 1 will be collected on
the third line arriving at point of ordinate 2p on Oy (Figure 12).

96 CHAPTER 3. HALF-LINES : GENERALITIES

3.4. THREE EXEMPLES 97

98 CHAPTER 3. HALF-LINES : GENERALITIES

On next Figure 13 we have added the sites of the s.t.d, to help understand
how the states are built : these will approximately reproduce the sites, the way
inputs travel through being indicated by the places they occupy. These places,
indicated in Figure 14, are 5, named G, M , D, A, C, they may be occupied by
input letters or a null symbol 0. In addition we shall have a place, named V ,
for the result, 0 or 1, of cumulated comparisons. Each of these 6 places may
be empty (symbol ∅ in next formula, no symbol in Figure 16), which is not the
same as containing symbol 0 or value 0. So states will be sextuples belonging
to

[X ∪ {0} ∪ {∅}]5 × {0, 1, ∅}.

We don’t intend to give the rules : we only give, in Figure 15, some essential
elements of the rules, from which all the rules could be deduced, and with which
we can build the s.t.d, represented in Figure 16. It must be observed that all
elements of any site in the s.t.d depend exclusively on information contained in
the three sites of the time preceeding.

3.4. THREE EXEMPLES 99

100 CHAPTER 3. HALF-LINES : GENERALITIES

3.4. THREE EXEMPLES 101

Input word being x0 · · ·xl−1, with l = 2p or 2p + 1, xiεX, it remains for us
to prove that output at time l, when xl−1 has entered, has value 1 if and only if

l = 2p and x0 = xp · · ·xn = xp+n · · ·xp−1 = x2p−1.

Better than do tedious though elementary calculations of the equations of the
different signals involved, we shall simply observe Figure 16 : the 1-values are
generated on signal 0. The only thing they can do is travel left at speed one
(see Figure 15) if they don’t extinguish. We first observe that they arrive in
cell 1 at odd times, so output can be 1 only at even times, that is if l is even.
Next, they will not extinguish and finally output will be 1 at time l = 2p if and
only if in the sites where they find themselves and in the site at the left, the
coloured places contain the same input letters, and this resumes precisely in the
condition we desired.

We now give the calculations for a reader which should not be satisfied :

- equation for signal 0 :

t = 3i +

0 (position G or A)
1 (position M)
2 (position D)

- first trajectory of xn : t = i + n + 1

- meeting with signal 0

signal 0 in position M, n is even: <
n

2
,
3n + 2

2
>

signal 0 in position D, n is odd : <
n − 1

2
,
3n + 1

2
>

- second trajectory of xn : t = −i + 2n + 1

- arrival on cell 0 at time : t = 2n + 1

- third trajectory of xn, at speed 1/3 :

t = 2n + 1 + 3i +

0 (G or A)
1 (M)
2 (D)

- here we note that output cannot be 1 if place M is empty while
place C is occupied ; now then, place M can be occupied only by
the trajectories of the xn at times 2n + 1 + 1 = 2n + 2, which are
even. So outputs can have value 1 only at even times, after some
word x0 · · ·xl−1 of even length l = 2p has entered. To test this word
we must compare

x0 x1 · · · xn · · · xp−1

102 CHAPTER 3. HALF-LINES : GENERALITIES

respectively with

xp xp+1 · · · xp+n · · · x2p−1.

Comparisons xn xp+n take place when first trajectory of xp+n and
third trajectory of xn meet:

for n and p of same evenness : <
p − n − 2

2
,
3p + n

2
>

for n and p of different evennesses : <
p − n − 1

2
,
3p + n + 1

2
> .

Let us point out here that the language of square words is not a context-free
language, except indeed if alphabet has only one single letter.

3.4. THREE EXEMPLES 103

3.4.3 A c.a for the language of palindromes

Alphabet X is of course supposed to have at least 2 letters.
Figure which gives the idea is geometrical Figure 17 : from two points of

the Oy axis having ordinates y and y′ such that (y + y′)/2 = p are issued two
lines of slope 1, the first one being broken by a reflection on the line from O of
slope 3. They meet on the line of slope −1 from point of ordinate 2p. As in
the preceeding example, these two lines will be the pathes that the inputs will
follow, the third line being the locus for the comparisons between them. The
automaton is sketched in Figure 18.

104 CHAPTER 3. HALF-LINES : GENERALITIES

3.4. THREE EXEMPLES 105

106 CHAPTER 3. HALF-LINES : GENERALITIES

Here states belong to [X ∪{0}∪{∅}]4 ×{0, 1, ∅}, they are a bit simpler than
Cole’s ; all information about the rules (which are not explicitly written as
such) is given in Figure 19, so we could write them, and we can build the s.t.d
(see Figure 20).

Computation of the trajectories and their meeting points are simpler here
than in preceeding example, they are of no particular interest.

We shall now give several variants of this c.a.

First variant for accepting only even length palindromes we shall simply gen-
erate 1-values on signal 0 only when this signal is in place A.

If on the contrary we want only the odd length palindromes, we shall
generate the 1-values on signal 0 only when it is in place B.

Second variant we now want to recognize P2X
∗, the set of words beginning

with a palindrome, of length 2 at least (otherwise we should have all non
empty words !)

We need only suppress the first 1-value, this to eliminate palindromes x0,
and decide that in cell 0 any state having output 1 produces a permanent
2-value one unit of time later, output being 1 if we have a 2-value.

Third variant if we want to recognize P3X
∗, the set of words beginning with

a palindrome of length at least 3, we do the same after having suppressed
the first two 1-values.

3.4.4 A c.a for language a∗P3

In the next section we shall prove that language X∗P3 is not recognizable by
any c.a in strict real time. Therefore it is not uninteresting to show that a∗P3,
where a is any letter of X, is recognizable in strict real time.

To begin with, note that

a∗P = a∗ ∪ {amuan | uεP, m ≥ n}
a∗P2 = a∗ ∪ {amxan | x �= a, m ≥ n ≥ 1} ∪ {amuan | uεP2, m ≥ n}
a∗P3 = a∗ ∪ {amxan, amxxan | x �= a, m ≥ n ≥ 1} ∪ {amuan | uεP3, m ≥ n}

where u is a word starting and ending with a letter different from a.
We shall now build a c.a recognizing

{amuan | uεP, m ≥ n},

where u starts and ends with a letter different from a.
In this construction, P may be replaced by P2 or P3. We may then conclude

that the 3 preceding languages are recognizable in strict real time by using a
general and easy result given in section 10.5.5, which states in particular, that
the family L1 of languages recognized in strict real time by one-dimensional
c.a’s is closed under union.

3.4. THREE EXEMPLES 107

108 CHAPTER 3. HALF-LINES : GENERALITIES

3.4. THREE EXEMPLES 109

The idea for this c.a is that input of the first letter not an a starts the c.a
recognizing P . At each time-step, this c.a tells if the beginning of word u is
in P or not, and after the last letter not an a has entered, if u itself is in P .
To the states of this c.a we add a little memory, which will be updated after
every input of a letter other than a, to value 1 if state is accepting, to value 0
otherwise (see Figure 21).

But we must further check that the n last a letters are less than the m first
a letters. For this, at time 0 a signal of slope 3 is emitted, (t = 3c + 0, 1, 2) and
input of the first letter not an a starts a signal of slope 1 (t=m+1+c). These
signals meet on cells

c = m

2 if m is even

c = 	m
2
, 	m

2
 + 1 if m is odd

Cell 	m/2
, where signals first meet, is marked, (differently if m is odd or even).
Now, a speed 1-signal starting from cell 0 at time t and reflected on cell c comes
back on cell 0 at time t+2c (fast reflection) or t+2c+1 (slow reflection). If the
last letter of word u sends such a signal S, at the same time as the first of the n
last a letters is input , its reflection R, fast in case m is even, slow in case m is
odd, comes back on cell 0 m time-steps later. For word w to be accepted, last
letter a must be input before R has come back. So we decide that the return of
R on cell 0 resets the memory to value 0.

In fact all letters not a will send S signals, because it is not known if such a
letter is not the last one. But if new signals S stop signals R, then at the end
only the last signal R comes back on cell 0.

Finally, w is accepted if memory has value 1 when its last letter is input . In
Figure 21, the first w word is accepted, and the second one is rejected because
u is not a palindrome.

3.4.5 No c.a recognizes X∗P3 in strictly real time

Proof is Cole’s [6].
We shall simply show that certain ≡X∗P3

k equivalences have too many classes.
Having this aim in view we shall build, with some elaborate work we must say,
an interesting lot of words of X∗P3, numerous and not equivalent.

Alphabet X has at least two letters, otherwise talking of palindromes would
be nonsense. Let these two letters be denoted 0 and 1, the other letters if there
be some we shall not use.

Let m be a positive integer which we intend to choose later on, and V be
the set of words on {0,1} of the form

v = 1x11x2 1xm100 where ∀i xi = 0 or 1

There are 2m of these words, and they all have the same length k = 2m + 3.
The number of subsets of V is 22m

, exponential in m : now then, for each of

110 CHAPTER 3. HALF-LINES : GENERALITIES

these subsets

P = {v1, v2, , vp}

we shall build a word wP belonging to X∗P3. First of all we order the vi’s,
arbitrarily, (for example in lexicographical order), so as to have a sequence

(v1, v2, , vp).

Then we progressively define the new sequence of words

w0 = the empty word (if P is empty we stop here)

w1 = ṽ1

w2 = ṽ2w̃1w1 = ṽ2v1ṽ1

.

wi+1 = ṽi+1w̃iwi

.

wp = ṽpw̃p−1wp−1.

Each word wi is a suffix of the next ; and each wi is formed, as is easy to see by
induction, of an odd number of length k-words which are alternatively ṽi’s and
vj ’s of P. The wP corresponding to subset P will be the last word we obtain,
wp. Now we shall observe two things concerning the words wP :

- observation 1 : if vi ∈ P then wP vi ∈ X∗P3.

Indeed, wP vi has the suffix wivi which is a palindrome of length at
least 3.

- observation 2 : if v ∈ V − P then wP v /∈ X∗P3.

If wP is the empty word, wP v = v. This word ends with palindrome
00, of length 2, but, ending with 100, by no palindrome of length 3,
and by no longer palindrome because the only 00 it contains is the
one at the end.

If wP is not empty,

wP v = ṽi1vi2 ṽi3vi4 . . . ṽirv.

Because of the arrangement of the 00’s, if wP v ends with a palin-
drome, ṽ must be one of the ṽi’s, and this precisely is impossible as
we have taken v in V − P .

3.4. THREE EXEMPLES 111

From the two preceeding observations results that two different subsets P
and P ′ produce words that belong to different ≡X∗P3

k classes : indeed, P �= P ′

implies the existence of some v of P not belonging to P ′, (or vice versa), and
then wP v ∈ X∗P3 and wP ′v /∈ X∗P3. So equivalence ≡X∗P3

k has at least 22m

classes. But, for any h ≥ 2, if we choose m such that

2m > (2m + 4)log2h,

we have

22m

> h2m+4 = hk+1

which, according to Cole’s criterion, excludes that X∗P3 could ever be recog-
nized by some c.a in strictly real time.

We could prove in exactly the same way that language X∗P2 cannot be
recognized by any c.a in strictly real time, but we must have at least three
letters, 0, 1 and 2 in alphabet X. For V we take words of the form

x1x2 xm2 where xi ∈ {0, 1}

and we end by choosing m such that

22m

> hk+1 = hm+2.

3.4.6 languages P , P3X
∗ and X∗P3 are accepted by parallel

c.a’s in large real time

Idea of the c.a is due to Smith [51], and we suggest it in Figure 22 : each input
letter is sent at maximal speed 1 in the two directions, inputs are compared
when they meet, if they differ a permanent # is cast on the cell. If a # sign is
found when signals 0 and ∗ meet, the input word is not a palindrome.

There is no managing without signal ∗ to determine the middle of the word
where a possible # must be detected, so strictly real time is impossible with
this method : this confirms what we had announced in general for parallel
recognizing.

Figure 23a gives indications on states and rules, and an example is given in
Figure 23b.

With minor changes we can construct c.a’s recognizing X∗P2 and P2X
∗. For

X∗P2, at least one of the comparison lines of the right half of the input word
must arrive without a # on the ∗ signal, thus indicating that some suffix of
the word is a palindrome : this event will transform ∗ in a protected ©∗ which
later crosses signal 0 without damage. We must not forget to discard length
1-palindromes by deciding that two ∗ in places A and B produce a # on places
M and D of cell at the left one unit of time later. Figure 24 illustrates these
little changes, for the sake of clearness the sites are not completely filled.

112 CHAPTER 3. HALF-LINES : GENERALITIES

3.4. THREE EXEMPLES 113

114 CHAPTER 3. HALF-LINES : GENERALITIES

3.4. THREE EXEMPLES 115

For P2X
∗, at least one of the comparison lines of the left half of the input

word must be free of #, thus indicating that some prefix of the word is a
palindrome : it suffices to decide that crossing such a line restores × in ∗. To

116 CHAPTER 3. HALF-LINES : GENERALITIES

discard length 1-palindromes, we decide that initial state produces 2 units of
time later two # symbols on places G and M of cell 0.

If we want c.a’s for X∗P3 and P3X
∗ : we must discard not only length 1,

but also length 2-palindromes. for X∗P3 we can decide that the two # symbols
of time 1 produce 4 such symbols in the cell left, and one will be pushed in place
D in next left cell one unit of time later ! For P3X

∗ we decide that initial state
produces 2 units of time later three # symbols in cell 0 and one in place G of
cell 1. Figure 25 gives an example for P3X

∗, here again sites are not completely
filled.

To finish with, let us point out that languages X∗P2 and X∗P3, as they
can be recognized by parallel c.a’s in large real time, can as a consequence be
recognized by sequential c.a’s in time

n + 1 + 3n − 1 = 4n.

Let us resume results in a small table :

language | recognizing | parallel |
| time | recognizing |
| T(n) | time |

− − −−−− | − −−−−−−−−−− | − −−−−−−−−−− |
P | n | n + 1 |
P3X

∗ | n | n + 1 |
X∗P3 | 4n | n + 1 |
− − −−−− − −−−−−−−−−−− − −−−−−−−−−−− −

3.5. A PARTICULAR CASE : TREILLIS AUTOMATA 117

3.5 A particular case : treillis automata

We find it more convenient in this section to consider a bi-infinite c.a, that is
to say a line.

Two ways for presenting treillis automata seem possible. The first one gives
them a different structure, reducing the neighbourhood of a cell to its two left

118 CHAPTER 3. HALF-LINES : GENERALITIES

and right neighbours, the cell itself being excluded.
The second, which is in fact exactly equivalent, presents them simply as a

particular case, where the transition functions do not depend on the central
state :

δ0(x, l, q, r) = γ0(l, x, r)

δ(l, q, r) = γ(l, r).

The dependance and influence triangles, represented in Figure 26, are full of
holes, like fretwork or lace. Two completely independant s.t.d’s appear, the one
of even (c + t) sites, (working with the odd time inputs),

(0, 0) (2i, 2t) (2i + 1, 2t + 1) i ∈ Z, t ∈ N

and the one of odd sites (working with the even time inputs)

(1, 0) (2i − 1, 2t) (2i, 2t + 1) i ∈ Z, t ∈ N.

If, for the second diagram, we take time 1 for starting time, we have the same
notations as with the first diagram, and they are more pleasant because more
symmetrical.

Let us examine such an s.t.d (Figure 27) : inputs are x1, x3, If we
concentrate on the even times, we shall write

< c, t + 2 >= γ(< c − 1, t + 1 >, < c + 1, t + 1 >) =

= γ (γ(< c − 2, t >, < c, t >), γ(< c, t >, < c + 2, t >))

< 0, t + 2 >= γ0(< c − 1, t + 1 >, xt+1, < c + 1, t + 1 >) =

= γ (γ(< c − 2, t >, < c, t >), xt+1, γ(< c, t >, < c + 2, t >))

which leads us back to an ordinary c.a having transitions

∆(l, q, r) = γ(γ(l, q), γ(q, r))

∆0(x, l, q, r) = γ0(γ(l, q), x, γ(q, r)).

So a treillis automaton has this curious property that its working splits in two
processes, altogether completely independant and playing alternately on the
same cells. These processes in turn are c.a processes with an intermediate step.
This way of working seems more intriguing than useful. We do not see why
we should study them as such. They seem to us simply c.a’s with diminished
possibilities.

3.5. A PARTICULAR CASE : TREILLIS AUTOMATA 119

120 CHAPTER 3. HALF-LINES : GENERALITIES

Chapter 4

Comparison with Turing
machines

We shall use abbreviation Tm for Turing machine.
Conclusions of this chapter are perfectly well known : c.a’s do all that Tm’s do,
and nothing more, (so they also do the same as computers), but faster. With
a little common sense and intuition we would readily admit it, and each of us
can get convinced by sketching proofs for oneself. If we attempt here to write
them out, it is only for the sake of completeness. Results are fundamental, but
never shall we transform a Tm to obtain a c.a, nor a c.a to obtain a Tm ! We
shall moreover notice that the most natural constructions give inadequate and
ridiculous machines, this because the parallel functioning of c.a’s is profoundly
different from the linear one of Tm’s.

We have in mind machines which recognize and machines which compute.
We shall give proofs for recognizers and point out how to complete them for
computers.

4.1 Simulation of a Tm by a c.a

First thing, we must choose our model of c.a and our model of Tm. For the
c.a we do not hesitate, it will be the one described in chapter 3, our reference.
As for the Tm, we know that all models are equivalent and we can transform
the one in the other, so we shall choose the machine nearest possible to our c.a,
with :

- a semi-infinite tape, with squares 0, 1, 2, . . .

- halting by halting state on square 0, that is at the beginning of the
tape

- a blank character b, which is not the same as the empty symbol
(denoted by −, or simply nothing in figures) initially covering the

121

122 CHAPTER 4. COMPARISON WITH TURING MACHINES

tape, which the head can not write, and so is to be found where the
head never yet reached

- for computers, an end marker *.

The idea

is very natural : at each instant of time the c.a will reproduce the tape of the
Tm, with the state of the head added on the cell corresponding to the square
where the head is (Figure 1).

Its set of states will thus be

X ∪ Q × X

where X is the tape alphabet, including the empty symbol, and Q is the set of
states of the Tm.

At each time step the c.a will reproduce one move of the Tm. This is possible
because for the Tm, when we know what concerns three consecutive squares,
we can deduce all that concerns the middle one at next step. Only the cells
neighbouring the only cell having a state of the form (q, x) may change state.
We shall not write the transitions which are obvious translations of the Tm
rules.

The problem of the inputs :

The c.a must recognize (or not), a word (x0, . . . , xn−1) deposited at time 0 on
the tape of the Tm (Figure 2). This word must be given as input for the c.a, and
it appears clearly that a parallel input suits us better for the present purpose.
So we shall construct a parallel input c.a, that we know from chapter 3 how to
transform afterwards in a sequential c.a.

4.1. SIMULATION OF A TM BY A C.A 123

Initial state of the c.a will be (Figure 2)

(q0,−).

We must add transition rules :

δ0(β, (q0,−), e, input x) = (q0, x)

δ0((q0,−), e, e, x) = x

δ0(e, e, e, x) = x.

Halting and halting time

The halting states (resp. accepting/rejecting halting states) of the c.a will be
all the products of a halting state (accepting state, rejecting state) of the Tm
with a letter of alphabet X (Figure 3).

124 CHAPTER 4. COMPARISON WITH TURING MACHINES

As our Tm halts with head on square 0, if the time it needs for recognizing
input words of length n is T (n), the recognizing time Tap for the parallel c.a
will be

Tap(n) = 1 + T (n).

We can consider it is the same.
But if we transform the parallel c.a in a real sequential c.a, the recognizing

time Tas will be (see 3.3.3)

Tas(n) = Tap(n) + 3n − 1 = T (n) + 3n.

Now we have admitted once and for all, and for any machine (see 3.2.2) that

T (n) ≥ n

so

Tas(n) ≤ 4T (n).

The recognizing time of the c.a does not exceed a linear function of the recog-
nizing time of the Tm.

For a computing Tm

We shall include end marker * in the alphabet, the total length of the input
word, end marker included will be n

(x0, x1, . . . , xn−2, ∗)
and length of the resulting word will be m

(y0, y1, . . . , ym−2, ∗).
We shall complete our c.a by the following rules (see Figure 4)

4.1. SIMULATION OF A TM BY A C.A 125

126 CHAPTER 4. COMPARISON WITH TURING MACHINES

- state qa against the border becomes q̄a

- state q̄a goes rightwards at maximal speed, changing yi into ȳi and
∗ into ∗̄
- state q̄a extinguishes when it meets the empty symbol (not the
blank symbol)

- barred letters travel left at maximal speed and are output without
a bar when they arrive in cell 0.

This output episode takes time 2m. Let us show that

2m ≤ T (n) + 2.

Indeed, to pass over k squares and come back to square 0, the head takes at
least time 2(k − 1). Now, in case m ≥ n the head has certainly gone over m
squares. And in case m < n, as we have agreed in 3.2.2 that input word must
be entirely read, the head has passed over more than m squares. We could also
require, as a variant, that after the end marker only blanks or empty symbols
should be found, which would imply that the head has passed over the input
word to erase it.
So in the end we have

Tas(n) ≤ 4T (n) + T (n) + 2 ≈ 5T (n)

the same sort of result for computing machines as we had for recognizers.

Conclusion

For every Tm, there exists a c.a halting (or not) for the same input words,
recognizing the same words or computing the same results, in time not exceeding
a linear function of the time taken by the Tm.

Let us note that this c.a uses exactly the same space as the Tm, indeed the
number of active cells equals the number of tape squares used.

4.2 Simulation of a c.a by a Tm

Here Q and X will be the set of states and input alphabet of the c.a, and δ its
transition function, and we decide that the c.a halts by halting state.

For things to be as clear as possible, we impose that state e of the c.a cannot
appear on a cell which is not already in this state, in the same way as the empty
state of the Tm could not be written by the head. If necessary a second ”new”
quiescent state may be introduced : now the quiescent area of the c.a will be
perfectly distinct, it will limit the active area on its right, and with time can
only shrink (Figure 5).

4.2. SIMULATION OF A C.A BY A TM 127

Let us mention now that the machine we shall construct will have rules with
no move of the head (0-move), and let us explain why, because it seems quite
stupid at first, to change state two times and write a symbol that will imediately
be rewritten on. The point is that these symbols written in the 0-moves by our
machine will be the end states of the lines of active cells of the c.a, so we do not
want the 0 moves to disappear into next move. If we absolutely want a usual
Tm, we can replace the 0-moves by two moves, right and back, or left and back,
which increases the number of steps by one at each time.

The idea is :

the Tm having on its tape a configuration of the c.a with the head at one end,
will compute the next configuration in one passage forward or backward, by
memorizing at each step two states and reading the third state. So the head
will shuttle between the left border and the quiescent area.

Computations forward will shift the configuration rightwards, while compu-
tations backwards will shift it back leftwards, so the configurations of odd times
will start in square 1, and those of even times in square 0 (see Figure 7).

Tape symbols will thus be the states of the c.a, and states will be the couples
of states of the c.a, with in addition indication of a direction by a letter D or
G, as follows :

D(l, q) or G(q, r) where l, q, r ∈ Q.

So main rules of the Tm will be, for each transition δ(l, q, r) = q′ of the c.a
when it goes rightwards

∆[D(l, q), r] = [D(q, r), q′,+1]

128 CHAPTER 4. COMPARISON WITH TURING MACHINES

when it goes leftwards

∆[G(q, r), g] = [G(l, q), q′,−1]

these rules will be what we shall call the ordinary rules.

Inputs

Once started, a Tm receives nothing from the outer. So our Tm must have the
entire input word at its disposal from the beginning and therefore we want our
c.a to be a parallel c.a. But there is no easier task than turn a c.a to a parallel
c.a (3.3.2), which has exactly the same halting time. So this is the first thing
we do. In Figure 6 we show the s.t.d of the parallel c.a. Its set of states is
Q′ = Q ∪ Q × X, but the states of its initial configuration are q0 and e (of Q).

The Tm starts with the input word

(x0, x1, . . . , xn−1)

on the tape (see Figure 7, where n = 3). It will have the initial state q0 of the
c.a in the starting state that we denote E(q0). It is clear that this configuration
for the Tm is equivalent to the initial configuration of the parallel c.a (Figure
6). The rules for the Tm to compute the time 1-configuration of the (parallel)
c.a will be analogous to the ordinary rightwards rules, except that the letters
xi must play the part not even of mere states , but of state e with input xi, or
state q0 with input x0.

4.2. SIMULATION OF A C.A BY A TM 129

130 CHAPTER 4. COMPARISON WITH TURING MACHINES

Rules will be :

∆[E(q0), x0] = [D(β, (q0, x0)) , β,+1]

∆[D(β, (q0, x0), x1] = [D((q0, x0), x1) , δ0(β, q0, e, x0),+1]

= [D((q0, x0), x1) , < 0, 1 >,+1]

∆[D((q0, x0), x1), x2] = [D(x1, x2) , δ0(q0, e, e, x1),+1]

= [D(x1, x2) , < 1, 1 >,+1]

∆[D(x1, x2), x3] = [D(x2, x3) , δ0(e, e, e, x2),+1]

= [D(x2, x3) , < 2, 1 >,+1]

In all these formulas, x0, x1, x2, x3 are any letters of the input alphabet X of
the c.a’s (original one and parallel one).

A rehearsal of tape symbols and states is not interesting because this con-
struction will never be used.

To achieve describing the Tm, we lack only the rules to turn, that is the rules
to pass to the computation of next c.a configuration. They are the following :

∆[D(l, e), e] = [G(e, e), δ(l, e, e), 0]

∆[G(q, r), β] = [G(β, δ(β, q, r)), δ(β, q, r), 0]

∆[G(β, q′), r] = [D(β, q′), β,+1].

Mind that the ordinary rules are not valid in these cases, that is

- for the first one, when q = r = e

- for the second one, when l = β or q = β

We can now punctiliously verify that the Tm computes the successive lines of
the s.t.d, a line being ended at each 0-move of the head. Computation of one
line takes time equal to its length, plus one for the odd time lines (Figure 7).

If we split the 0-moves in two moves we must add one time-step for each
line.

4.2. SIMULATION OF A C.A BY A TM 131

Halting and time

The halting states of our Tm will be the G states where some halting state of
the c.a has penetrated.

If halting occurs at an even time T , the Tm will stop when computation of
line T ends (with head in state G(β, qa) on square 0), and if halting occurs at
an odd time, the Tm will stop when computation of line T + 1 ends,(with head
in state G(β, qa) on square 0).

By examining Figure 8, and without being too fussy, we can easily bound
the halting time (with 0-moves replaced by 2 moves) :

nT (n) + 2T (n) < T ′(n) < nT (n) + 2T (n) +
T (n)2

2
.

The upper bound may be reached. So we can state that recognizing time is at
best of order O(nT (n)), and at worst of order O(T 2(n)).

For a computer c.a

with a little skill we shall build a Tm which computes : outputs will be computed
with state of cell 0, that is

- when state G reads β it memorizes the output (if any) of odd time

- at next time-step, when G has β as first component, state D, while
keeping preceding output, memorizes output of next (even) time.

132 CHAPTER 4. COMPARISON WITH TURING MACHINES

State D will then deposit the one and the other successively in a corner of the
first square containing no ouput yet. When the end marker has been deposited,
it may be necessary to continue towards the unwritten part of the tape so as to
erase all the states while coming back, leaving only the outputs on the tape.

Time is then increased by a number between n + T (n) and 2(n + T (n)),
which does not change preceding orders.

Conclusion

is that any c.a may be simulated by a Tm, which halts on the same input words,
recognizes the same words, or computes the same results. This Tm takes a time
of order greater, but uses the same space. C.a’s are machines equivalent to
Turing machines and computers.

So c.a’s (respectively c.a’s which always halt) recognize recursively enumer-
able (recursive) sets and compute the partial recursive (recursive) functions.We
particularly mention that languages recognized by c.a’s in real time are recur-
sive languages.

A c.a that mimics a Tm goes about as fast, but a Tm that tries to imitate a c.a
is a real snail, taking a time multiplied by input length, or square of the time.

When we say that a c.a mimicking a Tm goes as fast, we could as well say
it is as slow, and it is even slower if it is a real sequential c.a. Is this not
surprising ? No, as a matter of fact the reason is precisely that it imitates the
Tm, with moreover inadequate means if it is sequential. Working in its own
way, it certainly will do much better, as we shall see with some examples.

4.3 A cumulator c.a

Here we shall see how some c.a can perform a task that we cannot imagine a
Turing machine could achieve. We shall show

how a c.a can be made to cumulate its results

Let us indeed imagine that some c.a produces at the successive time-steps the
representations in some basis (2, or 10, or any other d) of integer numbers, with
units in cell 0, and the digits for di in cell i (as the states or as components of
the states in some place P). In Figure 9 we place the cells in reverse order so
as to recognize easily the usual elementary way of adding).

4.3. A CUMULATOR C.A 133

To the states we add two components, in two places denoted S and C (for
sum and carry) : there we shall find represented, splitted in two parts, the sum
and the carry, the cumulated sum of all the numbers produced and represented
at the preceding time-steps. The rules are excessively simple (see Figure 10) :

- place C of cell 0 is of course empty at any time

- in place P , at time t (1 ≤ t ≤ N), over several cells, appear the
digits of a new number

- in place S of cell c we have at time t + 1 the sum mod d of places
P , S and C of cell c at time t

- in place C of cell c + 1 we have at time t + 1 the sum divided by d
of places P , S and C of cell c

Observe that, whatever the basis d, the carry is always 0 or 1, at any time
and on any cell. Indeed

- place C is empty in cell 0 at any time t and in all cells at time 0
(and 1)

- by induction, for cell c at time t :

P + S + C ≤ (d − 1) + (d − 1) + 1 = 2d − 1

whence (P + S + C)div d ≤ 1, so carry in cell c + 1 at time t + 1 is
at most 1

Figure 10 shows two examples, in basis 2 and 10 respectively, where only 3
numbers are produced and added.

Time for complete computation of the sum

If the last number is produced at time N , we have the sum splitted in two at
time N + 1. But we want the sum completely computed, so when will this be
achieved ?

- at time N + 1 all places P are empty, with no carry in cell 0

- so at time N + 2 carry in cell 1 is 0, that is to say that the 2 first
carries are now 0, and by induction, at time N + i the i first carries
are 0. Thus, if the total sum of the numbers produced is strictly
less than dν , at time N + ν all the carries being 0, this total sum is
exactly the number represented in the S places

134 CHAPTER 4. COMPARISON WITH TURING MACHINES

So we are assured to have the result computed in the c.a in time at most N +ν,
where N is the number of integers produced, and dν is an upper bound for their
sum.

Time for outputting the sum

Using the sum computed at time N +n will probably need some synchronization
at time N + n or later.

Outputting it may also be started by a synchronization at time N + n, and
so achieved at time N + 2n. But a much simpler mean is possible : a marker,
entered in cell 0 just after the last number is produced, can travel from cell to
cell at speed 1 to send one digit of the result after the other rightwards at speed
1, they will be output from cell 0 at times N + 1, N + 3, . . . , N + 2n − 1, so
before time N + 2n.

4.4 A multiplier c.a

We should like now to have some example of a c.a producing numbers to be
added by such a cumulator process as we have just described.

The multiplication algorithm will give us this opportunity. We shall use
binary representations to begin with, this makes work simpler, but we shall
generalize afterwards.

Let then

a =
m∑

i=0

ai2i b =
n∑

j=0

bj2j

4.4. A MULTIPLIER C.A 135

be two integers, the product of which we want to compute. We have

2m+n ≤ p = a.b < 2m+n+2

so the last digit of p is pm+n or pm+n+1.

4.4.1 The usual multiplication algorithm

Let us examine it carefully with an example (Figure 11). On the successive lines
we find : ab0, ab1, . . . on line i abi which is a if bi = 1 and 0 if bi = 0

(let us underline that this would not be exactly the case in a basis other than
2, because computation of each line may then use carries). More precisely, in
square (i, j) of the product area we have the product aj−ibi.

4.4.2 A c.a producing numbers

We shall sketch the working of a c.a producing at each time-step, not exactly
the numbers represented at lines 0 to n, but numbers whose sum will be the
same, obtained by getting column 1 one step down, column 2 two steps down,
and so on, column m+n, m+n steps down. Indeed, if the terms in the columns

136 CHAPTER 4. COMPARISON WITH TURING MACHINES

are the same, the sum is the same, and the numbers appearing at each time-step
do not matter much.

The states will have 5 components, in places L1, L2, M1, M2 and H1 (see
Figure 12).

Input word will be

am, . . . , a0, ∗, b0, . . . , bn.

Rules are such that

- inputs before ∗ enter in place L1, they push contents of L1 (if any)
in place L2

- contents of L2 enter at next time-step place L1 of next cell, and
push any contents of this place in L2. This results in inputs ai

progressively setting in place L1 of cells ci

- when marker ∗ enters, it definitely closes entering in place L1.
Inputs now enter in M2, ∗ to begin with

- contents of place M2 travel right at speed 1

- with ∗ in place M2, contents of L1 go in M2

- contents of M2 go in H, and contents of H go in place M2 of next
cell. This results in inputs ai traveling right at speed 1/2

The terms to be added are the products of inputs in M1 and M2. In basis 2,
these products are 0’s or 1’s. In a basis d ≥ 3, these products are not necessarily
less than d, as were the digits of the numbers cumulated by ouir c.a of preceding
section. But this will make no problem really.

4.4. A MULTIPLIER C.A 137

138 CHAPTER 4. COMPARISON WITH TURING MACHINES

4.4.3 A multiplier c.a

If we now tinker preceding c.a by adding places S and C, and make them work
on the products of places M1 and M2, it will compute the product of our two
numbers.

In what time ? The last product to be produced is am × bn. It is produced
on the site which is on cell m + n, and on the trajectory of input bn (< c, m +
n + 3 + c >), so at time 2m + 2n + 3.

As the product of our two numbers is strictly less than 2m+n+2, applying the
general result concerning the cumulator, we are sure to have the result computed
at time at most (2m + 2n + 3) + (m + n + 2) = 3m + 3n + 5.

But here we can be more precise. Indeed our terms aibj (see Figure 12)
appear in sites situated in a lozenge delimited by sites

- < 0, (m + 3) + 0 > where a0b0 first appears

- < m, (m + 3) + m > where amb0 appears

- < n, (m + 3) + 2n > where a0bn appears

- < n + m, (m + 3) + 2n + m > where amb0 appears

In each site of this lozenge we shall have at most 3 terms to add, the contents
of S and C, and some aibj . In all the sites which are above we have no carry
and no aibj , so the value of S is definite. We could have a last carry in site
< n+m+1, (m+3)+2n+m+1 >, so it is only at time (m+3)+2n+m+1+1 =
2m + 2n + 5 that we are sure to have the last digit of the product computed.

If we want to output the product, it is quite easy here : we just decide
that the contents of place S travel leftwards at speed 1 if there is no ai and bj

appearing both. Thus the last digit of the product arrives in cell 0 at time

2m + 2n + 5 + m + n + 1 = 3m + 3n + 6

which is a time linear in the length of the input, about 3 times this length.

4.4.4 In bases other than 2

The usual multiplication algorithm in basis 2 has given us the idea and the
features for a multiplier c.a. Now we forget it, because of the carries in the
computation of lines. We just examine how the preceding multiplier c.a works
if we feed it with an input word corresponding to representations in some basis
d.

In each site of the lozenge where the aibj appear, we have to add aibj which
is at most (d− 1)2, the content of place S which is at most d− 1 and the carry
in place C. Let us show by induction that the carry is always at most d − 1.
Indeed, in all sites on the left side of the lozenge, there is no carry. And if the
carry is less than d− 1 in a site < c, t >, then the carry in site < c+1, t+1 will
be the quotient by d of a sum

≤ (d − 1)2 + (d − 1) + (d − 1) = d2 − 1

4.5. ATRUBIN’S C.A FOR MULTIPLICATION 139

so it is indeed at most d − 1.

The c.a works exactly as in basis 2. Only there are more states because more
values are possible in all places, but the result is obtained more quickly because
the lengthes of the representations, m and n are less.

4.5 Atrubin’s c.a for multiplication

A much cuter c.a !

As before, the two integers to be multiplied are given at first in binary
notation, which is lighter to handle :

a =
m∑

i=0

ai2i b =
n∑

j=0

bj2j .

In Atrubin’s c.a [1], a and b are entered together, lower digits first, so inputs
are

x0 = (a0, b0), x1 = (a1, b1),

After input of xm there is no more of a, after input of xn there is no more of b,
so after time max(m, n) there is simply no more input. Outputs will be, from
time 1 up, the digits of p :

p0, p1, pm+n, pm+n+1.

Last digit is output at time m + n + 1 or m + n + 2.

We could think of ending each input word by an end marker. Such end
markers though are not necessary if input 0 should not be confused with no
input. Anyway, we delay discussing how the computation ends.

4.5.1 The usual multiplication algorithm revisited

As it will be our guide for conceiving the c.a, we shall examine it once more
very carefully (Figure 13). On the successive lines of the product area we find :
ab0, ab1, . . . on line i abi which is a if bi = 1 and 0 if bi = 0 (let us underline
that in base 2, computation of the lines uses no carry, which will not be the
case in base 3 or more). More precisely, in square (i, j) of this area we have the
product aj−ibi.

140 CHAPTER 4. COMPARISON WITH TURING MACHINES

Usually, digits of the product are obtained by adding the elements of these
lines by columns (column j corresponding to implicit factor 2j), starting with
column 0. Results of these additions are generally greater than 2, so that these
results split into digit pj (0 or 1) of the product and a carry rj+1 for next
column. This carry we note in the carry line, in any notation, decimal in Figure
13. We have

pj = (
j∑

i=0

aj−ibi + rj)mod2

rj+1 = (
j∑

i=0

aj−ibi + rj)div2 (integer quotient).

Notice that r0 is absent and r1 = 0. Notice also that the last non empty column
is that of rank m + n.

4.5. ATRUBIN’S C.A FOR MULTIPLICATION 141

Let us now observe that we can add terms of the product area in any order we
wish, grouping them as we wish, to add them little by little to what constitutes
a partial product, without omitting to compute the carry as well. When we add
terms

aj−i1bi1 , aj−ik
bik

and rj

of column j to the partial product present in the product line, changes will be
precisely :

if s = aj−i1bi1 + + aj−ik
bik

+ rj

r′j = 0

p′j = (pj + s)mod2

r′j+1 = rj+1 + (pj + s)div2.

Product is achieved when product area and carry line are emptied. But before
this finally happens, each digit pj of the product is the final one as soon as
product area and carry line are emptied from column 0 to column j included.

We shall see that Atrubin’s c.a proceeds in this progressive manner. At time 17
of our example (Figure 16), in cell 0 it achieves computing p16, while in cells 1,
2, . . . it increases p17, p18 and p19.

But in what order does it add terms ? Term pk (and carry rk+1) result from
summing

akb0 + ak−1b1 + ak−2b2 + + a2bk−2 + a1bk−1 + a0bk.

The c.a will start with the first 1 to 4 (depending on k mod 4) central terms of
this sum (indexes of a and b equal or close), it will add packs of 4 terms (the 2
next ones on the left and the 2 next ones on the right) and end with the 2 end
terms akb0 + a0bk (indexes of a and b distant).

4.5.2 The multiplier c.a

The successive inputs will be, if we suppose n ≤ m

x0 = (a0, b0) x1 = (a1, b1) xn = (an, bn)

bn (and some preceding bi’s) being absent if n is strictly inferior to m.

Each state will have two parts : one part for conveying and stocking the inputs
(beneath in Figures), and one part for progressive computing of the product
(above, see Figure 14).

142 CHAPTER 4. COMPARISON WITH TURING MACHINES

Each input xi enters transit square T of cell 0 at time i + 1, then travels
rightwards at maximal speed until it reaches a cell where parking place B, or
otherwise H, is free. There it settles (see Figure 16).

When an input xj traveling rightwards crosses an input xi (i < j) already
settled (in cell 	i/2
), products ajbi and aibj can be computed. Sum of these
two terms is the contribution c(i, j) supplied to the final product by the two
inputs xi and xj , if i �= j. As for products aibi, they are computed when xi

reaches its parking place (i/2
).

As a cell may compute with contents of its two left and right neighbours,
we have some choice for deciding of the site where contribution i, j will be
computed. We shall follow Atrubin’s choice, which proves to be the wiser.

Example of Figure 16 will help us understand the rules : we have encircled
sites where contributions of column 11 will be picked up, and coloured sites
where partial product p11 and carry r12 are computed. Calculation of product
p11 starts on site < 2, 10 >, at each time step it increases with two contributions
and moves back one cell, it finally ends on site < 0, 12 >.

In Figure 15 we show the corresponding rules, which incorporate to a par-
tial product expected contributions and carry from preceding column, so as to
determine next partial product P < c, t + 1 >. Rule for cell 0 is a bit different :
indeed we also incorporate there contribution c(0, t), which is possible because
x0 is here and xt is input at preceding time.

4.5. ATRUBIN’S C.A FOR MULTIPLICATION 143

11 being an odd index, in the first example of Figure 16 we have no central
term aibi. For the case of even indexes (16, second example of Figure 16)
preceding rules must be completed as follows : if one of the places giving a
contribution contains xj in T and its (still empty for the while) parking place ,
corresponding contribution must be ajbj . Atrubin uses a little notation trick to
make the task of reading or writing the s.t.d easier for the reader, and we shall
keep the idea but change the trick : when xj arrives before its parking place,
we put there (on the s.t.d) xj/2, so that when we apply rules of Figure 15, we
obtain contribution

aj .bj/2 + aj/2.bj = ajbj

which is exactly the desired one.

144 CHAPTER 4. COMPARISON WITH TURING MACHINES

4.5. ATRUBIN’S C.A FOR MULTIPLICATION 145

On Figure 16 we have lightly coloured sites where summing of the successive
columns start. They are situated on a line of slope 3.

We also notice that places R and P on the anti-diagonal of these sites contain
the successive partial summings of corresponding column (carry will rather be
written in binary), the last one on site < 0, k + 1 >.

We see, by examining Figure 13 of the usual multiplication, not the s.t.d,
that column m + n is the last one to receive a contribution (ambn), column
m+n+1 can only receive a carry : antidiagonals of the c.a receiving the same
quantities, next anti-diagonal m + n + 2 will receive nothing more, so there can
be no more output from time m+n+2 or m+n+3=length(a)+ length(b)+1.
(No output is not the same thing as output 0). At that we know that the
product is achieved. So the time for computing the product is, to within one
unit,

length(a) + length(b) ≈ log2a + log2b.

4.5.3 Number of states

Each two places T , H or B and place P of the states may contain : nothing,
or 0 or 1.

Let us examine the possible values of the carry : each carry is the integer
quotient by 2 of a sum formed of

- a preceding carry

- 4 terms aibj having value 0 ou 1

- a partial product of value 0 or 1

so we have

r′ ≤ r + 5
2

.

The first carry being 0, we see by induction that the carry cannot exceed 4.
Place R of the states can so contain : nothing or one of the integers 0, 1, 2, 3,
4. So the number of states is at most

37 × 6 = 13122.

Atrubin counts only 1250 states, but he does not distinguish input 0 and no
input, digit 0 or no digit, in short he does not worry about the c.a notifying
that the product is ended. Surely, we know its length ! But we prefer that an
automaton should do its task to the last.

In a basis other than 2

We can choose usual basis 10 to represent any basis. C.a will function exactly
in the same way, with the only difference that the carry is much bigger. Indeed

146 CHAPTER 4. COMPARISON WITH TURING MACHINES

it results from summing 4 terms aibj , the preceding carry, and the preceding
partial product. If basis is 10 we can bound it as follows

r′ ≤ r + 4 × 81 + 9
10

=
r

10
+ 33, 3

which gives by induction r ≤ 36. The number of states is much bigger, but the
time for computing the product is about

log10(a) + log10(b),

much smaller naturally. Figure 13 gives an example.

4.5.4 Comparison with Turing machines

A Tm reproducing the usual multiplication algorithm takes a time of order (see
[12])

mn = log a × log b = length(a) × length(b)

with a probably very considerable coefficient. This time can be reduced by linear
speeding up, but this needs grouping, makes things still more complicated, and
multiplies states and symbols.

Atrubin’s c.a, so naturally and so simply does the same computation in time

length(a) + length(b) !

(which is not the length of its input, the latter being max(length(a), length(b)))

Should we mention that the usual multiplication algorithm takes a time of
order mn too, about 2mn ?

4.5. ATRUBIN’S C.A FOR MULTIPLICATION 147

148 CHAPTER 4. COMPARISON WITH TURING MACHINES

Chapter 5

Signals and waves

5.1 Definitions

5.1.1 The notion of a signal

In the preceeding chapters we have already made a large use of signals, without
which we could hardly have managed. It is time we study them more system-
atically.

The general and intuitive idea of a signal is that of some information propa-
gating through space. We shall try to make precise what this can be in the c.a
landscape, with the hope of arriving to some definition.

Dealing with c.a’s, a piece of information at some determined instant can
only be some state on some cell, or else some k-tuple of states (some word-
of-states to avoid precising its length) on several consecutive cells. At different
times this information may appear under different shapes and so the signal will
be caracterized by a set of states (necessarily finite) or a set of words-of-states,
which must be finite, otherwise nearly anything could be a signal ! So first of
all,

a signal corresponds to a set of states or words-of-states which is
finite.

But as we shall see little by little, not any such set !
If the words-of-states of a signal all have length 1, so find themselves on

one single cell, we shall say the signal has thickness 1 or is threadlike. In this
case we easily distinguish the states of the signal, forming subset S of the set
of states, from the other states, subset Q \ S, which form what we shall call
the background. In the general case it is mandatory that the words-of-states
of the signal should be clearly distinguished from the background. This does
not imply that states of these words do not appear in the background, so this
requirement we have just made seems a bit vague

We now come to propagation : the mean for it is transition, and so we have
the s.t.d in mind.

149

150 CHAPTER 5. SIGNALS AND WAVES

First thing, propagation evokes more or less continuity, we wouldn’t like
to call signal some set of states appearing from time to time, intermittently
disappearing and arising anew. So

a signal must be present at each instant of time.
In the case of a threadlike signal, if the signal is in cell i at time t, at time

t + 1 it will be in one of the three cells i, i− 1 or i + 1, the only ones that have
perceived it, progress of the signal is consequently limited. On the space-time
diagram it will be possible to follow the trajectory of the signal, which is the
succession of the sites it occupies. From another point of view, the trajectory
may be seen as the succession of the moves of the information, no move, left or
right move. In this case, to a representation where cells take all the place, we
shall prefer a representation where they have shrinked to points, leaving all the
place for an intercellular space where we can draw the moves (Figure 1).

For a thicker signal, whose thickness may vary, the word-of-states at time
t + 1 results from the word of states at time t : consequently, its right border
cannot progress of more than one cell on the right (but it seems it could regress
more) and likewise its left border cannot progress of more than one cell on the
left. The trajectory will appear as a ribbon of variable width (Figure 1). The
first example we have met of such signals was in Mazoyer’s c.a (chapter 2),
signals AB, BC, CA of slope −1.

Now then, transition function, by which the signal progresses, takes into
account the four states (two at the left, two at the right) surrounding the signal.
But in the idea we have, unless exceptionally, a signal crosses the place without
being pushed to and fro by surrounding states that happen to be there ; this
implies that the result of transitions involving states at the left or at the right
of the signal be independant of these states. Our new requirement is then

a signal is indifferent to its environment.

5.1. DEFINITIONS 151

For an example, if signal is threadlike and goes rightwards from state s to
state s′ (as on Figure 1), we must have

δ(s, ?, ?) = s′

for ? any state not belonging to the signal, while

δ(?, ?, s) and δ(?, s, ?)

should not belong to the signal.
These three requirements are the basical ones.

A very simple example of s.t.d areas that are not signals is given by the areas
between two signals, which may have same or different slopes : these areas are
shaped by the signals which delimit them (Figure 2), they probably do not
satisfy the first requirement and clearly not the last one.

A more interesting example can be found in Mazoyer’s c.a (chapter 2, Figure
9) : S1 is the area where state S developes after stopping (which shows that
state S is not totally inert) a first wave of signals AB, BC, CA which gives it
its shape. This phenomenon appears more clearly still when we look at the next
Sk’s, formed with the same state S, and nevertheless following a different path.

So except accidentally (after bumping on other elements), a signal progresses
without being influenced by its environment, by its own strength.

This is the reason why we study its normal progress on a quiescent back-
ground.

Out of the several requirements we have made no neat definition emerges,
but nevertheless a precise description.

152 CHAPTER 5. SIGNALS AND WAVES

5.1.2 Description of a signal

let us first examine a threadlike signal : the number of states being finite, if the
signal doesn’t extinguish, it must be periodic. We then define its speed, which
is the ratio of the sum of the moves (+1 rightwards, -1 leftwards or 0) during
one period divided by the period, and its slope, which is the inverse number.
These two numbers are rational numbers. The maximum speed possible is 1.

The trajectory of a signal, which does not mention the states, does not
characterize it entirely, though it is an essential feature for the tool a signal
represents, the slope which is an average number still less (on Figure 3 we see
several signals having same slope). The trajectory can be seen as a discrete
approximation of a straightline of rational slope.

A thicker signal also will be periodic, as his set of words-of-states is finite.
It is possible to define in the same way its speed, ratio of the number of cells
and the number of time units between two sites at a period-distance (Figure 4).
As its right (/left) border progresses rightwards (/leftwards) of at most one cell
per time unit, this speed has (absolute) value at most 1.

5.1. DEFINITIONS 153

The description we have just made will permit us to spot signals in s.t.d’s.
They are very simple objects, that we must not confuse with more intricate ones
that we shall examine further on.

5.1.3 Construction of signals

Can we implement in a c.a a signal approximating any straightline with positive
slope (negative slope will result by a symmetry) that we choose ?

It is clear by now that the answer is no if the straightline has speed greater
than 1 or not a rational number.

But if the speed is no greater than 1 and a rational number

a

h
a ≤ h (a, h) = 1

we shall find numerous possibilities. The simplest ones will involve

a right moves (and h − a standstills) during h units of time.

The trajectory may vary according to the order in which right moves alternate
with standstills. Let us mention that 2 standstills could be replaced by one
move right and one move left, but as a rule simple objects are preferred to
artificially complicated ones. In any case, whatever the trajectory, h states (or
words-of-state) will be needed.

Among the simplest approximations, there seems though to be a best one,
the one nearest the geometrical straightline : in the representation where cells
are reduced to points, we draw the straightline from site (0, 0) to site (a, h),

154 CHAPTER 5. SIGNALS AND WAVES

which passes at time t at the distance ta/h from cell 0, and we choose for our
signal to pass at this time on cell [a/h], that is 	a/h
 or �a/h�. In case h = 2k,
at time t = k we may hesitate between the 2 cells 	a/2
 or �a/2�, but the two
choices give the same global trajectory. See Figure 20.

5.1.4 Geometry of signals

The fact that the trajectories of threadlike signals, the most frequently used
ones, are approximations of straightlines in the s.t.d’s gives us the idea that
some c.a problems may be solved by a geometrical approach, and there precisely
lies the very interest of this notion of signals.

Now then geometry problems solve with straightlines that meet.

Likewise, if our signals progress straightforward, this must be with the aim of
arriving somewhere, on a border, a particular area, to a meeting point with some
other signal. Exceptional events will then take place : reflections, extinction of
signals, springing of new signals, delays . . . (Figure 5). We have made such
experiences since chapter 1.

5.1. DEFINITIONS 155

So signals, indifferent though they will be to most neighbourhoods, will react
to a certain number of particular neighbourhoods, expressing various events.

Now then, unfortunately, trajectories of signals are only discrete approxi-
mations of straightlines, submitted moreover to specific constraints : maximal
speed 1, rational slopes.

Will it always be possible to come back from a geometric solution to some c.a
s.t.d, as we already did a few times ? Probably if the geometrical figure contains
only straightlines or segments of rational slopes, and meeting points having
integer coordinates. We shall then obtain a s.t.d by replacing the straightlines
or segments by signals of same slope. If coordinates of the meeting points are not
integers, but are rational, with a finite number of denominators, a magnifying,
that is a division of cells can be thought of.

156 CHAPTER 5. SIGNALS AND WAVES

5.1.5 Networks of signals

Let us examine Figure 6 : couldn’t signal {s0t, st, t} be called a parabolic
signal ? indeed it goes through all the < c, t = c2 > sites. But this would
be forgetting the second signal {s0t, st, s, s0} without which it can not exist :
in fact the two signals cannot be separated from one another, they even have
states in common, they form what we shall call a network of signals.

Perhaps we could describe this example a bit differently, admitting that two
signals, s (or s0) and t can find themselves together on a cell. We would then
say : s and t present together on a cell move together one step right, after what,
t staying on the cell s goes left at maximal speed, is reflected by the border,
joins t and everything repeats This does not alter the fact that the two
signals cannot be separated.

We shall study a very beautiful example of a network a bit later.

5.1. DEFINITIONS 157

5.1.6 A curious example

Let us consider c.a having set of states {e, 0, 10, 1, 2, 3}, initial impulse state 0,
and the following transition rules :

0 | e 10 | e 1 | e 2 | e 3 | e
− + − − + − − + − − + − − + −
e | e e | e e | e e | e e | e
β | e β | e

e | e 0 10 1 2 3
− + − − − − − −
β | e 2 e
e | e 2 e 1
0 | 10

10 | 0
1 | e
2 | 2 2 3 3
3 | e

Its s.t.d is to be found in Figure 7, with two different representations, the first
one the usual one where sites and states are to be seen, the secund one where cells
have shrinked and moves appear, which will be more convenient for geometric
reasoning.

158 CHAPTER 5. SIGNALS AND WAVES

5.1. DEFINITIONS 159

160 CHAPTER 5. SIGNALS AND WAVES

We are particularly interested by sites of the convex envelope of the figure
formed by the active sites the first of which are :

(c, t) = (0, 2), (0, 6), (2, 12), (8, 22), . . .

To study the geometry of this figure we shall prefer the axis-system determined
by

origin (0, 0), unit vectors of extremities (1, 1) and (−1, 1)

We are interested in points (squared in Figures 7)

(x, y) = (1, 1)
(1 + 2, 1 + 2)
(1 + 2 + 4, 1 + 2.2)
(1 + 2 + 4 + 8, 1 + 3.2) = (1 + 2 + 22 + 23, 1 + 3.2)
. . .

We can observe that, if one of these points is (xi, yi), from point (xi+1, 0) a new
figure similar to the principal one developes, and that

xi+1 = 2xi + 1

yi+1 = yi + 2

and this leads us to ascertain that the points of the envelope are those of coor-
dinates

xi = 1 + 2 + . . . + 2i

yi = 1 + 2i

for i = 0, 1, 2, If we change the origin of axes for O′ on site (−2, 0) and the
unit-vectors for vectors two times longer, we find that our points are situated
on curve

Y = log2X.

If we really want to come back to the axis-system corresponding to cells and
time units, the curve will have parametrical equation

ci = 2.2i − 2i − 2

ti = 2.2i + 2i

for i = 0, 1, . . . , which is not as suggestive.

5.2. FISCHER’S C.A 161

So set of states {0, 10, 1, 2, 3} draws in the s.t.d a figure whose outline is a
logarithmic curve.

But the interesting question is in fact the following : should this set of states
be called signal ? It satisfies the definition we have given of a signal, but not our
intuitive idea of a signal, because it has branches and junctions and looks more
like a tangled hank. Well then, is it not a network, a little more complicated
then our first example ? well no, because we cannot manage to separate the
states in two (or more) subsets which would form distinct signals.

So this example leads us to make our definition of a signal more precise,
particularly as concerns propagation, so as to exclude any branchings and junc-
tions : the state (or word of states) at any time t must produce at time t + 1
one single state (or word of states), and this state (or word of states) must be
produced by one single state (or word of states) at time t.

We shall not give a name to such a set as we have just described, and just
marvel before the great variety of what c.a’s can produce, that we have certainly
not entirely explored.

5.1.7 Waves

For the needs of constructing Mazoyer’s c.a in chapter 2, we have introduced
particular waves : they are not signals for the reason that they are guided
by their environment. They nevertheless are clearly visible objects, and active
objects too, each of them generating new A, B, C signals.

To characterize them we shall define a new and larger category, the waves,
simply by dropping the last requirement, that of indifference to environment.

So waves will be characterized by a finite number of states (or words- of-
states), they will have continuous trajectories, but these trajectories, submitted
to environing influences, will fluctuate and be more fanciful then the periodic
trajectories of signals. Signals are particular waves.

The Sk waves of Mazoyer have state and word-of-state S and SS.
First examples of waves are to be found in the F.S.S.P solutions of Waksman

[60] and Balzer [2], that we have not presented.

5.2 Fischer’s c.a

Signals in networks may have very interesting trajectories,and we shall find a
beautiful example in Fischer’s c.a for recognizing prime numbers in strictly real
time.

The c.a will have output 1, that is be in accepting state, at each prime time
t. If we want the c.a to correspond exactly to the definition of a recognizer c.a,
we just choose to represent numbers by as much 1 symbols (the nursery school
representation), and agree that input is 1 at each time : so the accepted words
are the sequences of t 1-symbols with t prime, that is the words on alphabet
{1} representing prime numbers.

162 CHAPTER 5. SIGNALS AND WAVES

As a first step we shall build a c.a where cell 0 is in accepting state at each
time 3t with t prime, and in rejecting state at all other times. To obtain the
announced for c.a we must then speed up three times. Speeding up we shall
study in chapter 7 only, so the last section may be left over for later reading,
but it can also give a first idea of speeding up in a very simple case.

5.2.1 Geometrical solution

To begin with let us remind ourselves of Eratosthenes’ riddle : starting point is
the infinite sequence of integers

2 3 4 5 6 7 8 9 10 11 12 13 14 ,

we retain the first one, 2, and cross out all its multiples, we then retain the
first next integer left, which is a prime, and cross out its multiples, and so on,
progressively eliminating all integers which are not primes

2 3 � 4 5 � 6 7 � 8 9 � 10 11 � 12 13 � 14 15 � 16 . . .

2 3 � 4 5 � 6 7 � 8 � 9 � 10 11 � 12 13 � 14 � 15 � 16 . . .

2 3 � 4 5 � 6 7 � 8 � 9 � 10 11 � 12 13 � 14 � 15 � 16 . . .

Fischer uses a similar but less efficient method : he crosses out the multiples of
every integer, (thereby loosing his time in vain for integers not prime), starting
from their square, which is the first multiple possibly not yet crossed out.

The first idea we can have to try implement this is that cell 0 should emit
at each time t a signal criss-crossing in a t/2 large corridor and crossing out cell
0 at all kt times (Figure 8). Unfortunately such signals will accumulate more
and more numerous with time on the first cells, and such a situation cannot be
managed by a c.a, whose number of states is finite.

5.2. FISCHER’S C.A 163

So next we think about separating this hank of signals by giving each of
them a separate corridor. These corridors will be further and further from cell
0, so cell 0 can no more be crossed out by the criss-crossing signals, new signals
regularly started by the latter must do that. Figure 9 tries to suggest the main
features of the mechanism.

164 CHAPTER 5. SIGNALS AND WAVES

We shall have to

- delimit the corridors

- start the criss-crossing signals

- start the crossing out signals

If we solve the preceeding little problems with ordinary continuous geometry,
we find that

- if width of the successive corridors must increase regularly of one
unit, slope of the main signal must be 3, and a small correction

5.2. FISCHER’S C.A 165

must be made : main signal should gain one time unit each time it
receives the delimiting signal, and each reflection of the latter on the
preceeding corridor should be delayed by one time unit (Figure 10)

- if signal criss-crosing in k-wide corridor should determine 3k-time
intervals, we can give them slopes 2 and -1 in turn

- for crossing out signals to arrive on cell 0 at times 3(k2 + Nk) we
must give them slope −3

This is how we find the skeleton of Fischer’s c.a, but it is not like this that
Fischer gives it.

166 CHAPTER 5. SIGNALS AND WAVES

5.2. FISCHER’S C.A 167

5.2.2 Fischer’s c.a

Fisher presents his c.a [16] by directly giving the rules, in terms of intercellular
signals, which is a little unusual. We shall now try analyzing his rules.

Cells themselves may be in two different states, N the normal state and P
the partition state (indicating that the cell delimits a corridor). Besides he uses
3 signals, which can go left or right, so this amounts really to 6 signals

- b rightwards for the main signal, b leftwards for the crossing- out
signals (slopes 3 and -3)

- a for creating the corridors (slopes 1 and -1)

- c for the criss-crossing (slopes 2 and -1).

Let us analyse Fischer’s words to recollect their meaning concerning the cells
and states. When he writes : ”if b arrives from the left on some cell in state N ,
it leaves this cell 3 time units later going rightwards ”, we imagine something
like Figure 11a. To translate this way of expressing in terms of cells and states,
a signal being a state propagating from cell to cell, we can draw Figure 11b. To
implement this, b must be separated in 3 states, b, b1, b2 (Figure 11c). At last
we may choose for the states symbols more suggestive than letters (Figure 11d).

In Figure 12 we give the 12 rules of Fischer and we translate them in the
same way, then in Figure 13 we use them to build the beginning of the s.t.d.

168 CHAPTER 5. SIGNALS AND WAVES

5.2. FISCHER’S C.A 169

170 CHAPTER 5. SIGNALS AND WAVES

On Figure 12 we can count the states, and we find there are 25 of them.

5.2.3 Proof

We must now check that the c.a does what it is meant to. The next two lemmas
will do for that.

Lemma 5.2.1 for all k ≥ 2, cell k(k+1)/2 enters state P at time (3k2+k)/2−1
and sends signal a back on cell (k − 1)k/2 at time (3k2 + 3k)/2.

Calculations are elementary. This result is correct from k = 1 (cell 1) up. It
is clear that only cells k(k + 1)/2, k ≥ 1 can enter state P .

Lemma 5.2.2 signals b emitted by cell k(k − 1)/2 arrive on cell 0 at times
3(k2 + Nk).

Once more, calculations are elementary.

So, at all times 3(k2 + nk), n ∈ N, cell 0 is in rejecting state r.

5.2.4 Speeding up

From this c.a we have just built, we shall now build a new one : its cells will be
the triples of three consecutive cells

(c0, c1, c2) . . . (c3i, c3i+1, c3i+2)

So states will be triples of the states we had : the number of triples is 253, but
it is clear that all of them do not appear in the s.t.d, where we could count the
useful triples.

Now then, to speed things up, we simply rub out 2 time steps out of 3, so
that the new s.t.d has only the following sites left

< (3i, 3i + 1, 3i + 2), 3t >= (< 3i, 3t >, < 3i + 1, 3t >, < 3i + 2, 3t >).

These two operations we have done to obtain the s.t.d of Figure 14.

5.3. WAVES GENERATED BY AN IMPULSE C.A 171

The rules of the new c.a, (which is also semi-infinite, of scope 1, with an
impulse initial state), can be obtained by operating three (old) transitions on
the 9 (old) states of the 3 triples, and forgetting the two first steps. We guess
the rules are many, quite unreadable, progression of signals being chopped by a
stroboscopic process. But for Fischer’s result only their existence is important :
the output function having value 0 on all triples begining with rejecting state
r, and value 1 on the others, will have value one at all prime times.

And in the first c.a signals a, b and c form a beautiful example of a network.

5.3 Waves generated by an impulse c.a

5.3.1 Functioning of an impulse c.a

In this first part we shall discover a periodical functioning, whose origin is
basically the quiescent state of all sites under the diagonal. We particularly
insist here that the initial state must be an impulse on cell 0.

Let Di be the diagonal from site (0, i), so D0 is the principal diagonal and
D−1 is the diagonal just under, from site (1, 0). And let q be the number of
states of the c.a. At last, let us note once and for all that the number of cells
before cell c is c, as the first cell has number 0.

172 CHAPTER 5. SIGNALS AND WAVES

�

5.3. WAVES GENERATED BY AN IMPULSE C.A 173

Let us now remind observations made by V.Terrier [54]. First we notice that,
among the q + 1 first sites of D0, two must be in the same state (see Figure
15). As a consequence, the next states on the diagonal, resulting from transition
applied to the same triples (the state and two quiescent states on the right), are
also identical, and so on for the next ones So the semi-infinite word w0 of
states on D0 is of the form

w0 = u0v
ω
0

where vω
0 is the infinite repetition of word v0, with

|u0| ≥ 0 |v0| ≥ 1 et |u0| + |v0| ≤ q.

Let us now examine diagonal D1, and more precisely the q + 1 sites of cells

|u0| , |u0| + |v0| . . . |u0| + q|v0|.

Two of these sites ar necessarily in the same state. The two states on the right of
these are also identical, the first ones being on D0 after perodicity has started
and at a distance of several periods, the second ones being quiescent. As a
consequence the following sites on D1 are identical, so the word of states on D1

is of the form

w1 = u1v
ω
1

with

|u1| ≥ |u0|

and

|u1| + |v1| ≤ |u0| + q|v0| ≤ q(|u0| + |v0|) ≤ q2

v1 a multiple of v0.

Let us now do for diagonal Di the following induction hypothesies :

wi = uiv
ω
i |ui| + |vi| ≤ qi+1

Di−1 has periodicity vi

from cell |ui| (or before)

and let us notice that these hypothesies are satisfied for D1. On diagonal Di+1,
among sites on cells

|ui| , |ui| + |vi| . . . |ui| + q|vi|,

174 CHAPTER 5. SIGNALS AND WAVES

two must be in the same state : as this is also the case for the two sites on
the right because of the periodicities on Di and Di−1, so we have on Di+1 a
periodicity which is a multiple of |vi| :

wi+1 = ui+1v
ω
i+1

with, clearly :

|ui+1| ≥ |ui|

|ui+1| + |vi+1| ≤ |ui| + q|vi| ≤ q(|ui| + |vi|) ≤ qi+2

Di certainly has periodicity |vi+1|

from cell |ui| ≤ |ui+1|

So we have prooved by induction

Proposition 5.3.1 (V.Terrier) on each diagonal Di of the s.t.d of an impulse
c.a the word of states is of the form wi = uiv

ω
i with |ui| + |vi| ≤ qi+1.

5.3.2 Gap theorem for a wave

We focus now on waves that an impulse c.a could produce in its active area.
And for the while to threadlike waves.

The tool we shall use here is preceding proposition. According to this propo-
sition, a wave S appearing anywhere in the active area of an impulse c.a, if it
stays qi+1 units of time on diagonal Di, must then stay on this diagonal defi-
nitely : indeed as a complete period of the states on Di is formed of states of
S, on all the rest of Di we have states of S, the wave is on Di. A wave that
wouldn’t, after possibly hesitating at first, have maximal speed, cannot progress
at maximal speed for too long, its stay on each diagonal is limited in time.

5.3. WAVES GENERATED BY AN IMPULSE C.A 175

Let us examine a wave starting on site (0, 0). The line formed (see Figure
16) by q sites of D0 (last site A0), q2 sites of D1 (first site B0, last site A1),
. . . qi+1 sites of Di (last site Ai) is a frontier that the wave cannot overstep,
nor even step on. (Mark here that we do not choose the tighter formulas, with
q − 1, q2 − 1 . . . , because the result would not arrange so neatly !) We shall
now make this frontier more precise :

A0 = (q − 1, q − 1) B0 = (q − 1, q − 1 + 1) = (q − 1, q)

A1 = (q − 1 + q2 − 1, q + q2 − 1) B1 = (q − 1 + q2 − 1, q + q2)

. . .

If cell and time corresponding to point (site in fact) Bi are ci and ti we have

ti = q + q2 + · · · + qi+1 = q
qi+1 − 1

q − 1

176 CHAPTER 5. SIGNALS AND WAVES

ci = ti − (i + 1)

then (from first of the two preceding formulas)

i + 1 = logq

[
1 + (1 − 1

q
)ti

]
and at last

ci = ti − logq[1 + (1 − 1
q
)ti].

As for points Ai, they are situated on curve C (Figure 17), whose equation is

c = (t + 1) − logq[1 + (1 − 1
q
)(t + 1)].

Every straightline having equation t = c + a sooner or later crosses C, (at
time t = q

q−1 (qa+1 − 1) − 1 ≈ qa+1).

5.3. WAVES GENERATED BY AN IMPULSE C.A 177

From all this we draw the gap theorem for a threadlike wave, and remoter
conclusions.

Theorem 5.3.2 (V.Terrier) no wave starting on site (0, 0), unless it becomes
the maximal speed signal, can penetrate between diagonal D0 and curve C.

This means that the wave cannot progress too quickly, it must stay at a
distance from D1 logarithmic in t + 1, at least.

In fact this result is not limited to waves issued from site (0, 0). It extends
(Figure 18) to any wave from any of its sites, (c, c + i) provided periodicity on
Di has started before cell c, which is certain if c ≥ qi+1 ≥ |ui| : indeed, the
wave cannot linger qi+1 units of time on Di, nor qi+2 units of time on Di+1 . . . ,
so it cannot penetrate in the area situated between Di and the curve obtained
by shifting the portion of curve AiC from site (c + qi+1 − 1, c + i + qi+1 − 1) .
But really this takes place very far away because qi+1 must be very big !

At last, the same result can also extend to thicker waves. Let us indeed
consider the right border of a wave : its states belong to set B of states ap-
pearing as last state of the words of states of the wave. In as much as the wave
must distinguish itself from the background, it is reasonable to admit that the
background has no states of B too near this right border. In this respect, the
right border, exactly like the case was for a threadlike wave, unless it goes at
maximal speed, cannot linger on the diagonals, and then it stays behind by a
delay at least logarithmic in t.

178 CHAPTER 5. SIGNALS AND WAVES

Chapter 6

Slowing down

Ideas for this chapter were found in Véronique Terrier’s thesis [54].

6.1 Weak slowing down

It may seem queer, in a world where saving time and speeding up is a major
concern, to study how to manage slowing down. We have however three reasons
for doing it :

- slowing down will be useful for synchronization problems

- its study is remarkably easy, and nevertheless instructive before we
study speeding up

- it accidentally leads to solving some other interesting problems.

So we want to construct a new c.a A′ accomplishing the same task as c.a A,
but k times slower. We have the very simple idea of equiping A with a k-steps
cyclic counter, which will lock A for k − 1 steps and let it run only one time
step : let this step be 0, and the other ones 1, 2, . . . , k−1. If counter is started
on 0, the active time-steps will be : 0, k, . . . , kt, If it is started on 1, the
active time-steps will be : k − 1, . . . , kt + k − 1,

179

180 CHAPTER 6. SLOWING DOWN

In Figure 1 (where k = 3), < c, t > stands for the state of site (c, t) of A.
Initial state of A′ will be (0, q0) or (1, q0), q0 being initial state of A ; the counter
of a cell, once started, starts the counter of next cell. In Figure 1 the active
time steps are coloured. As for the inputs, we must enter them one time -step
out of k, inputs at inactive times being indifferent : so the new input word may
be

a0, a0, . . . , a0︸ ︷︷ ︸, a1, a1, . . . , a1︸ ︷︷ ︸, . . .
or, if counter starts on 0

a0, a, a, . . . , a︸ ︷︷ ︸, a1, a, a, . . . , a︸ ︷︷ ︸, . . .
and if counter starts on 1

a, a, . . . , a, a0︸ ︷︷ ︸, a, a, . . . , a, a1︸ ︷︷ ︸, . . .
where a is any element of input alphabet . We could even take as new input
any k-coding of the old input letters : cell 0 could memorize them, recognize
the old input after reading k symbols, work with it, or enter a rejecting state if
the sequence of k code symbols corresponds to no old input letter.

6.1. WEAK SLOWING DOWN 181

In any case, the input has to undergo some transformation : there lies the
defect pointed at by the weak adjective.

As for the outputs, they could admit interruptions. But our main concern
here will be recognizers and synchronizers.

The new recognizing or synchronizing time will be

- k(T − 1) + k − 1 + 1 = kT if counter was started on 1

- k(T − 1) + 1 = kT − (k − 1) if counter was started on 0

T being the old recognizing or synchronizing time (Figure 2).

182 CHAPTER 6. SLOWING DOWN

6.2 Strong slowing down

To obtain this strong slowing down, we shall simply add to the slow c.a a little
mechanism sending every input at time t back on cell 0 at time kt. Idea of
this mechanism is suggested in Figure 3, representing space R2 with k any real
number.

We shall adapt it in our discrete environment and implement it precisely in
the case when counter starts on 1 and the new (recognizing or synchronizing)
time is exactly kT . For the case when the counter starts on 0 we just give the
solution.

6.2. STRONG SLOWING DOWN 183

Let us first set up signal S starting from site (0, 0) and having slope p = k+1
k−1

(Figure 4) :

- if k is odd : to progress by k − 1 cells in k + 1 time-steps, S will
repeat (k − 1)/2 moves rightwards and one stand still

-if k is even : to progress by k − 1 cells in k + 1 time-steps, S will
repeat

- k/2 moves rightwards and one stand still (fast segment)

- then k/2 − 1 moves rightwards and one stand still (slow
segment)

For signal S to start exactly as we wish (that is as in Figure 4), we must
suppress the very first move rightwards, or equivalently, take as fictive starting
site < −1,−1 >.

Input entering at time t will travel, from time t + 1, at maximal speed and
reflect, possibly with some delay, on S. We want it to arrive on cell 0 at active
time t which is in fact time kt + k − 1 (see Figure 2).

184 CHAPTER 6. SLOWING DOWN

In case k is odd (Figure 5a) : sites of S that may receive an input arriving
at maximal speed are sites situated after a stand still(

−1 + i
k − 1

2
,−1 +

k + 1
2

)
i ≥ 1,

trajectory of input at is formed of sites

(x, t + 1 + x),

site where meeting takes place is(
−1 +

k − 1
2

(t + 1),−1 +
k + 1

2
(t + 1)

)
,

input reflected with delay 1 locates on sites(
−1 +

k − 1
2

(t + 1) − i,−1 +
k + 1

2
(t + 1) + 1 + i

)
,

it arrives on cell 0 at time

−1 +
k + 1

2
(t + 1) + 1 − 1 +

k − 1
2

(t + 1) = kt + k − 1.

6.2. STRONG SLOWING DOWN 185

k = 6

a 3

a 2

17

23

⇒
⇒

a3

a2

In case k is even (Figure 5b) : sites of S that may receive an input are those
of type 1 (at the end of a fast segment)(

−1 + i(k − 1) +
k

2
,−1 + i(k + 1) +

k

2
+ 1

)
i ≥ 0

and those of type 2 (at the end of a slow segment)

(−1 + i(k − 1),−1 + i(k + 1)) i ≥ 1,

the first will receive inputs at entered at even t times, the second inputs entered
at odd t times, and this on sites respectively

(−1 + (k − 1)
t

2
+

k

2
,−1 + (k + 1)

t

2
+

k

2
+ 1)

(−1 + (k − 1)
t + 1

2
,−1 + (k + 1)

t + 1
2

).

Inputs reflected

186 CHAPTER 6. SLOWING DOWN

without delay on type 1 sites (at the end of a fast segment)

with delay 1 on type 2 sites (at the end of a slow segment)

arrive on cell 0 at time kt + k − 1.

Let us sum up :

- for k odd : reflection is with delay 1

- for k even : reflection is without delay on type 1 sites and with
delay 1 on type 2 sites

In case we had wished the counter to start on time 0, and so inputs to arrive
on cell 0 at times kt, we should have used signal S′, one time-step late after S.
Input a0 should be used directly.

Slow c.a A′ will have threefold states :

- a first part will devote to reflecting inputs, it may contain two
elements, a state of S and an input letter

- a secund part will hold the k states counter

- in a third part we shall find old c.a A (locked by the counter most
of the time)

6.3 C.a computing a word morphism

We shall now make the most of the mechanism reflecting inputs that we have
just set up, which mainly uses signals of slope p = k + 1/k − 1. We remind this
mechanism in Figure 6, where we can see two speed 1- signals following at a
distance of one time unit reflected by signals of slope k + 1/k− 1 and becoming
two signals of speed −1 following at a distance of k time-units, this for different
values of k.

6.3. C.A COMPUTING A WORD MORPHISM 187

188 CHAPTER 6. SLOWING DOWN

Let us remind that a morphism h of the monoid of words on alphabet A
onto the monoid of words on alphabet B is a mapping that sends a product
(concatenation) of words on the product of their images, and the empty word
(that has no letter and is designed by 1 whatever the alphabet) on the empty
word. It is caracterized by the set of the images of the letters of A : if w is the
word a0a1 . . . an, then

h(a0a1 . . . an) = h(a0)h(a1) . . . h(an)

6.3.1 A first simple model

with which we get h(w) with interruptions.

We choose k an integer larger than all lengths |h(a)| of the words that are images
of the letters in A. The main feature of the c.a will be a signal S from site (0, 0)
and having slope p = k + 1/k − 1.

In Figure 7 we have shifted this signal 2 cells rightwards so things are less
confused near the origin, the flaw we thus introduce being that initial state of
the c.a extends on more than one cell, which is not in accordance with our
general definition. This shifting will no more be made in next figures.

An input at entered at time t is reflected by S (with a possible delay 1). As
it comes back, it deposits on cell 0 the word h(at). Output function outputs
at each time-step the first letter of the word deposited (no letter if nothing, or
nothing more, is deposited), which letter is retrieved from the word. Input at+1

arrives on cell 0 k time-steps later, and as we have choosed k larger or at least
equal to |h(at|, cell 0 is emptied before word h(at+1) is loaded.

The output word is eventually the image of the input word a0a1 . . . an−1,
with possible interruptions. These and the computation time will be least if k
is the smallest possible, that is k = max(|h(a)|). Interruptions in the inputs
would also be possible.

6.3. C.A COMPUTING A WORD MORPHISM 189

190 CHAPTER 6. SLOWING DOWN

6.3.2 A more sophisticated model

with which we get h(w) without interruptions.

We should now like output

- to start at time 1

- and go on with no interruption

6.3. C.A COMPUTING A WORD MORPHISM 191

Then the morphism would be computed in real time. Having this in view, we
replace the straightline signal S by a Z signal formed of segments having slopes
precisely adjusted to the foreseen length of the word to output : as at arrives on
Z it dictates to this signal its new slope pt = (ht+1)/(ht−1), where ht = |h(at|.
Signal Z will start from site (0, 0) with infinite slope (and no delay).

If geometrically there is no difficulty whatever (see Figure 8a), returning to
discreet constructions needs attention.

Let us first remind how signals corresponding to the different values of k are
set up : they are formed with states that never reflect anything because they
cannot receive any input arriving at speed 1, and others that reflect with delay
d = 0 or 1. For odd k, all delays are 1, but, as only time intervals matter, we
shall declare all delays to be 0 if we please (Figure 9).

The delicate task is that of connecting segments having different slopes. Rule
will be the following : if at arrives on Z on a state of delay d, the present meeting
site must correspond to a d-delay site for next segment of Z. This next segment
will end when next input arrives. All possible cases are represented in Figure
10, even the tricky case when h(at) is the empty word, ht = 0 so pt = −1 :
in case at arrives on a null-delay state of signal Z, transition must set up next
state of Z at time preceding, when at whose image is empty arrives left of Z.

192 CHAPTER 6. SLOWING DOWN

All these rules have been applied to draw the s.t.d of Figure 8b. Perhaps Figure
8c, which is a little film of events will help understand how things work out.

Let it be clear that the rules we have just mentioned are only rules in the
common sense of the word, they are not c.a transition rules. In fact, we are
describing new c.a’s and how they work in terms of signals : we hope it is
sufficiently clear by now that all this could be translated into transition rules.
But what a very dull task that would be !

6.3. C.A COMPUTING A WORD MORPHISM 193

Beware now that we cannot go left of cell 0 ! (If we don’t want to use
more cells). This implies a condition on the morphism and the input word that
we find quite easily on the geometric Figure (reminded in Figure 11, with an
illustration by example of Figure 8) :

h0 − 1
2

+
h1 − 1

2
+ . . . +

hi − 1
2

≥ 0 i = 1, . . . , n

That is to say : for any prefix u of w = a0a1 . . . an−1

|h(u)| ≥ |u|

or else : word w must not have too many accumulated empty-image letters.

194 CHAPTER 6. SLOWING DOWN

6.3.3 An application

We are now able, from a c.a recognizing any language L, to build a c.a recog-
nizing language h−1(L) : it will simply be the product of the c.a calculating h
and the recognizer for L, the former producing little by little the image of the
input word needed by the latter. Thus we have the

Theorem 6.3.1 If a language L in A∗ is c.a-recognizable and h : A∗ �−→ B∗ is
a word morphism, then h−1(L) is c.a-recognizable.

6.4. A.C COMPUTING THE SEMI-INFINITE WORD DEFINED BY A MORPHISM195

Moreover, we can effectively build the recognizing c.a.

6.4 A.c computing the semi-infinite word de-
fined by a morphism

Here we have a nice use of preceding c.a.
Let us first remind the subject : if some morphism h : A∗ −→ A∗ and a

word w ∈ A∗ are such that w is a prefix of h(w),
let us write :

h(w) = wu

then :

h2(w) = wuh(u)

.

hn(w) = wuh(u)h2(u) . . . hn−1(u)

so the hn(w) are prefix each of the next, and may be obtained by concatenating
to w the hi(u)’s one after the other.

If for all n ≥ 0, hn(u) is not the empty word 1, (the hypothesis most fre-
quently encountered is u �= 1 and ∀a ∈ A, h(a) �= 1), the hn(w) have strictly
increasing lengthes and define a semi-infinite word which is their common ex-
tension, denoted h∞(w). The case being, we say that h and w form a prefixal
system. And we point out that there exists then a smaller word ω that generates
the semi-infinite word.

• example: h : {a, b, c}∗ −→ {a, b, c}∗

h(a) = ab h(b) = 1 h(c) = cac

and w = abcaca generate a word h∞(w). a does not generate this word,
nor ab, the smaller word to do it is ω = abc.

• two famous examples are the Morse word which contains no cube, defined
by

h : {a, b}∗ −→ {a, b}∗ h(a) = ab h(b) = ba ω = a

and the Thue word which contains no square, defined by

h : {a, b, c}∗ −→ {a, b, c}∗ h(a) = b h(b) = ca h(c) = cba ω = c

196 CHAPTER 6. SLOWING DOWN

For our c.a, which computes morphism h, to produce h∞(ω) from input ω,
it suffices that, once ω is used out, it uses at each time-step the first letter of
the word deposited in cell 0, instead of the inputs.

6.4. A.C COMPUTING THE SEMI-INFINITE WORD DEFINED BY A MORPHISM197

Figure 12 gives the s.t.d’s for the words of Morse and Thue. So as not to

198 CHAPTER 6. SLOWING DOWN

get mixed up at the beginning, reflections being achieved even before they have
started, the two actions impulsed by each input must be carefully executed one
after the other :

- input arriving on Z determines next segment of the signal (with
its delay)

- when its reflection comes back on cell 0, it deposits word h(a) which
will then be re-used letter by letter.

Should we wish the c.a to run without any input, we could memorize the
initial inputs in the initial state.

6.5 A special category of frequency signals

We refer here to Véronique Terrier’s thesis [54]. Let us begin with some vocab-
ulary :

If f is a strictly increasing mapping of N into N, we shall call frequency signal
for f , any signal that marks cell 0 at times f(n), n ∈ N. Such a signal, or rather
the c.a that produces it, thus computes the successive values of f .

We shall call growth function of the prefixal system (h,w) function defined
by

f(n) = |hn(w)|.

Let us return to c.a producing word h∞(w) = h∞(ω) : it never ceases calcu-
lating the image by morphism h of the word it produces, with no interruptions.

As we have seen, for any word w longer than ω and a prefix of h∞(ω),
computing of h(w) is achieved when there remains in cell 0 only the last letter
of the image h(xn−1) of the last letter xn−1 of w.

Let us then consider some signal T starting from cell 0 at time |w| at speed
1, reflecting on Z like the inputs (i.e with the same delays) and on cell 0 with
a delay equal to the number of letters deposited minus one : it leaves at time
|h(w)|, and will continue criss-crossing between Z and cell 0, leaving the latter
at times |hn(w)|. It is a growth signal for prefixal system (h,w), provided it
marks cell 0 only when leaving, that is when only one letter is left in the cell.
Let us mention a few examples of growth functions for prefixal systems :

- exponential functions f(n) = kn obtained with

A = {a} h(a) = ak ω = a

- Fibonacci function (Figure 13) obtained with

A = {a, b} h(a) = ab h(b) = a ω = a

let us remind that this function is defined by : f(1) = 2, f(2) = 3,
. . . , and the induction formula f(n + 2) = f(n) + f(n + 1)

6.5. A SPECIAL CATEGORY OF FREQUENCY SIGNALS 199

- the square function f(n) = n2 (Figure 14) obtained with

A = {a, b, c} h(a) = abcc h(b) = bcc h(c) = c ω = a.

Frequency signals of these functions are thus c.a-computable.

200 CHAPTER 6. SLOWING DOWN

6.6. SLOWING DOWN WITH PARALLEL INPUT 201

6.6 Slowing down with parallel input

whatever the initial state (quiescent or impulse), locking the c.a with a counter
k − 1 time-steps out of k implies no change in the input (see Figure 6 with
modified input). If ever for some reason we should want the counter to start
at time 1, we would have to retain the inputs in each cell for one time-step,
nothing more.

For a synchronizer, which has no input, there is no problem at all. In all
these cases we have

T ′ = kT or else T ′ = kT − (k − 1)

6.7 Slowing down by a constant

To realize a slowing down of a recognizer or synchronizer of h time-steps, it
suffices that only one time-step be replaced by k = h + 1, and this we can
manage with a counter, at the beginning or at the end. Only at the end for a
sequential recognizer : every halting state will be changed in k + 1 states, only
the last one being a halting state.

T ′ = T + h

This operation is not very exciting, but it will be useful for adjusting times.

202 CHAPTER 6. SLOWING DOWN

Chapter 7

Speeding up

7.1 Weak speeding up

To do the same thing in less time we must do in one time unit what was done
in more than one. As we consider the s.t.d, two ideas may come to our mind :

• grouping time-units by k, and then new states of a cell are k-tuples of
states

• selecting one time-step out of k

A glimpse on figures (Figure 1) reveals that to know the state of a cell, in
both cases, we must know the states at preceding time of the cell itself and k
neighbours on either side. As we do not want to increase the scope, that is we
want neighbourhoods to be of one cell at the left and one cell at the right, we
are lead to group cells by k (Figure 2). This means that we consider new cells
which are segments formed of k original cells. So the number of new states will
be, in the first case |Q|k2

and in the second |Q|k.

203

204 CHAPTER 7. SPEEDING UP

We have the general idea, but we must fix all the details, what we shall do
for the two big families of c.a’s that we have encountered, the synchronizers on
the one hand, and the recognizers or computers on the other hand.

7.1. WEAK SPEEDING UP 205

7.1.1 For recognizers

(Computers have already disappeared from the title as it will not be long before
we exclude them.)
Initial state. With the first solution, initial state is a block of k2 states, which
immediately appears to have a disqualifying defect : with different inputs, be
they sequential or parallel, the initial state would not be the same (see Figure
3) !

This phenomenon, which by the way would not be limited to the initial
state, leads us to abandon the first possibility. In the second, initial state is the
k-tuple

(q0, e, . . . , e)

Inputs. We are lead to group them by k :

- with a sequential input this is because we select one time-unit out
of k

- with a parallel input it is because we group the cells.

In the case of a sequential input - which is the normal case - input at time 0 for
the fast c.a will be the k-tuple of inputs from time 0 to time k − 1, and input
at any time t the k-tuple of inputs from time kt to time kt + k − 1. So if the
input word was

x0x1 xn−2∗

206 CHAPTER 7. SPEEDING UP

the new input word will be

(x0 xk).. (. . . xn−2 ∗ − − . . .−)

(where - is nothing) of length �n/k�. This new input word, which is well deter-
mined and unique, will be called the k-grouping of the old input word.

And there we are precisely touching the weak point of the c.a we try to conceive
: we must previously change its input word.
The halting states. A halting state may appear at a time which is a multiple
of k, and it is clear that any k-tuple whose first element is a halting state qa

will be a halting state for the fast c.a.
But if the halting state qa appears at a time which is not a multiple of k,

which shall we consider a halting state, the preceding or the following state of
the fast c.a ?

- it cannot be the preceding state, because the arrival of qa may
depend on further inputs (Figure 4).

- to be honest, the next state is not defined. So we shall define new
states and complete the fast transition : for each halting state qa we
define a corresponding state Qa, and agree that the fast transition
leads to Qa if qa appears on cell 0 at one of the k − 1 preceding
time-steps (which somehow are the history of the state).

Now then, we do not need to distinguish Qa and the different k-tuples with
first component qa, so we shall confuse them all by deciding that the fast c.a

7.1. WEAK SPEEDING UP 207

arrives in state Qa if the original c.a has just arrived in state qa, or has arrived
in this state at one of the k − 1 preceding time-steps (Figure 5). Naturally, Qa

will be accepting or rejecting as qa.
If the halting time was T for the original c.a, for the fast one it will be �T/k�.

Outputs. We could be tempted to group them like the inputs. But if the
output should depend on the state, only on the state, of cell 0, we may be
embarrassed with the inputs, because a same state receiving different inputs
could produce different outputs (see Figure 4). So we shall simply lay computer
c.a’s aside in this chapter.

7.1.2 For synchronizers

They have no outputs and no inputs, so none of the corresponding problems.
They work with a finite number of cells, starting with an initial state which is
not necessarily reduced to an impulse (as examples : a general at either end, a
general in the middle of the line)

States. We have rejected block states for recognizers, so we do not want to
introduce them anew here, first because they are particularly cumbersome and
numerous, then for the sake of coherence in structures, and finally because we
shall often have to combine recognizers and synchronizers.

So states are the k-tuples of states, on k-tuples of cells. But a new problem
arises here : how must the cells be grouped ? from the left ? from the right ?
we shall reserve ourselves all possibilities by adding to the k-tuples all the in-
complete h-tuples (h ≤ k) containing a left or right border state, both denoted
β

(β, q1, . . . , qi) (q1, . . . , qj , β).

208 CHAPTER 7. SPEEDING UP

For a better presentation we shall replace these β’s by several β’s so as to restore
k-tuples

(β, . . . , β, q1, . . . , qi) (q1, . . . , qj , β, . . . , β).

So states will be elements of [Q∪ {β}]k. And in applications we shall be free to
group cells as we please.

The fire state. We shall define it in the same way as we have defined the
halting states for recognizers. We shall confuse in a single state : all k-tuples
containing the fire state and β’s, and a new state for the fast synchronizer, to
which transition leads if the fire state has appeared at one of the k−1 preceding
time-steps (Figure 6), (in the history).

If n cells were synchronized in time T (n) by the original c.a, the new syn-
chronization time is �T (n)/k�. But what exactly have we synchronized ? �n/k�
or �n/k�+ 1 of our new cells. So we must not deceive ourselves, in k times less
time we have synchronized k times less cells !

Speeding up seems thus senseless for synchronizers. Let us be patient, it
will show useful when we know how to manage it properly, after we have gained
experience with the parallel recognizers (cf section 7.4).

7.2 Strong speeding up for recognizers

We want to speed up by a factor k ≥ 2 : this can only be thought of if recognizing
time for an input word of length n is T (n) > n + 1, greater than the real time.

Our aim here is to use the preceding weak accelerated c.a after having
changed the original input into the k-grouped input.

7.2. STRONG SPEEDING UP FOR RECOGNIZERS 209

210 CHAPTER 7. SPEEDING UP

7.3. STRONG SPEEDING UP FOR PARALLEL RECOGNIZERS 211

We shall do this very simply, by piling up inputs in stacks of k, as they arrive.
As shown on Figure 7, where only the indexes of the inputs have been written
down), two stacks in each cell will be enough. If input enters a cell where the
two stacks are already full, it goes in a transit place to travel rightwards till it
finds the first free place.

As soon as the end marker ∗ has entered cell 0, at time n + 1, then grouped
inputs can be used : like the other inputs, ∗ travels right till it finds its place,
but it also definitely marks cells, with s in transit place. Now, when ∗ (or s) is
in cell 0, left (or right) stack is used as input, and when ∗ (or s) is in any other
cell, left (or right) stack travels left.

One can easily check here that one stack in each cell would not suffice to get
the grouped inputs at the desired rythm.

Initial state of our new c.a is Q0 = (q0, e, . . . , e), it is stored in another part
of the new states (at the right in Figure 7). It is inhibited as long as the end
marker has not entered cell 0, so is awakened at time n + 1. From there on, the
weak acelerated c.a works, in the right part of the states.
The new recognizing time will then be

n + 1 +
⌈

T (n)
k

⌉
.

As a consequence, any recognizing taking a linear time T (n) = an (a an integer)
can be speeded up into a recognizing in time 2n+1, by choosing speeding factor
a. Even better, with a speeding factor �a/ε�, the new recognizing time could be

≤ n + 1 + �εn� = 1 + �n(1 + ε)�.

We underline here that speeding up sequential recognizers needs no auxiliary
synchronizing, it is ideally simple.

7.3 Strong speeding up for parallel recognizers

Method of this section is due to N.Reimen and J.Mazoyer [45, 46].
Here we must proceed to a horizontal k-grouping of the input word

(x0, x1, , xn−1), of length n,

(xn−1 might be an end marker if we wish), or rather of the states

(a0, a1, , an−1)

resulting at time 1 from entering of the inputs. Quiescent state of our new c.a
will be E, which, in view of further use, we detail in form (e, e, . . . , e). Inputs
entering on state E begin by settling the same states ai as in the original c.a.
Then the grouping will proceed from the rightside by the following mechanism :

212 CHAPTER 7. SPEEDING UP

any grouped state pushes all its elements except the last one into the left neigh-
bour, the process being started by E = (e, e, . . . , e) at time 1 (figure 8a, where
k = 3).

7.3. STRONG SPEEDING UP FOR PARALLEL RECOGNIZERS 213

214 CHAPTER 7. SPEEDING UP

The k-grouping will be achieved at time n + 1. The process must then be
stopped, what only a synchronizer can do, by a fire state at time n + 1. As we
already know, a one general synchronizer cannot synchronize n cells (which is
certainly more than needed) in time n + 1, so we shall use two generals, one at
the left and one at the right. If this synchronizer is minimal time, it does the
job in n − 1 time units, so it must start at time 2. To this purpose we decide
that our fast c.a

- produces generals through transition with triples

(β, ai, aj) and (ai, aj , E)

- produces a special state playing the part of a border for the syn-
chronizer from triple (aj , E, E).

The grouping process and synchronization develop simultaneously but indepen-
dently in two separate parts of the new states : to this point, our c.a is the
product of the grouping c.a and the synchronizer.

Now then we decide that the fire, not only stops the grouping, but starts
the weak speeded up c.a, by activating initial state which was stored from the
beginning, in a third component, in cell 0.

The new recognizing time is then

n + 1 +
⌈

T (n)
k

⌉
.

But we can still do a little better without much strain. Indeed, nothing
prevents us from operating transition while grouping : we just let the c.a, at each
time-step, do its transitions (possibly grouped), before the states are pushed.
It is recommended to get convinced with the help of figure 8b, that all states
of any site are obtained from the three sites of the neighbourhood at preceding
time. Here fire state will stop the grouping and start the fast transition, from a
state which is no more the initial state, but state at time n + 1 of the original
c.a.

The recognizing time is then

n + 1 +
⌈

T (n) − (n + 1)
k

⌉
.

It seems advisable here to denote D(n) the delay between minimal recognizing
time (which is n + 1) and the recognition time T (n). The new recognizing time
then writes

n + 1 +
⌈

D(n)
k

⌉
.

7.4. SPEEDING UP SYNCHRONIZERS 215

7.4 Speeding up synchronizers

The following solution is due to O.Heen [23, 24].
If we try to apply the k-grouping process of preceding section to a synchro-

nizer S0 (original synchronizer, having synchronizing time T (n)), it could be
started from the right by some state (q, β, . . . , β), element β, reminding of the
border, taking the place of the quiescent state in preceding section.

If a grouped state of form (q, β, . . . , β) is set in cell n at time 0, grouping
will be achieved at time n − 1, on the �n/k� left cells, remaining cells being all
in state (β, β, . . . , β) = B.

The weak accelerated c.a which takes the relay can then bring, in time

n − 1 +
⌈

T (n)
k

⌉
(or n − 1 +

⌈
T (n) − (n − 1)

k

⌉
)

the �n/k� left cells in fire state, cells on the right staying in state B.
But why not do a same grouping from the left to the right , which would

permit us to bring to fire the �n/k� right cells ? In case k = 2, the conjunction
of the right and left synchronizations suffices to synchronize the entire line of
cells. But if k ≥ 3 the central cells remain in state B. So we have the idea of
grouping from the left and the right towards a central region, and even towards
several central regions covering the entire line. This needs some work, which we
do in next paragraphs.

Let us notice that we have not specified which family of synchronizers we
want to speed up, the one with one general, or the one with two, or the one
where the general is somewhere on the line. For this reason we shall denote the
initial state of S0 by (q1, . . . , qn), a general and imprecise notation.

7.4.1 Conjugate signals of slopes b
a

and − b
b−a

, 0 ≤ a ≤ b

In Figure 9 we show, in the space R2, and in cases a = 0 (left figure), a = b
(right figure), and general case (center figure)

216 CHAPTER 7. SPEEDING UP

- the straightline D from point (1, 0) having slope b/a

- the straightline D′ from point (n, 0) having slope −b/b − a

- the points A, A′ where they cross horizontal line y = n − 2 :

abscissa(A) = 1 + (n − 2)
a

b
abscissa(A′) = 2 + (n − 2)

a

b
.

Now we want to come back on our study ground, that of s.t.d sites, that is
N2. To approximate straightlines D and D′ we shall replace them by the sites
immediately on the right of their points of integer ordinates (Figure 10).

We thus obtain the broken lines S and S′ formed with points

(1 +
⌈a

b
t
⌉

, t) and (
⌈
n − t +

a

b
t
⌉

, t).

The successive moves of S from time 0 are the periodic repetition of the sequence
of b 0- or 1-moves (for a ≤ b) that follow :

⌈a

b

⌉
,

⌈
2a

b

⌉
−

⌈a

b

⌉
,

⌈
3a

b

⌉
−

⌈
2a

b

⌉
, · · · , a −

⌈
(b − 1)

a

b

⌉
.

So S may be realized in a s.t.d by a signal formed by (at most) b states
s1, s2, . . . , sb. S′ in the same way, with states s′1, s

′
2, . . . , s′b. These associated

signals, S and S′, will be called conjugate signals of slope b/a and −b/b − a .

7.4. SPEEDING UP SYNCHRONIZERS 217

At time t = n − 2, signals S and S′ issued from cells 1 and n are

S on cell �a

b
(n − 1) � and S′ on cell �a

b
(n − 1)� + 1

and n − 2 is the first time when S and S′ are on neighbouring cells, S on one
cell and S′ on its right neighbour.

In the sequel we shall want this to occur at time n−1 and not at time n−2,
so we shall complete S and S′ each with a state that sets them up at time 0, s0

in cell 1 and s′0 in cell n.

7.4.2 k-grouping guided by a signal

On Figure 8 we see how grouping progresses from right to left along speed(-1)-
signal as frontline.

To achieve an S-guided grouping, we only need each grouped cell to possess
a periodical counter where the states of S succeed one another : depending on
wether it contains a 1-move,-1-move or 0-move state, inputs will push right-
wards, or leftwards, or stand still. Let us be very precise :
at time 0 we set up

- not the initial state of S0

(q1, q2, , qn)

but the initial state ”grouped with the border”

(β, . . . , β, q1) , q2, , (qn, β, . . . , β)

- and in cells 0 and n respectively states s0 and s′0 of S and S′,(
corresponding to 0-moves)

Figure 11 illustrates this on 5 cells in the two cases of conjugate signals of slopes
−∞,−1 and 7/2,−7/5 of Figure 10.

218 CHAPTER 7. SPEEDING UP

Then, at time n − 1 the left frontline of the grouping, S, has arrived in cell
1 + �(n − 1)a/b�, while the right frontline has arrived on the right neighbour,
so they have met, and there we must stop the grouping. As previously, nothing
prevents us from computing at the same time, whatever the move.

At this time, which are the cells not in state B = (β, . . . , β) ? States other
than β being k together in a grouped cell, the number of cells not in state B is⌈

1 + �(n − 1)a
b �

k

⌉
on the left, and

⌈
n − 1 − �(n − 1)a

b �
k

⌉
on the right.

Index of the first cell which is not in state B is

g = 2 +
⌈
(n − 1)

a

b

⌉
−

⌈
1 + �(n − 1)a

b �
k

⌉

and of the last one is

d = 1 +
⌈
(n − 1)

a

b

⌉
+

⌈
n − 1 − �(n − 1)a

b �
k

⌉
.

7.4.3 Fast synchronization

We must now choose the couples of conjugate signals along which we shall group
cells in central regions. As each couple will fill about n/k cells, we foresee about
k couples, that we must distribute conveniently. We so choose b = k and the
k+1 values a0 = 0 , . . . , ai = i , . . . , ak = k. For i = 0 and i = k, we recognize
the groupings to the borders. Let us now verify that the sequences of cells not
in state B produced by the Si,S′

i couples cover the entire line. gi and di being
the first and last cells not in state B of the ith grouping, we are left to compare
di and gi+1. but

di = 1 +
⌈
(n − 1)

i

k

⌉
+

⌈
n − 1 − �(n − 1) i

k �
k

⌉

and

gi+1 = 2 +
⌈
(n − 1)

i + 1
k

⌉
−

⌈
1 + �(n − 1) i+1

k �
k

⌉
.

Recall that ⌈
�x

p �
q

⌉
= � x

pq
�

(cf [31] exercise p.40) and

�x + y� ≤ �x� + �y� ≤ �x + y� + 1

7.4. SPEEDING UP SYNCHRONIZERS 219

�x� − �y� ≤ �x − y�

thus

gi+1 − di = 1 +
⌈
(n − 1)

i + 1
k

⌉
−

⌈
(n − 1)

i

k

⌉
−

⌈
1 + �(n − 1) i+1

k �
k

⌉
−

⌈
n − 1 − �(n − 1) i

k �
k

⌉

≤ 1 +
⌈
(n − 1)

1
k

⌉
−

⌈
k+(n−1)(i+1)

k

⌉
k

 −

⌈
k(n−1)−(n−1)i

k

⌉
k

≤ 1 +
⌈

n − 1
k

⌉
−

⌈
k + (n − 1)(i + 1)

k2

⌉
−

⌈
k(n − 1) − (n − 1)i

k2

⌉

≤ 1 +
⌈

n − 1
k

⌉
−

⌈
1
k

+ (n − 1)
i + 1
k2

⌉
−

⌈
n − 1

k

⌉
+

⌈
(n − 1)i

k2

⌉

≤ 1 −
⌈
(n − 1)

i

k2
− 1

k
− (n − 1)

i + 1
k2

⌉

≤ 1 −
⌈
−1

k
− n − 1

k2

⌉

= 1 −
⌊

1
k

+
n − 1
k2

⌋
≤ 1

so finally gi+1 ≤ di + 1.
This guarantees that any cell will receive a grouped state from one of the

(k + 1) k-groupings.
Each k-grouping must be stopped at time n − 1 and switched on the weak

accelerated c.a : a single 2-ends synchronizer, Σ2, will switch the k+1 processes.
This synchronizer must be in fire state at time (n-1) : we know since chapter 1
that only a 2-ends synchronizer can achieve this and that such a synchronizer
does indeed exist. But no synchronizer can do better, and this is the reason
why we have delayed all the systems of conjugate signals by one time-step !

The fast synchronizer will be the product of Σ2 and the k + 1 groupers (or
computer-groupers) followed by the weak accelerated c.a’s.

For each cell, one at least of the k + 1 weak accelerated c.a’s brings it to the
fire state at time

n − 1 +
⌈

T (n)
k

⌉
(or n − 1 +

⌈
T (n) − (n − 1)

k

⌉
.

We shall confuse all the product states where at least one component is fire,
and declare this is the FIRE of our new c.a.

In Figure 12 we have sketched a few instants of a few cells of the fast syn-
chronizer. If K denotes the set of states of Σ2, Qi and Q′

i the states of Si and
S′

i, its states belong to

K ×
k∏

i=0

{Qi ∪ Q′
i} × Qk.

220 CHAPTER 7. SPEEDING UP

To be precise we must add an ∅ symbol to sets Σ2, Qi and Q′
i, because the

places reserved for them in the states of the fast c.a may be empty.

7.4. SPEEDING UP SYNCHRONIZERS 221

Now that the construction is completed, let us take the time of examining

222 CHAPTER 7. SPEEDING UP

the result we have been lead to by our first idea : it is a new synchronizer,
obtained by completing S0 with

- not only a 2e-synchronizer

- but by state systems si
0 and s′i0, in the end cells, meant to generate

the conjugate signals.

Thus this synchronizer has non quiescent extremities. And so this speeding
up makes sense only for 2e-synchronizers.

Theorem 7.4.1 A 2e-synchronizer in time T2e(n) (> n− 1) can be speeded up
into a 2e-synchronizer in time

n − 1 +
⌈

T2e(n) − (n − 1)
k

⌉
.

Namely, any 2e-synchronizer in linear time a.n can be speeded up into a
2e-synchronizer in time 2n, or even better in time �n− 1 + εn�, for any positive
rational ε.

7.4.4 Fast synchronization for one end-synchronizers

But we shall not give up for one-end synchronizers : Grigorieff has suggested
a way to adapt the preceding method, by using conjugate signals starting from
sites < 1, 0 > and < n, n − 1 >, the first one with slope two times greater, i.e.
2b/a, the second one with the same slope as before. We guess that they should
join up approximately at the same place, and at time about 2n. Let us now set
this up neatly.

We shall prop our new signals (Figure 13) along

- the straightline D from point (1, 0) having slope 2b/a

- the straightline D′ from point (n, n − 1) having slope −b/b − a

- which both cross the horizontal line y = 2n − 2 at point A

abscissa(A) = 1 +
a

b
(n − 1).

We shall approximate these straightlines not exactly with the sites on the right
of their points of integer ordinates, because for D we shall replace these sites
by their left neighbours (except for the first sites which are on cell 0), so that
the frontlines of the grouping should arrive not on the same cell but on two
neighbouring cells. The signals S and S′ thus obtained are the new conjugate
signals for this case. At time 2n− 2, S′ is on cell �1+ a

b (n− 1)� and S is on the
left neighbour �a

b (n − 1)�.

7.4. SPEEDING UP SYNCHRONIZERS 223

The k-grouping will be guided by the new conjugate signals. It is started
by state (β, . . . , β, G) on site < 1, 0 >, and state B = (β, . . . , β, β) set on site
< n, n − 1 > by a speed-1 signal sent by the general. Each pair of conjugate
signals is started by a state s0 in cell 1 at time 0 and a state s′0 in cell n at time
n − 1. The k + 1 states s′0 are set in cell n by the speed-1 signal sent by the
general.

The number of cells not in state B when the frontlines of the grouping arrive
on cell �a

b (n − 1)� and its right neighbour is⌈�(n − 1)a
b �

k

⌉
on the left, and

⌈
n − �(n − 1)a

b �
k

⌉
on the right.

Index of the first cell which is not in state B is

g = 1 +
⌈
(n − 1)

a

b

⌉
−

⌈�(n − 1)a
b �

k

⌉

224 CHAPTER 7. SPEEDING UP

and of the last one is

d =
⌈
(n − 1)

a

b

⌉
+

⌈
n − �(n − 1)a

b �
k

⌉
.

For the k + 1 couples of conjugate signals we choose the same values b = k and
a0 = 0 , . . . , ai = i , . . . , ak = k. Then

di = 1 +
⌈
(n − 1)

i

k

⌉
+

⌈
n − �(n − 1) i

k �
k

⌉

and

gi+1 = 1 +
⌈
(n − 1)

i + 1
k

⌉
−

⌈
1 + �(n − 1) i+1

k �
k

⌉
.

Similar calculations as before lead to

gi+1 − di ≤ 1 − 	1
k
− n − 1

k

 ≤ 1.

As before this guarantees that any cell will receive a grouped state from one of
the (k + 1) k-groupings.

Here the k-groupings, without or with simultaneous computing, will be
stopped at time 2n−2 and switched on the weak accelerated c.a’s by a minimal
time synchronizer started at time 0.

So at last we have the

Theorem 7.4.2 A synchronizer in time T1e(n) (> 2n − 2) can be speeded up
into

2n − 2 +
⌈

T1e(n) − (2n − 2)
k

⌉
.

In particular, any synchronizer in linear time a.n can be speeded up into a
synchronizer in time �2n − 2 + εn�, for any positive rational ε.

7.5 Speeding up by a constant for synchronizers

Let us come back to the weak accelerated c.a of a recognizer or a synchronizer :
its states and k-grouped input enable it to compute in one time-step what the
original c.a computed in k time-steps. But nothing forbids it of doing less, of
doing only what the original c.a did, or only a little less, what the original c.a
did in h time-steps, h < k. What is needed for this is only that all the grouped
cells be advised, at a determined instant, that they must work faster, or slower.
All changes of speed must be commanded by auxiliary synchronizations.

Unluckily, synchronizations are heavy and unpractical tools : they need two
borders, or states that can play the part of borders, and then they take the time
they can and not the time we want !

7.5. SPEEDING UP BY A CONSTANT FOR SYNCHRONIZERS 225

The idea we have of using the fast speed during one time-step only and
then to come back to the original speed will be very easy to implement with
a synchronizer (or a parallel recognizer), because their accelerated c.a’s have
a minimal time synchronizer as a component. The fire state of this auxiliary
synchronizer will start one only step of fast computing, by which we gain (k−1)
time-steps, as k time-steps are replaced by one.

Let us beware that, if from the auxiliary synchronization up, synchronization
(or recognition) occurs after a time t comprised between 1 and k, this time t
will be replaced by 1 time-step, and if synchronization (or recognition) takes
minimal time, then there is no change whatever in process nor time. We keep
these cases into account mostly to obtain a general formula.

If we group without computing at the same time, the result is not nice and
simple, consequently not very interesting. So we consider only the case when
computing starts with the grouping. Moreover, to express the result smoothly,
we had better, here as we have already done previously, use the delay D(n)
between the minimal time (2n−2 for a synchronizer, n−1 for a 2e-synchronizer,
and n + 1 for a parallel recognizer) and the actual time, rather than the time
itself.

We note h = k − 1.
The new synchronization (or parallel recognition) time is

D′(n) =

0 if D(n) = 0
1 if 1 ≤ D(n) ≤ h + 1
D(n) − h if D(n) ≥ h + 1

If we want a formula for all cases we must write

D′(n) = min(D(n),max(1, D(n) − h)).

We can gain h time-steps only if D(n) is strictly greater than h. This
according to mere common sense.

Let us notice at the end of this chapter, because it will be of use later, that
all we have just done by grouping cells by k can a fortiori be done by grouping
them by k′ > k.

226 CHAPTER 7. SPEEDING UP

Chapter 8

Synchronization times

8.1 General considerations

8.1.1 Justification

The problem of synchronization is not only a nice cellular automata problem.
If one needs to change, at some determined instant, the working of some c.a,

to stop some process, or to freeze it, to release it, to start some new process . . .
cells must be warned all together at this moment that transition rules change.
But cells, except the first one, are not accessible, at least in sequential c.a’s.

(As for parallel c.a’s, if we should consider them, we should also wonder why
inputs used at time 0 could not be used at any other time if needed ! So that
no synchronization would ever be needed. But we once more insist that these
c.a’s are mere study auxiliaries).

So all we can do is add to the c.a some built-in synchronizer, or establish rules
by which inner events, that is certain states at certain places, start an auxiliary
synchronizer. The fire state of this synchronizer will warn the cells. We have
already used such synchronizers, to build a sequential c.a from a parallel one in
3.3.3, to stop the grouping process and start the fast computation in 7.3.

Up to now, we have built only 2 synchronizers, Minsky’s and Mazoyer’s, but
this is enough to understand that synchronizing needs work, takes at least 2n−2
transitions, and above all a time that we cannot choose at our convenience. For
this reason, we should like to know beforehand what synchronizing times may
be realized.

8.1.2 Which synchronizers ?

In the preceding chapters we have encountered different sorts of synchronizers,
those with one general at one end (1e-), those with two generals at the two
ends (2e-) and those with one general anywhere in the line. The two most
important families are the 1end- and 2ends-synchronizers. Their two families of
synchronizing times are two families of functions (respectively N∗ and N∗\{1} �→

227

228 CHAPTER 8. SYNCHRONIZATION TIMES

N) which are naturally different, as common sense makes us suspect and as is
highlighted by considering their minimal elements

T1min(n) = 2n − 2

T2min(n) = n − 1.

If these two families do not contain the same functions, we nevertheless expect
them to have analogous closure properties.

8.1.3 Synchronization delays

All synchronizing times, for 1e- and 2e-synchronizers, may be written

T1e(n) = T1min(n) + D1(n)

T2e(n) = T2min(n) + D2(n)

where D1 and D2 are positive functions, which we call synchronization delays. It
is equivalent to study the families of synchronizing times or the families formed
by these delays , but the latter are both families of positive functions, containing
the null function, so they appear far more pleasant to study. We shall denote
these two families SD1 and SD2.

A new question springs up to our mind : couldn’t these two families, which
have two important features in common, be the same one ? This question will
become more stressing as we shall find in the sequel that the two families have
quite a lot of functions in common.

8.2 Summary of results already established

8.2.1 Starting points

Till now we have actually built two 1-end synchronizers. Synchronizing time of
the first, Minsky’s, has a complicated expression (1.3.5), and it would be very
surprising if we should ever need to end or start some process in a c.a at such a
time ! Minimal synchronizing time T1min(n) = 2n− 2, time of Mazoyer’s c.a or
its famous predecessors, seems bond to be more useful for later constructions.

From this one-end synchronizer, we have then built a 2ends-synchronizer,
in minimal time T2min(n) = n − 1. The construction, by symmetry, may be
applied to any 1e-synchronizer.

Of course 1e-synchronizers have n ≥ 1 cells, and 2e-synchronizers have n ≥ 2
cells.

8.2. SUMMARY OF RESULTS ALREADY ESTABLISHED 229

First functions in SD1 and SD2

The very first one is naturally the null function.

The second one is function Di(n) = n − 1.
Indeed, a minimal time 1e-synchronizer can be made into a 2e-synchronizer

by adding a second general which we shall let to sleep. For this 2e-synchronizer

D2(n) = n − 1.

A minimal time 1e-synchronizer, once it is in fire state, can start a minimal
time two ends synchronization. The resulting 1e-synchronizer has delay

D1(n) = n − 1.

Change of variable

We shall choose to express synchronization delays not with variable n, but with
variable

ν = n − 1

which is length of lines minus one, ≥ 0 for 1e-synchronizers, and ≥ 1 for 2e-
synchronizers, only because formulas will be neater. We shall then denote syn-
chronization times and delays ti(ν) and di(ν), and we shall keep notation SDi

for the families of delays, there will be no risk of confusing with the help of the
context.

8.2.2 Slowing down and speeding up

Slowing down by a constant

From section 6.7 we know that

if di(ν) ∈ SDi then, for all k ∈ N di(ν) + k ∈ SDi

Linear slowing down :

With the very simple formula T ′ = kT of section 6.6, for the delays we obtain
d′(ν) = (k−1)Tmin +kd(ν). To create new delays, formula d′(ν) = kd(ν) would
suit us better. We can obtain it if the slowing down counter starts only at time
Tmin, which is possible if we adjoin to our synchronizer (1e- or 2e-) a minimal
time synchronizer. So

if di(ν) ∈ SDi then, for all k ∈ N k.di(ν) ∈ SDi

230 CHAPTER 8. SYNCHRONIZATION TIMES

linear speeding up :

From paragraphs 7.4.3 (2e-) and 7.4.4 (1e-synchronizers) we retain, once more,
the only simple formula

T ′(n) = Tmin +
⌈

D(n)
k

⌉

which gives

if di(ν) ∈ SDi then, for all k ∈ N

⌈
di(ν)

k

⌉
∈ SDi

Speeding up by a constant

result of section 7.5 is not too complicated if delay d(ν) is strictly positive : for
h ∈ N

d′i(ν) = max(1, di(ν) − h) ∈ SDi.

If di(ν) should be 0 for some values of ν, d′i(ν) would also be 0 for these values,
and formula becomes more complicated :

d′i(ν) = min[di(ν),max(1, di(ν) − h)] ∈ SDi.

8.2.3 Finite modifications

This operation will be very practical in the sequel for some convenient rectifi-
cations. We wish to show that

if di(ν) ∈ SDi and

d′i �= di for a finite number of values of ν, ν1 < . . . < νk

then

d′i ∈ SDi

Let then S2 be a 2e-synchronizer with delay d2(ν). We complete this 2e-
synchronizer with

- a minimal time synchronizer Σ2 which returns to quiescent state
after fire

- in each cell a clock which counts up to sup(νk, d′(ν1), . . . , d′(νk))
and has marked values ν1, . . . , νk memorized.

Thus, states have three components.
The behavior of this new c.a is as follows

8.3. STRETCHING THE LINES (SPATIAL HOMOTHETY) 231

1/ if the clocks are not on a marked value when Σ2 fires at time ν,
then we know that ν �= ν1, . . . , νk. The new c.a then behaves as S2

does, and fires when S2 does, i.e. with delay d2(ν)

2/ if the clocks are on a marked time νi when Σ2 fires at time ν,
then they are reset to 0 and fire will occur after d′2(νi) units of time.

If we deal with a 1e-synchronizer, the only difference is in the marked times
of the clocks, which must be 2ν1, . . . , 2νk. The clocks must of course count up
to sup(2νk, d′1(ν1), . . . , d′1(νk)).

Let us not wait a second more to use this new possibility. We start by
observing that it could be reasonable to admit that a synchronization delay
should not have value 0 for arbitrarily great values of ν, in which case it could
have value 0 only for a finite number of values, ν1, . . . , νk. By modifiying d
for these k values, we have a new synchronization delay d′(νi) which is strictly
positive. When speeding up by a constant, by first modifiying di, replacing the
zero values by 1, we obtain

d”i(ν) = max(1, d′i(ν) − h) = max(1, di(ν) − h)

and we can forget the restriction we had made concerning this formula.

8.3 Stretching the lines (spatial homothety)

Our first result will be better expressed with the synchronizing times and the
full length n of the lines

Proposition 8.3.1 if Ti(n) ∈ ST i then, for all k ∈ N, Ti(kn) ∈ ST i.

where ST i is the family of synchronizing times for ie-synchronizers, i = 1 or 2.
We shall give the proof for k = 2, to avoid lenghty expressions. Let then Si be
a synchronizer in time Ti(n), with set of states Q and transition δ. We build a
new synchronizer with set of states Q × Q (Figure 1) and transition

∆((pl, ql), (p, q), (pr, qr)) = (δ(ql, p, q), δ(p, q, pr))

∆(β, (p, q), (pr, qr)) = (δ(β, p, q), δ(p, q, pr))

∆((pl, ql), (p, q), β) = (δ(ql, p, q), δ(p, q, β)).

232 CHAPTER 8. SYNCHRONIZATION TIMES

The quiescent state will be (e, e), the fire state (∗, ∗). For a 1e- synchronizer
the general state will be (G, e). For a 2e-synchronizer we can identify states
(G, e) and (e, G), (let G be the state identifying (G, e) and (e, G)), which may
nevertheless be treated differently by transition ∆ because one has the border
state on its left and the other on its right

∆(β, (G), (e, e)) = (δ(β, G, e), δ(G, e, e))

∆((e, e), (G), β) = (δ(e, e, G), δ(e, G, β)).

It is clear that the diagram of the new c.a reproduces the diagram of the original
one for a line twice longer. Hence the result, for k = 2. Proof is quite the same
for k > 2.

In order to obtain a result for delays, we shall now make a more elaborate
construction, separately for 1e- and 2e-synchronizers.

Starting with a 1e-synchronizer in time T1(n) = 2n − 2 + D1(n), we first
consider the synchronizer having as states k-tuples of states of the latter, so
that a line of n cells reproduces a k-grouped line of kn cells. A line of kn cells
should synchronize in T1(kn) = 2.kn − 2 + D1(kn) time-steps.

To this synchronizer we add a minimal-time synchronizer, which can warn
cells at time 2n, 2 time-steps after its synchronization, that transition rules
change.

If we let the first synchronizer compute k times faster till time 2n, at this
time it has reproduced k.2n steps of the synchronization of the line of kn cells,
so that the number of steps left to reach synchronization is

2.kn − 2 + D1(kn) − k.2n = D1(kn) − 2.

If from this time up, computation continues at normal speed, synchronization
will appear at time

2n + D1(kn) − 2

8.4. COMBINING SYNCHRONIZATION TIMES 233

so that the delay is exactly D1(kn).
There is just a little correction for the cases when D1(kn) = 0 or 1, because

then, the accelerated synchronizer of the line of kn cells synchronizes at time

⌈
T1(kn)

k

⌉
=

⌈
2kn − 2 + D1(kn)

k

⌉
=

2n = (2n − 2) + 2 if k > 2

2n = (2n − 2) + 2 if k = 2 and D1(2n) = 1
2n − 1 = (2n − 2) + 1 if k = 2 and D1(2n) = 0

so that the delay is not D1(kn) but 2 (or 1) (of course this case is highly
improbable !) Thus we have

Proposition 8.3.2 if D1(n) ∈ SD1, and k > 2, then max(2, D1(kn)) ∈ SD1

Proposition 8.3.3 if D1(n) ∈ SD1, then D1(2n) + χ(D1(2n)≤1) ∈ SD1

where χ(D1(2n)≤1) = 1 if D1(2n) = 0 or 1, and χ(D1(2n)≤1) = 0 otherwise.

For a 2e-synchronizer, in time T2(n) = n − 1 + D2(n), the proof is similar.
We consider the synchronizer having as states k-tuples of states reproducing
a k-grouped line of kn cells, whose synchronizing time should be T2(kn) =
kn − 1 + D2(kn). This synchronizer is accelerated k times and completed by a
minimal-time 2e-synchronizer, which warns cells at time n to continue at normal
speed. The total time for synchronization is then

n + T2(kn) − kn = n + (kn − 1 + D2(kn)) − kn = n − 1 + D2(kn)

and the delay is D2(kn).
In the, quite improbable, case when D2(kn) = 0, the accelerated synchro-

nizer is synchronized at time⌈
T2(n)

k

⌉
=

⌈
kn − 1 + D1(kn)

k

⌉
= n = (n − 1) + 1

so the delay is not D2(kn) = 0 but 1.

Proposition 8.3.4 if D2(n) ∈ SD2, then max(1, D2(kn)) ∈ SD2

8.4 Combining synchronization times

Up to now, if we do not take the auxiliary minimal-time synchronizer into
account, we have used only one synchronizer. We shall now use two, which we
suppose to be of the same type, 1e- or 2e-, and we moreover precise that if we
deal with two 1e- synchronizers, the two generals are both on the left end, so
the product is still 1e-, (we postpone passing from one type of synchronizer to
the other till last section). Proofs are valid for the 2 types : beware that in this
section indexes 1 and 2 do not refer to the type of synchronizers.

234 CHAPTER 8. SYNCHRONIZATION TIMES

8.4.1 Min and max

Let

S1 be a synchronizer with fire state ∗1 and delay d1,

S2 a synchronizer with fire state ∗2 and delay d2.

We make the product of these 2 c.a’s. If we merge all states having at least
one fire component, than we have a synchronizer with delay min(d1(ν), d2(ν)).
If we decide that the fire states ∗1 and ∗2 are permanent, and fire state of the
product is (∗1, ∗2) then we have a synchronizer with delay max(d1(ν), d2(ν)).

8.4.2 Sum

We remind that we argue for both the 1e-/2e-cases (Figure 2 illustrating the
2e-case). Let

S1 be a synchronizer with fire state ∗1, and delay d1,

S2 a synchronizer with fire state ∗2, and delay d2,

and S a minimal time synchronizer with fire state ∗ (delay 0).

We make the product of these 3 c.a’s, and let it work as follows :

- ∗ freezes S2 on configuration C2(2ν)/C2(ν), (while S stops on state
∗)

- ∗1 unfreezes S2, (while S1 stops on state ∗1)

- fire state of the product will be (∗, ∗1, ∗2).

Delay of the product is then d1 + d2.

Let us notice that:

- if d1 = 0, S2 is not blocked

- if d2 = 0, C2(2ν)/C2(ν) is in state ∗2

so that in all cases the triple fire appears at time d1 + d2.

8.4. COMBINING SYNCHRONIZATION TIMES 235

236 CHAPTER 8. SYNCHRONIZATION TIMES

8.4.3 Product

Now we let the same product work as follows (Figure 3), when d1 and d2 are
not 0

- ∗ blocks S2 (on configuration C2(2ν)/C2(ν)) and definitively records
configuration C1(2ν)/C1(ν) in some part of cells of S1, (the lower
part in Figure 3)

- ∗1 unblocks S2 for one time-step. It also warns S1 to start again
its synchronization process from the recorded configuration up

- fire state of the product is ∗2 on S2.

It appears after delay

d1.d2 + 1.

In order for this formula to keep valid if d1 = 0 or d2 = 0 we agree that

- ∗ and ∗2 appearing simultaneously produce the fire state of the
product at next time-step

- as well as ∗ and the first ∗1, (recognizable because there is no
memorization yet).

It is worth-while complicating a little the preceding c.a in order to obtain
product d1.d2, for what we must gain one time-step. Modifications are the
following

- state ∗ gives rise to a new state ∗∗ before disappearing

- if ∗ and ∗2 appear together (d2 = 0) we have fire state

- if ∗ and the first ∗1 appear together (d1 = 0) we have fire state

- if ∗∗ and ∗2 appear together (d2 = 1) fire will be ∗1

- if ∗∗ and ∗1 appear together (d1 = 1) fire will be ∗2

- for the general case, state ∗∗ replaces the memorized configuration
C1(2ν)/C1(ν) by configuration C1(2ν + 1)/C1(ν + 1), so that one
time-step is gained before the second appearance of state ∗1.

8.4.4 Semi-differences

Let p be any integer greater than 1.We shall build a c.a synchronizing with delay

δp(ν) =

d1(ν) − d2(ν) if
⌈

d1(ν)
p+1

⌉
>

⌈
d2(ν)

p

⌉
⌈

d2(ν)
p

⌉
if

⌈
d1(ν)
p+1

⌉
≤

⌈
d2(ν)

p

⌉
The first condition implies d1 > d2, it is even a little more demanding, and

if d1 − d2 < 0 we are in the second case.

8.4. COMBINING SYNCHRONIZATION TIMES 237

This result looks a little complicated at first, but we can explain it a little.
When d1 > d2, let us observe that d1 − d2 may be very small, smaller than
d1 and d2, even much smaller. So the idea we have to build d1 − d2 is to use
accelerated synchronizing delays, �d1/p�, �d2/p�, with p large so that at least
�d2/p� slips under d1 − d2. Now

�d2

p
� ≤ d1 − d2 ⇔ d2

p
≤ d1

p + 1
.

Thus, if our condition to capture the difference is not exactly that �d2/p� slips
under d1 − d2, it is just a little more.

With large values for p we shall have more chances of realizing our condition,
which means that we shall have as synchronizing time the difference d1 − d2,
and not �d2/p�, for more (lengthes of) lines.

In section 7.4 we have seen how to build, from an original synchronizer S0 (1e-
or 2e-), a synchronizer accelerated k times, which included :

- a minimal time synchronizer Σ

- and k + 1 many k-grouper-computers,

and we did not fail to point out that, once grouping is achieved, we are not
forced to use all the power it allows, we can accelerate less than k times, we can
even compute at the original speed.

Here we make such a construction twice, with k = p + 1 for S1 and k = p
for S2, with a common Σ.
The c.a we obtain will work as follows :

1/ it groups and computes normally up to time 2ν/ν when Σ syn-
chronizes

2/ from this time up

the grouped c.a’s from S1 are accelerated p + 1 times
the grouped c.a’s from S2 are accelerated p times

so they shall fire at respective delays⌈
d1

p + 1

⌉
and

⌈
d2

p

⌉

3/ if the accelerated S1 has already synchronized or is just synchro-
nizing when S2 fires, then our c.a fires. The condition is therefore⌈

d1

p + 1

⌉
≤

⌈
d2

p

⌉
and the delay is then ⌈

d2

p

⌉

238 CHAPTER 8. SYNCHRONIZATION TIMES

4/ before we go on, let us remind how the halting times of a rec-
ognizer or the fire of an accelerated synchronizer have been defined
(7.1.2) :

the accelerated S2 enters fire state if preceding configuration has
lead to the fire of S2 in p′ time-steps, with 1 ≤ p′ ≤ p : d2 =
p(

⌈
d2
p

⌉
− 1) + p′. As we establish the transition function of the

accelerated S2, it is possible to complete the fire state by the value
of p′, or as well the value of

p − p′ = p

⌈
d2

p

⌉
− d2.

So each cell of the accelerated S2 knows this number from the time
it fires, and can memorize it in a blocked counter for later use.

5/ Suppose now that ⌈
d1

p + 1

⌉
>

⌈
d2

p

⌉
that is, the accelerated S1 has not yet synchronized when the accel-
erated S2 fires : in this case, it continues at normal speed.

When the accelerated S2 fires, at delay �d2/p�, the accelerated S1

has emulated (p + 1)�d2/p� steps towards synchronization, so the
number of steps still left to obtain synchronization is

d1 − (p + 1)
⌈

d2

p

⌉

6/ finally the fire state of the accelerated S1 unblocks the counters
and fire state will occur when counters mark 0. Synchronization
delay is then⌈

d2

p

⌉
+ (d1 − (p + 1)

⌈
d2

p

⌉
) + (p

⌈
d2

p

⌉
− d2) = d1 − d2

The c.a we have just built thus synchronizes at the announced delay.

Complicating notably this basic construction, we may obtain the more pleas-
ant

Proposition 8.4.1 if d1 and d2 are two delays in SDi and d1 ≥ (1+ε)d2, then
the difference d1 − d2 is also in SDi.

proof : a sufficient condition for δp to equal the difference d1 − d2 is

d1

p + 1
≥ d2

p
+ 1

8.4. COMBINING SYNCHRONIZATION TIMES 239

which may be written

d1 − d2 ≥ d2

p
+ (p + 1).

Let us choose p ≥ 2/ε. Hypothesis of the proposition then implies

d1 − d2 ≥ 2
p
d2 =

d2

p
+

d2

p
.

If d2
p ≥ p + 1, we are assured that δp(d1, d2) = d1 − d2, so the δp-c.a suits us.

But if d2
p < p + 1, we must obtain d1 − d2 with some other c.a. The two c.a’s

will work simultaneously (a product), and only one of the two will be observed
as soon as the case we are in is determined.

The second construction is certainly cumbersome, but here we do not spare
the states. It will comprise :

- the minimal-time synchronizer Σ (it can be the same as the one in
the δp-c.a)

- S1

- 2 sets of p(p + 1) + 1 p(p + 1)-grouper-computers for S1

- 1 set of p(p + 1) + 1 p(p + 1)-grouper-computers for S2.

They all work normally up to minimal time, 2ν/ν.
We shall now carefully list all the cases that may present themselves and

what synchronization time is adopted in each.

- if at minimal time we have the two synchronizations, ∗1 and ∗2,
this is declared fire state

- if at minimal time we have only synchronization ∗2, fire will be the
fire of S1.

- for all following cases d2 ≥ 1, so also d1−d2 ≥ 1 (because d1−d2 ≥
εd2).

we now observe result of the next time-step

- if the p(p + 1)-accelerated S2 is synchronized, then we know that
d2 ≤ p(p + 1), and we may even check the exact value of d2

- if d2 = p(p+1), or if the p(p+1)-accelerated S2 is not synchronized,
then d2 ≥ p(p + 1), the synchronizing state will be the fire of the
δp-c.a

- if the p(p + 1)-accelerated S2 is synchronized and d2 < p(p + 1),
then d2 + 1 ≤ p(p + 1), we observe the first p(p + 1)-accelerated S1

- if it is also synchronized, we can check the value of d1, and if
d1 = d2 + 1 we declare this is a fire state

- in all remaining cases d1 − d2 ≥ 2

240 CHAPTER 8. SYNCHRONIZATION TIMES

- during this first time-step after minimal time, if the second p(p+1)-
accelerated S1 has worked at normal speed, the number of time-steps
left for its synchronization is d1 − 1

- for the next time-step, this second p(p + 1)-accelerated S1 is accel-
erated, but only d2 + 1 times

if ever it synchronizes now, we know that d1−1 ≤ d2+1, so d1−d2 =
2, we declare this is a synchronization state

- if this is not the case, the second p(p + 1)-accelerated S1 resumes
normal speed. The number of time-steps left for synchronization
being

d1 − 1 − (d2 + 1) = d1 − d2 + 2

the total time for its synchronization is d1 − d2.

In all cases, d1 = d2 = 0, d2 = 0, d1 − d2 = 1, d1 − d2 = 2, d1 − d2 > 2, the
synchronizing time is indeed d1 − d2.

8.5 The families of synchronization delays

In the preceding sections we have already proved that both families SD1 and
SD2 contain

- the zero function di(ν) = 0

- the identity function di(ν) = ν

and are closed for operations which, from one function di, or two functions di

and d′i, of the family, and k any positive integer, give :

- di + k

- max(1, di − k)

- k.di

- �di/k�
- di modified for a finite number of ν (in particular max(1, di))

- min(di, d
′
i), max(di, d

′
i)

- di + d′i
- di.d

′
i

- δp(di, d
′
i) for p ≥ 2

We shall now combine these operations.

Common sense leads us to think that synchronization delays should be increasing
functions. With pseudo-difference we can nevertheless obtain functions which
are not increasing, but quite delicate constructions are involved, we must admit !

Thus we get

8.5. THE FAMILIES OF SYNCHRONIZATION DELAYS 241

Proposition 8.5.1 for any polynomial Q ∈ Q+[X], if di ∈ SDi, then �Q(di)� ∈
SDi. Otherwise said : the two families of synchronization delays are closed for
composition with polynomials having positive rational coefficients.

indeed, there exists an integer a such that P = aQ ∈ N[X]

- by product : dk
i ∈ SDi

- by slowing down : akdk
i ∈ SDi

- by finite summing : P = apd
p
i + . . . + a1di + a0 ∈ SDi

- by linear speeding up : �Q(ν)� = �P (ν)/a� ∈ SDi

as a corollary, since ν ∈ SDi

Corollary 8.5.2 for any polynomial Q ∈ Q+[X], �Q(ν)� ∈ SDi.

We shall now consider polynomials with positive or negative coefficients, but
only those which have positive values when the variable is positive (x ∈ R+).
To make it a little shorter we shall only say “with positive values”.

Proposition 8.5.3 for any polynomial Q ∈ Q[X] having positive values, �Q(ν)� ∈
SDi

Proof : first, there exists a positive integer a such that P = aQ ∈ N[X].
P has positive values. In P we can separate terms with positive and negative
coefficients, so the polynomial writes

P (X) = P1(X) − P2(X)

with

P1 and P2 ∈ N+[X]

∀x ∈ R+ P1(x) ≥ P2(x)

degree(P1) > degree(P2).

By preceding corollary we have

P1(ν) and P2(ν) ∈ SDi,

by pseudo-difference, for any integer p, 2 for example,

δ2(P1(ν), P2(ν)) ∈ SD.

This delay is equal to P1(ν) − P2(ν) for all ν such that⌈
P1(ν)

3

⌉
>

⌈
P2(ν)

2

⌉

242 CHAPTER 8. SYNCHRONIZATION TIMES

so also if

P1(ν)
3

≥ P2(ν)
2

+ 1.

But, as degree(P1) > degree(P2) this is the case for all values of ν except a
finite number of νi, i ∈ I. Then, by finite modification we can replace all δ2(νi)
by P (νi) and we have obtained delay P (ν). Delay �Q(ν)� is then obtained by
linear speeding up.

Proposition 8.5.4 for any polynomial Q ∈ Q[X] max(0, Q(ν)) ∈ SDi

Here again we consider P = aQ ∈ N+[X], where we separate positive and
negative coefficients

P (X) = P1(X) − P2(X),

and we consider two cases. If degree(P2) > degree(P1), P has positive values
for a finite number of values of ν, so we obtain delay P (ν) by finite modification
of delay 0.

If degree(P1) > degree(P2), the proof is the same as before, the semi-
difference δ2(νi) is equal to P1 − P2 except for a finite number of values of
ν, and for these values we modify δ2(νi) by max(0, P (νi)). We end by a linear
speeding up to go from P to Q.

All these results quite satisfy our common sense.

8.6 Relations between the two families of syn-
chronization delays

Proposition 8.6.1 if d1(ν) ∈ SD1 then ν + d1(ν) ∈ SD2

Indeed, if S1 is a 1e-synchronizer with delay d1(ν), we define the 2e-synchronizer
with a sleeping right general, that is, all rules with no general or only the left one
are the rules of S1, and transitions involving the right general have the result of
rules where this general is replaced by the quiescent state. The synchronizing-
time is thus 2ν + d1(ν) and the delay is ν + d1(ν).

Proposition 8.6.2 if d2(ν) ∈ SD2 then ν + d2(ν) ∈ SD1

Let S2 be a 2e-synchronizer with delay d2(ν). We build a 1e-synchronizer
as follows : its general sends two signals, a speed 1-signal with quick reflection
on the border, and a signal of slope 3 (Figure 4), as in Minsky’s synchronizer.
When they meet, indicating the middle, the second signal stops and is replaced
by a speed 1- signal. The two speed 1-signals reach the end cells at time 2n−2.
These immediately play the role of two generals, with the rules of S2. The total
synchronizing-time is then 2ν + ν + d2(ν), hence the result.

8.6. RELATIONS BETWEEN THE TWO FAMILIES OF SYNCHRONIZATION DELAYS243

In the two preceding propositions, the result is that, if di(ν) ∈ SDi then
ν + di(ν) ∈ SDj , where SDj is the other family. But, as SDj also contains
function ν, we are much tempted to operate the difference

(ν + di) − ν

to conclude that di belongs to SDj

Alas, we can only do semi-differences δp, with p an arbitrary integer

δp(ν) =

di(ν) if
⌈

ν+di

p+1

⌉
>

⌈
ν
p

⌉
⌈

ν
p

⌉
otherwise

Condition for δp(ν) to coincide with di(ν) can be written

di > p�ν

p
� − ν + �ν

p
�,

244 CHAPTER 8. SYNCHRONIZATION TIMES

thus we may at least assert that any function of one of the two families of delays
satisfying, for some integer p,

di > p + �ν

p
�

also belongs to the other family.

Corollary 8.6.3 if di(ν) ∈ SDi and di(ν) > p + � ν
p �, then di(ν) also belongs

to SDj (j = 3 − i).

We shall give another, perhaps more usual and pleasant form, to this result :

Proposition 8.6.4 if Di(n) ∈ SDi and satisfies some condition Di(n) > εn,
then Di(n) ∈ SDj (j = 3 − i).

Indeed, let us first choose integer p greater than 2/ε, so that Di(n) > n
p/2 .

Then let

D′
i(n) =

Di(n) if n > p2 + p − 1

�n−1
p � + p + 1 if n ≤ p2 + p − 1

For the values of n smaller than p2 + p − 1, which are in finite number, D′
i

satisfies condition of preceding corollary.
For the values of n greater than p2 + p − 1, we have

D′
i(n) = Di(n) > n

p
2

= p + n− p2

2
p
2

= p + 2n−p2

p
2

> p + n+p2−p−1−p2

p = p + n−1
p + 1

> p + �n−1
p �

D′
i, satisfying condition of the corollary for all n, thus belongs to SDj . Finally,

by finite modification, we may conclude that Di(n) also belongs to SDj .

But in one case we have a better result :

Proposition 8.6.5 SD1 ⊆ SD2

Indeed, let S1 be a 1e-synchronizer with delay D1(n). For any n ≥ 2 we
build a n-cells 2e-synchronizer having as states couples of states of S1, and
initial configuration

(G, e), (e, e), . . . , (e, e), (e, G),

(where (G, e) and (e, G) are identified as in section 8.3), and working as S1 and
a symmetrical c.a, but 2 times faster as is possible because states are grouped by
two (Figure 5). We may suppose that at time 	n/2
 the middle axis is located,

8.6. RELATIONS BETWEEN THE TWO FAMILIES OF SYNCHRONIZATION DELAYS245

so that we find ourselves with two symmetrical S1-synchronizers of length n.
As they work 2 times faster, at time n − 1 they are both in configuration of
time 2n − 2 of S1(n), with D1(n) time-steps left to synchronization. Now we
complete our c.a with an auxiliary minimal-time 2e-synchronizer, which warns
cells to slacken pace and return to normal speed. So that D1(n) time-steps
later, our two symmetrical S1-synchronizers enter fire state ∗, the fire state of
our 2e-synchronizer being (∗, ∗).

246 CHAPTER 8. SYNCHRONIZATION TIMES

Chapter 9

Grouper c.a’s

The basic idea of grouper c.a’s is due to Olivier HEEN [23]. In this chapter we
develop a formalization of O.Heen’s notions which leads to an analysis of grouper
c.a’s as compositions of an ordinary c.a A together with a pair R = (B, E), where
B is another ordinary c.a and E is essentially an embedding of the states of B
as areas in the plane.

All automata transformations done in chapter 7, in view of speeding up, can
be interpreted as operations

A �−→ R⊗A

where R is some adequate, excessively simple, grouper c.a.

9.1 Paradigmatic examples

But first, to arouse the curiosity of the reader, and to let him have some intu-
itive perception, we start with a little movie sequence of two particular examples
(which are to be studied in detail at the end of the chapter). The first figure of
each sequence is an ordinary s.t.d, the second and third figures are two different
presentations of the s.t.d of some geometrical c.a, which has no relation what-
soever with the preceding ordinary c.a. The fourth and fifth figures result from
a marriage of the ordinary c.a and the geometrical c.a, used to a new reading
of the s.t.d of the first c.a.

247

248 CHAPTER 9. GROUPER C.A’S

9.1.1 First exemple : the horizontal 3-grouper

9.1. PARADIGMATIC EXAMPLES 249

250 CHAPTER 9. GROUPER C.A’S

9.1. PARADIGMATIC EXAMPLES 251

252 CHAPTER 9. GROUPER C.A’S

9.1.2 Second exemple : the square diagonal grouper

(with branches of length 2)

9.1. PARADIGMATIC EXAMPLES 253

254 CHAPTER 9. GROUPER C.A’S

9.1. PARADIGMATIC EXAMPLES 255

256 CHAPTER 9. GROUPER C.A’S

9.1. PARADIGMATIC EXAMPLES 257

In the first example the grouping process is spatial, in the second it involves
both space and time.

258 CHAPTER 9. GROUPER C.A’S

9.2 Definition of grouper c.a’s, first formal ap-
proach

We shall now try to guide the reader from a close observation of figures to the
progressive construction of the concept of geometrical and grouper c.a’s as it
has asserted itself as necessary to us.

Let us observe anew the first figure where we operated simultaneous grouping
and computing, namely Figure 8b of chapter 7, which becomes Figure 0 of this
new chapter. (This example is similar to the first part of 9.1.1). We draw next
figure by repositioning all the sites of this figure at their original place, and
putting a frame around the ones that are grouped. This gives Figure 1, which
shows how the grouping-computing process has grouped sites of the original
s.t.d. To sum up we could say : in Figure 0 sites of the original computing
are to be seen in sites of the grouping-computing diagram, while in Figure
1 sites of the grouping-computing appear on those of the original computing
diagram. Through this observation the grouping-computing appears as a new
way of reading the original s.t.d. Sites of the grouping-computing form some
kind of tiling which develops in a regular and mechanical manner. Therefrom
the idea of c.a’s producing geometrical configurations, made of little squares
representing sites of an original regular tiling .

9.2. DEFINITION OF GROUPER C.A’S, FIRST FORMAL APPROACH259

260 CHAPTER 9. GROUPER C.A’S

9.2.1 States of geometrical c.a’s

These states will be geometrical pieces consisting of unit squares (satisfying a
connexity condition that we shall express later on).

As these pieces must be aligned next to one another, we supply each one
with an origin point and a spacing vector −→

Vs , at the end of which we may then
place the origin of the next piece on the right.(We could have privileged spacing
leftwards, but as we must choose, the usual reading direction is certainly the
most comfortable). Thus, given a sequence of pieces, there is one and only
one way to abutt each piece to the preceding one so as to form a “line”. A
configuration of pieces hangs on a string of vectors, like beads on a necklace.

Now, each piece with a left and a right neighbouring piece will produce at
next time-step a new piece, which will take place above the (central) piece at
the extremity of a second vector, the timing-vector −→

Vt .

In practice, the origin will most frequently be one of the vertices among the unit
squares of which the piece is made of, but it may happen to be a vertex of an
external unit square.

Of course, the two spacing and timing vectors have integer coordinates (unit
naturally being the edge of the unit square).

9.2. DEFINITION OF GROUPER C.A’S, FIRST FORMAL APPROACH261

In Figure 2 we give a few examples of pieces and the configuration they form
if we align them.

The set of piece-states of the geometrical c.a will be denoted P .

9.2.2 Transition rules

As in every c.a, the transition function is a mapping

d : P 3 −→ P.

Let us give a few simple examples :

1/ with α as only piece and transition d(α, α, α) = α we obtain as
s.t.d the basic tiling.

2/ with ω as only piece and transition d(ω, ω, ω) = ω we obtain a
s.t.d of spaced squares.

3/ with pieces α and η and transition

d(α, α, α) = α d(α, η, η) = η

262 CHAPTER 9. GROUPER C.A’S

d(α, α, η) = η d(η, η, η) = η

and at time 0 configuration

α α α α α α η

we obtain as s.t.d the tiling of Figure 1.

9.2.3 Continuity condition

In Figure 3, we have represented the result of applying transition

d(α, α, η) = α d(α, η, η) = η

on configuration α α η η.

The pieces resulting from the two central pieces α and η are not correctly
aligned, the one resulting from the η-piece being too far away to be a right
neighbour for the one resulting from the α-piece. The defect is that the diagram
formed by the following vectors

- spacing vector of piece α + timing vector of right neighbour η

- timing vector of piece α + spacing vector of piece produced at next
time-step (which is also α)

is not commutative. There is a hole in the net formed by the spacing and timing
vectors.

In order that this situation should never occur, transition must satisfy the
following condition

Condition 9.2.1 for any triple π1, π2, π3 of pieces of P

−→
Vt (π2) + −→

Vs(d(π1, π2, π3)) = −→
Vs(π2) + −→

Vt (π3).

With this condition we are guaranteed that as time goes on, a sequence of
correctly aligned geometrical configurations develops.

9.2. DEFINITION OF GROUPER C.A’S, FIRST FORMAL APPROACH263

9.2.4 Computability condition

Next conditions are fundamental to compose geometrical c.a’s with usual c.a’s.
With these conditions, the geometrical c.a we have just defined becomes what
we shall call a grouper c.a.

Indeed, we must keep in sight what use we intend to make of the preceding
geometrical c.a : the sequence of geometrical configurations that it develops is
meant to help us to a new reading of the s.t.d of some ordinary c.a, represented
in the basic tiling.

In Figure 4 we represent transition

d(α, α, v) = v

and a portion of s.t.d read according to the grid formed by these pieces : what we
notice here is that the states of the original basic sites lying in the piece resulting
from transition d cannot be computed (using transition δ of the original c.a)
from the sites of the three pieces to which d applies. This defect withdraws any
interest the grouper c.a could have, so we mean to prevent it.

For this we shall introduce a definition.
If S is a set of sites of some ordinary s.t.d, we shall denote csq(S) (csq stands

for consequence), the set of sites resulting from sites of S through one transition
exactly, and CSQ the transitive closure of S by this mapping :

CSQ(S) = ∪i≥0(csq)i(S) = S ∪ csq(S) ∪ . . .

(two examples are shown in Figure 5).

264 CHAPTER 9. GROUPER C.A’S

Our request concerning d will be the following

Condition 9.2.2 (computability) for any triple of pieces (π1, π2, π3) of P

d(π1, π2, π3) ⊆ CSQ(π1 ∪ π2 ∪ π3).

Care : the above inclusion is a bit speedy. The notation is abusive, it uses an
implicit positioning of pieces in the R2 plane, formally it should be written

−→
Vt (π2) + d(π1, π2, π3) ⊆ CSQ((−−→

Vs(π1) + π1) ∪ π2 ∪ (−→Vs(π2) + π3),

where π is identified with the subset of R2 obtained by positioning π in R2 so
that its origin coincides with (0, 0), and −→

V + π is obtained via −→
V -translation.

9.2.5 Covering condition

At first we have the idea that all sites of the s.t.d of the original c.a should be
covered by the tiling developed by the grouper c.a. Or perhaps rather that each
cell of the original c.a should be present in each configuration of the grouper c.a.
In fact our request will be neither of these two : the first one is not necessary
(see Figures A3, A4), and the second is not sufficient (see middle example of
Figure 6). It will be a third one, which is that no configuration can have a hole
in it : indeed, because of the computability condition, this hole would grow
larger and larger with time (Figure 6). Let us notice that, on the contrary,
overlappings are no problem.

But as soon as we have worded this condition, it appears clearly to us that
we have implicitly supposed that the pieces themselves had no holes, as such a
hole would indeed be a hole in the configuration containing this piece !

We can express our condition as follows :

9.2. DEFINITION OF GROUPER C.A’S, FIRST FORMAL APPROACH265

266 CHAPTER 9. GROUPER C.A’S

9.2. DEFINITION OF GROUPER C.A’S, FIRST FORMAL APPROACH267

Condition 9.2.3 (contact-connexity) 1)contact-connexity of each configu-
ration : two neighbouring pieces must lean against one another by at least one
unit side, be it vertical or horizontal, unless they overlap.

2)contact-connexity of each piece : for any two basic squares s, s′ of a piece,
there exists a finite sequence s = s1, . . . , sn = s′ of basic squares of the piece
such that for all i, si and si+1 must lean against one another by one side

2) is the connexity condition that we had evoked in defining the pieces.

Condition 9.2.4 (covering) any configuration is contact-connex

In all the examples that we shall present the configurations are very simple,
with very few pieces, they reproduce themselves with time, and this condition
is evidently satisfied.

If we want to formalize preservation of contact-connexity of configurations
through transition, it could be written
−→
Vt (π2) + d(π1, π2, π3) and −→

Vs(π2) + −→
Vt (π3) + d(π2, π3, π4) are contact-connex

this for all quadruples (π1, π2, π3, π4) to be found in the configurations.

9.2.6 Borders

If our grouper c.a should apply to some s.t.d limited by one or two borders, it
is clear that there is no use for it to develop its geometry beyond these borders.
Accordingly, we shall define two special piece-states that are not real ones (as
the border states were no real states), LB and RB. These pieces will be in
the shape of quadrants of space (see figures 6, 8a, 9a . . .) for which we do not
precise either origin nor vectors, and they are constant pieces.

There is no continuity condition for LB and RB. The computability condi-
tion writes normally

d(LB, π, πr) ⊂ CSQ(LB ∪ π ∪ πr)

d(πl, π, RB) ⊂ CSQ(πl ∪ π ∪ RB).

Covering condition only requests that pieces neighbouring a border must lean
against this border by one unit side at least, unless they overlap the border.

9.2.7 Inputs

We delay to 9.5 the study of inputs with grouper c.a’s, as it could be a little
confusing. We only mention now that we foresee only parallel input.

As for now we look at the functioning of geometrical c.a’s starting from
an initial configuration. To be coherent with section 3.3 where we introduced
parallel input, which was meant to set up an initial configuration, our initial
configuration for grouper c.a’s will be in place at time 1, at the same time as it
was set up for ordinary c.a’s.

268 CHAPTER 9. GROUPER C.A’S

9.2.8 Product R⊗A of a grouper c.a and a c.a

Let R(P, d) be a grouper c.a and A(Q, δ) an ordinary c.a. We define the tensor
product R ⊗ A (which is to be distinguished it from the ordinary product of
ordinary c.a’s) very naturally as follows :

- its states are the pieces of R with on each of their unit squares a
state of A. To each piece formed of k squares corresponds at most
|Q|k states, so the number of states of the product is a polynomial
in |Q|, the degree of which is the maximum area of a piece of R.

We shall denote such a state by listing, after the name of the geomet-
rical piece, the states appearing on it, in the order of usual reading
(left to right and topdown)

π(q1, q2, . . . , qk)

and if all the states are the same state q, we shall abbreviate by π(q).

- its transition ∆ is the transition for the pieces, completed by the
computation (by the transition δ of A) of all the states of the result-
ing piece. This computation is always possible if the computability
condition 9.2.2 is satisfied.

- its initial configuration is the initial configuration of R with, on
each unit square of the piece-states of this configuration, the corre-
sponding state of the s.t.d of A.

We have just formally described the rules of the tensor product. But we
shall never write them. In practice, nothing is easier than obtaining the s.t.d of
the tensor product, we just superimpose the s.t.d of the grouper on the s.t.d of
the c.a !

9.3. EXAMPLES AND APPLICATIONS 269

9.3 Examples and applications

9.3.1 The horizontal k-grouper

• Functioning :

pieces : α , η (see Figure 8a, where k = 3)

rules :

LB α α α α α α α η α η η η η η
α α η η η

evolution of configuration : LB α . . . α η η . . .

LB α α α α η η . . .
LB α α α η η η . . .
LB α α η η η η . . .
LB α η η η η η . . .
LB η η η η η η . . .

• Application :

270 CHAPTER 9. GROUPER C.A’S

We shall now do the product of preceding grouper R, with some c.a A,
whose s.t.d is represented in Figure 8b. If the initial configuration of c.a A has
n states qi and an end state q∗, the grouper will have an initial configuration
with n states α.

In Figure 8c we find the s.t.d of the tensor-product : with the rules as we
have defined them, it is clear that this s.t.d may as well be obtained by simply
superposing the geometrical s.t.d to the s.t.d of A.

The η-pieces will reach the left border at time n + 1. If at this moment we
could suddenly change transition of the grouper for

d′(LB, η, η) = H d′(η, η, η) = H d′(H, H, H) = H

(Figure 8c) the product would start doing k-accelerated computation.

9.3. EXAMPLES AND APPLICATIONS 271

272 CHAPTER 9. GROUPER C.A’S

Well, if we complete the c.a A with a minimal time 2e-synchronizer starting
at time 2, we can decide that the product R⊗A starts the preceding geometrical
transition when fire state appears on its pieces, something that the grouper
c.a by itself could not do. Then we have obtained, presented differently, in a
geometrical manner, the strong speeding up of the parallel c.a A of chapter 7
(Figure 8c).

The number of states of R⊗A is easy to count : if s is the number of states
of A, it is 2sk + s, at most, because all states are not necessarily used.

Note 9.3.1 we may consider that here we have done two successive tensor prod-
ucts, with two different groupers. We may also introduce some non-determinism
in the groupers, with the choice between rules determined by the sites of the or-
dinary c.a. A much more complicated and cumbersome solution would be to
incorporate states of the minimal-time synchronizer in the pieces, as colors put
on them, but this would destroy the remarkable simplicity of the groupers that
we have considered all along.

9.3.2 The square diagonal grouper

We shall present the simplest case, when the two branches of the square have
length 1. The general case is an easy adaptation

• Functioning :

pieces : α , τ , a , c , λ (see Figure 9a)

rules :

LB α α α α α a a a α α τ
α α α τ

α τ a α τ α τ a a τ α α
α α α α

LB α τ LB c α LB λ α
c λ λ

evolution of a configuration : LB α α α α τ a a . . . (Figure 9a)

LB α α α α τ a . . .
LB α α α τ α α . . .
LB α α τ α α α . . .
LB α τ α α α α . . .
LB c α α α α α . . .
LB λ α α α α α . . .
LB λ α α α α α . . .

9.3. EXAMPLES AND APPLICATIONS 273

• Application : acceleration of one time-step of a parallel recognizer (fig-
ures 9b and c).

To obtain the s.t.d of the tensor-product P of this grouper with a c.a A,
as we did in previous example, we superimpose the geometrical s.t.d on
the s.t.d of A, represented in Figure 9b (for n = 4). We are left to define
the halting states of c.a P : they will be the pieces λ (or c) which carry
as first state a halting state of A.

If the recognizing time for an input word of length n by A was T (n) =
(n + 1) + D(n) with D(n) ≥ 1, the recognizing time by P will be T ′(n) =
(n + 1) + D(n)− 1. If T (n) = n + 1, then T ′(n) = n + 1 (we must add to
A a ”post-halting” state with which we shall define a halting c-state). So
the general formula for D(n) ≥ 0 is

T ′(n) = (n + 1) + max(0, D(n) − 1).

274 CHAPTER 9. GROUPER C.A’S

If s is the number of states of A, the number of states of B is s3 +3s2 + s.

9.3. EXAMPLES AND APPLICATIONS 275

• Generalisation : accelerating of h time-steps of a parallel recognizer.

The two branches of the square now have length h ≥ 1. Pieces τ , c and λ
all have length h+1, and the spacing and timing vectors are as represented
in Figure 10.

276 CHAPTER 9. GROUPER C.A’S

Recognizing time will be :

T ′(n) = n + 1 + max(0, D(n) − h)

(If necessary s.t.d of A is extended a little after halting).

We can notice here a slight improvement of the formula of chapter 7 (7.5),
because of cases when 1 ≤ D(n) ≤ h.

But the main thing, really worth noticing and admiring, is that no auxil-
iary synchronizer has been used. Speeding up is then much simpler,
with much lesser states : their number is s2h+1 + 3sh+1 + s, at most.

9.3. EXAMPLES AND APPLICATIONS 277

9.3.3 The broken sticks diagonal grouper

• Functioning :

pieces : α, η, λ, u, v, c (Figure 11, where k=3)

rules:

278 CHAPTER 9. GROUPER C.A’S

LB α α α α α u u u v α α c α α
α α α α α

α α η α η u α η v η u u η v α
η v v α α

λ v α LB α η LB λ v LB c α LB λ α
α λ c λ λ

evolution of a configuration LB α α α η u u u

LB α α α η u u u . . .
LB α α η v α α α . . .
LB α η v α α α α . . .
LB λ v α α α α α . . .
LB c α α α α α α . . .
LB λ α α α α α α . . .

• Application : speeding up a parallel recognizer by h time-steps.

We want to do the product of the preceding grouper having pieces of
length k = h + 1 and recognizer A. We proceed always in the same way.

Recognizing time by P is the same as before

T ′(n) = n + 1 + max(0, D(n) − h).

As preceding accelerated c.a, this one uses no auxiliary synchronizer.
It is a better one still, because it is simpler, it has smaller pieces, and so
a number of states of lesser degree : 5sh+1 + s

9.3.4 The broken sticks grouper

The s.t.d of this new product is represented in Figure 12 (where k = 3 and two
shades of grey have been used to distinguish successive configurations).

9.3. EXAMPLES AND APPLICATIONS 279

• Functioning :
Here pieces are : α,η,v,u

280 CHAPTER 9. GROUPER C.A’S

and all the rules may be found in the following evolution of configuration
LB α α α α η η η

LB α α α α η η η . . .
LB α α α η u u u . . .
LB α α η v η u u . . .
LB α η v η v η u . . .
LB u v η v η v η . . .
LB u u v η v η v . . .
LB u u u v η v η . . .

• Application : linear speeding up, by a factor k.

The way to do the product is always the same, and is shown in Figure 12.

The new recogizing time will clearly be :

T ′(n) = n + 1 +
⌈

D(n)
k

⌉
.

The number of states of the accelerated c.a is here, at most, 3sk + s.

Indeed the strong speeding up is here realized in a marvelously simple man-
ner, without auxiliary synchronization, with a remarkably small number
of states : here is a beautiful feat of strength of the grouper c.a’s.

9.4 An afterthought on our definition, second
formal approach

When we have defined finite and semi-infinite linear cellular automata, the states
were always abstract formal symbols, and Q the set of states had no structure.
But the states of our geometrical c.a’s are taken out of the set of geometrical
figures in R2, with moreover an origin and a couple of two vectors ! So that it
would be more honest to separate in our definition

- the underlying c.a B where the states are the formal symbols for
the pieces, i.e their names

- a mapping E from the set of these states in the set of geometrical
pieces, the “geometrical interpretation” of the states.

This definition is more general than definition of section 9.2 : indeed, with
the first formal definition, three pieces π1, π2, π3 could have only one image
d(π1, π2, π3). With our second formal definition different states may have the
same geometrical interpretation, so that triple (π1, π2, π3) may correspond to
different triples of states having different images. Otherwise said, this amounts
to putting colors, (equivalent to giving names), to pieces.

9.5. PARALLEL INPUT TO SET UP AN INITIAL CONFIGURATION 281

All the conditions (continuity, computability, covering) are conditions on
this interpretation, which are necessary for the resulting grouper c.a to be an
applicable tool.

Thus a grouper c.a becomes a couple consisting of an ordinary c.a and a
geometric interpretation mapping : (B, E). Therefore we cannot flatly present
it as an ordinary c.a.

It must be stressed that all the grouper c.a’s in our examples, though they
are tools for building elaborate c.a’s, are of a disarming simplicity !

Let us recall here the possibility of introducing non-determinism for grouper
c.a’s, which may allow (see example 9.3.1) elegant descriptions for some tensor
products.

9.5 Parallel input to set up an initial configura-
tion

In all the examples that we have presented, groupers were applied to speed up
recognizers. The initial configuration of these recognizers is not exactly the word
to be recognized, but an image of this word by transition function of time 0,
δ0(e, e, e, .). It has the same length as the input word, with states corresponding
to the input letters. The initial configurations of the grouper c.a’s for different
words were nearly the same, differing only by the length of their first section,
in which the image of the input word took place. So we have the idea that
such simple configurations could also be set up by the input word entering some
equivalent of a quiescent configuration of an ordinary c.a, a line made of some
abstract neutral state ε, bound to receive the inputs and disappear once and
for all immediately after, with transition function of time 0

d0 : {LB, ε} × {ε} × {ε, RB} × X �−→ P,

where X is the input alphabet, such that

d0(LB or ε, ε, ε, x) = π1

d0(ε, ε, ε, ∗) = π2

d0(LB or ε, ε, ε,−) = π3

where ∗ is a marker at the end of the input word.
Is it possible to extend the operation of the tensor product to time 0 ?

For this we want to give shape to the abstract configuration of time 0 of the
grouper, so that it will superimpose itself on the initial quiescent configuration of
the ordinary c.a A. It must then be a line of consecutive squares and rectangles,
whose width is not precised and will depend on what space the pieces produced
by the entering inputs need to expand. Origin of ε, spacing and timing vectors
are then as shown in Figure 13, where a configuration LB, ε, ε, . . . is evocated.

282 CHAPTER 9. GROUPER C.A’S

An illustration for the square diagonal grouper is given in Figures 14 and
15.

9.5. PARALLEL INPUT TO SET UP AN INITIAL CONFIGURATION 283

284 CHAPTER 9. GROUPER C.A’S

Chapter 10

n-dimensional c.a’s with
arbitrary neighbourhoods

This chapter is the sole incursion of this book into dimensions higher than 1 for
nets of automata.

One c.a of dimension 2 is famous : John Conway’s game of Life [43], whose
remarkably simple rules and fascinating properties called forth hords of fanatics
in the seventies.

If not for fun, at least for completness, we must certainly explore n-dimensional
c.a’s, should it only be to compare them with one-dimensional c.a’s, and inves-
tigate what extra properties they may share. Indeed we naturally foresee that
with greater dimension, as more interconnections are possible, c.a’s must gain
in efficiency and speed.

A very simple observation ([3]) immediately confirms this : if synchronizing
n cells with a one-dimensional c.a requires time 2n − 2, with a 2-dimensional
c.a, synchronization of a square net of n = r2 cells can be done in time 4r−4 =
4
√

n − 4 (using one-dimensional synchronization) . Indeed, suppose that our n
cells are cells

(1, 1) . . . (1, r) . . . (r, 1) . . . (r, r).

In time 2r − 2 we can synchronize cells

(1, 1) . . . (1, r)

If fire state on each (1, i) starts a synchronization of cells

(1, i) . . . (r, i)

in 2r − 2 extra time-steps, all r2 cells are synchronized at time 4r − 4. (The
neighbours used for each cell (x, y) are (x − 1, y), (x, y), (x + 1, y) in the first
stage, and (x, y − 1), (x, y), (x, y + 1) in the second stage).

Alas, study of n-dimensional c.a’s is also bound to be of increasing complex-
ity.

285

286CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

10.1 Description

10.1.1 Definition

Definition of these c.a’s will be copied on that of one-dimensional c.a’s.

Cells are now regularly disposed in an n-dimensional space. Whatever be
their shape, we imagine that they are centered on the points of Zn, and we
denote them by the coordinates of their center

z̄ = (z1, . . . , zn)

in particular, central cell is

0̄ = (0, . . . , 0).

Let us remind that Zn is a group for addition

z̄ + ȳ = (z1 + y1, . . . , zn + yn)

and a module on Z with scalar multiplication

kz̄ = (kz1, . . . , kzn).

Let us point out here that a group morphism of Zn to Zp is also automatically
a linear mapping from the module Zn to the module Zp. This is because the
scalar multiplication can be built from addition :

kz̄ = z̄ + . . . + z̄︸ ︷︷ ︸
k times

(−1)z̄ = −z̄.

The neighbourhood of a cell is the (finite) set of cells under which influence
it lays, (among which the cell itself is generally, but not necessarily, to be found).
If V denotes the neighbourhood of cell 0̄, the neighbourhood of any cell z̄ is

z̄ + V = {z̄ + v̄ | v̄ ∈ V }.

V is the “stencil” of all the neighbourhoods, and we shall often simply call it
the stencil of the c.a.

We must underline here that in the case of one-dimensional c.a’s, in all the
preceding chapters, we considered only neighbourhoods of first neighbours. So
that the following study, with the case n = 1, comprises a generalization of our
preceding study to one-dimensional c.a’s with arbitrary neighbourhoods. We
shall point results for dimension 1 later in this chapter.

10.1. DESCRIPTION 287

Taking up Cole’s notations, we denote

|z̄| =
n∑

i=1

|zi| (standard notation would be ‖z̄‖1)

‖z̄‖ = max
i=1,... ,n

|zi| (standard notation would be ‖z̄‖∞)

the usual norms on Zn, the most important neighbourhoods are the most regular
ones, that is :

J1 = {z̄ | |z̄| ≤ 1} Jk = {z̄ | |z̄| ≤ k}

H1 = {z̄ | ‖z̄‖ ≤ 1} Hk = {z̄ | ‖z̄‖ ≤ k}
which are Von Neumann’s and Moore’s neighbourhoods (Figure 1). (If dimen-
sion is 1 they are identical).

The set of states will still be denoted Q and it always contains a quiescent
state e. (See below for the meaning of “quiescent”)

Configurations A V -configuration of states is a mapping V → Q, it repre-
sents the global state of a neighbourhood.

A Zn-configuration is a mapping Zn → Q, we shall also call it a global
configuration or simply a state of the c.a. We shall never consider but almost
quiescent configurations, that is configurations that are quiescent except on a
finite number of cells.

288CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

The transition function is a mapping

δ : QV → Q.

It gives the state of a cell at time t + 1 from the states of the neighbouring cells
at time t.

For a quiescent V -configuration, we ask that

δ(eV) = e.

The initial configuration will normally be an “impulse” configuration, where
only cell 0̄ is not quiescent.

The evolution of the c.a with time is the succession of the Zn-configurations
resulting from the repeated application of the global transition to the initial
state. It seems still possible to represent these successive configurations for
Z2-c.a’s, in successive diagrams (see 10.5.6), but totally impossible for greater
dimensions.

Inputs and outputs enter and exit through cell 0̄. Input alphabet is always
denoted X.

Inputs and outputs are sequential : the discussion we had in section 3.1.1
leads us here, not differently than in dimension 1, to restrict the definition to
sequential inputs and outputs. A supplementary argument in dimension 2 and
more, is that there is no natural shape on which such a parallel input should be
entered.

As for one-dimensional c.a’s, we must introduce here the transition function
for cell 0̄

δ0 : X × QV −→ Q

which takes into account, not only the states of the neighbours of cell 0̄ at time
t, but also the input at time t.

Let us remind that in the case of recognizers the output alphabet is reduced
to the set of possible characterizations of the states that are : non halting,
halting and accepting, halting and rejecting, or else {0, 1}.

10.1.2 Zn versus Nn

In the case of linear c.a’s, we chose studying the half-lines, indexed on N, instead
of the lines, indexed on Z. In this chapter we shall prefer studying c.a’s on Zn.
So our n-dimensional c.a’s are Zn-c.a’s.

In any case, as in dimension 1, while any c.a on Nn might be considered a
c.a on Zn, any Zn-c.a can reduce to a Nn-c.a : for this it suffices that each cell
z̄ = (z1, . . . , zn) of Nn, after n foldings, should represent the 2n cells

(ε1z1, . . . , εnzn) εi = ±1

10.1. DESCRIPTION 289

so the set of states will be Q2n

. The neighbourhood stencil will be

V ′ = {(z1, . . . , zn) ε Nn | ∃ ε1, . . . , εn (ε1z1, , εnzn) ∈ V }

In particular, if V is symmetrical in all directions, then V ′ = V .

10.1.3 Neighbourhoods and dimension

Let us start by examining a few examples :

example 1 a c.a on Z2 with neighbourhood stencil V = {(−1, 0), (0, 0), (1, 0)}.
The lines of cells having a given ordinate z2 = c have independant evolutions,

each constitutes a linear c.a in itself. If the initial state is an impulse, only line
z2 = 0 is active. In this case we are reluctant to speak of a 2-dimensional c.a.
The only interesting c.a, the one containing cell 0̄, is really a linear c.a on Z

with stencil {−1, 0, 1}.
This first example shows that if for n-dimensional c.a’s we allow any stencil

whatever, we shall not always have a real n-dimensional c.a.

example 2 a c.a on Z with stencil {−2, 0, 2} (See Figure 2).

Here it is odd and even cells that have independent evolutions : this c.a is
formed of 2 imbricated linear c.a’s which work independently. If the initial state
is an impulse, the second one does not function at all ! As for the interesting
c.a, the one containing cell 0̄, which is 2Z, we shall change indexes of its cells
by taking as new basis for 2Z element 2. Our c.a then becomes a Z-c.a with
stencil {−1, 0, 1}.

This second example points out that we must beware that the stencil of the
neighbourhoods is not artificially complicated.

example 3 the seemingly Z2-c.a with stencil V = {(−2,−1), (0, 0), (2, 1)} is
really only a Z-c.a with stencil {−1, 0, 1} (see Figure 3).

290CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

In this example we have the two problems met separately in examples 1 and
2. It is also the case in next example 4, with figures a bit more difficult to draw
and to read because dimension is one more.

example 4 the seemingly Z3-c.a with stencil V = {(0, 1, 1), (0, 2, 2), (2, 0, 2)}
is really only a Z2-c.a with stencil V = {(1, 0), (0, 1), (0, 2)} (see Figure 4).

10.1. DESCRIPTION 291

Through all these examples it appears clearly that what matters really is the
net formed by the “active” cells, those which have a chance of getting out of the
quiescent state sooner or later, and which are determined by the neighbourhood
V .

Let E1 be the set of cells liable to be influenced by cell 0̄ at time 1. Clearly,
z̄ is in E1 if and only if the neighbourhood z̄ + V of z̄ contains 0̄, i.e. z ε − V .
A simple induction on i gives that the set Ei of cells liable to be influenced by
cell 0̄ at time i is

Ei = −iV = (−V) + . . . + (−V)︸ ︷︷ ︸
i times

where − V = {−v̄ | v̄ ∈ V }.

Note : take care that

iV = V + . . . + V︸ ︷︷ ︸
i times

is not {iv̄ | v̄εV } but {v1 + . . . + vi | v1, . . . , vi ε V }

and

−iV is not {−iv̄ | v̄εV } but − (iV).

Thus the active cells, in the case of an impulse initial state are all those in

∞⋃
i=0

−iV.

But even if the initial state is not an impulse state, with only cell 0̄ non quiescent,
we separate “independent” sets of cells. Indeed, two cells z̄ and z̄′ have a chance

292CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

of exercising some influence on one another sooner or later only if

either z̄′ ε z̄ +
∞⋃

i=0

−iV or z̄ ε z̄′ +
∞⋃

i=0

−iV

i.e.

z̄ − z̄′ ε

∞⋃
−∞

iV = sg(V)

where sg(V) is the subgroup of Zn generated by V . This relation between z̄
and z̄′ is an equivalence relation, the “independent” sets of cells are the classes
for this equivalence, and the set of cells constituting the c.a with which we are
concerned is the one containing cell 0̄, namely sg(V).

Let us look now at the conditions we wish for our neighbourhoods. Condition
needed so as to have a real n-dimensional c.a is that the subgroup sg(V), which
is also a submodule of the free module Zn, has dimension n. (For results about
Z-modules see textbooks, e.g [34]). Nevertheless, this submodule needs not be
all of Zn. However, it has n generators , and if we take these as new basis, then
we have exactly

sg(V) = Zn .

This is the condition that we require for the stencil V of neighbourhoods of any
Zn-c.a. It will be part of our definition of Zn-c.a’s.

10.1.4 Real time

We shall not copy here section 2.2.3 which does not need the slightest change,
but we mention it because it is not long before we focus on languages recognized
by Zn-c.a’s in strictly real time.

10.2 Cole’s general theorem

The idea of accelerating a c.a by grouping the cells comes naturally to anybody’s
mind, but its most early, exhaustive, and precise formulation is Cole’s [6]. We
shall present it now, very slightly modified in its presentation.

We insist that here cells will be grouped in a perfectly regular manner ,
the groups having a determined shape (the shape of K) and being regularly
disposed (by morphism ψ).

And we consider only recognizers.

10.2.1 Here acceleration is weak

We want to speed up k times an automaton A on Zn having stencil V : in
one time-step the accelerated automaton A′ will have to do what A does in k

10.2. COLE’S GENERAL THEOREM 293

time-steps. As a first consequence, in one time-step it must deal with k inputs
of X :

at time 0 : x0, x1, . . . , xk−1 where xi is the input at time i

. . .

at time t : xtk, . . . , xtk+k−1

. . . .

Thus, the input alphabet has to be the set of k-tuples of X, augmented with
incomplete k-tuples, as we have already encountered in the one-dimensional
case. The new input is what we have called in chapter 7 the k-grouping of the
original one.

10.2.2 Characteristic elements of the accelerated c.a

Suppose A′ is some p-dimensional c.a which emulates the n-dimensional c.a A,
but k times faster.
If A recognized some input in time T = kt, A′ must recognize the corresponding
k-grouped input in time t : that is, if at time kt cell 0̄ of A entered a halting
(accepting or rejecting) state, cell 0̄ of A′ must enter a halting state at time t.

Same thing if A entered a halting state at some time T not a multiple of k :

k(t − 1) < T < kt.

Let us denote by W the stencil of A′ (such that sg(W) = Zp). Cells of
A′ code finite sets of cells of A, of a determined pattern and these sets are
regularly disposed in A : their common stencil is K ⊂ Zn, and their centers are
distributed in Zn by the group morphism (or linear mapping)

ψ : Zp −→ Zn.

so that cell l̄ of Zp codes the set of cells of A

ψ(l̄) + K.

Although the context is sufficient to distinguish between the neutral elements
of Zp and Zn, we shall give them indexes p or n. Accordingly we shall write
that cell 0̄p of A′ codes

ψ(0̄p) + K = 0̄n + K = K.

As we wish that the inputs and outputs, which go in and out through cell 0̄n of
A, should go in and out through cell 0̄p of A′, we must have

condition (0) : 0̄n ∈ K .

294CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

10.2.3 A technical lemma

Here we want to state precisely on which elements the state of a cell z̄ of A at
time T + k depends, going back down to time T . This state is determined by

1/ states at time T + k − 1 of cells z̄ + V , and only these states,
unless z̄ = 0̄n in which case it also depends on input xT+k−1

2/ these states in turn are determined by states of cells of z̄+V +V =
z̄ + 2V and only on these, unless 0̄n ∈ z̄ + V in which case they also
depend on xT+k−2

- . . .

i/ states of cells of z̄ + iV , and only these, unless 0̄n ∈ z̄ + (i− 1)V ,
in which case they also depend on xT+k−i

- . . .

k/ states of cells of z̄+kV , and only on these, unless 0̄n ∈ z̄+(k−1)V
in which case they also depend on xT

Finally we conclude that

- if 0̄n belongs neither to {z̄}, nor to z̄ + V , . . . nor to z̄ + (k − 1)V ,
the state of z̄ depends only on states on z̄ + kV at time T

- if 0̄n ∈ z̄ + iV for some i in {0, . . . , k − 1} (where 0V = 0̄n), this
state also depends on some of the inputs xT , xT+1, . . . , xT+k−1 (the
i + 1 last ones).

Namely, for T = kt we can state

Technical lemma 10.2.1 the state of a cell z̄ of the n-c.a A at time k(t + 1)
is completely determined by

- states on z̄ + kV at time kt

- and, if 0̄n ∈ z̄ +
⋃k−1

i=0 iV , inputs (xtk, xtk+1, . . . , xtk+k−1) (at least
some of them).

In the latter sequence we recognize the future input for A′ at time t.

10.2.4 Necessary conditions

Let us come back to this desired A′. We wish, for any of its cell l̄ and any t,
that

- state of l̄ at t be the configuration of states of ψ(l̄) + K at kt

- state of l̄ at t+1 be the configuration of states of ψ(l̄)+K at kt+k

From preceding lemma :

10.2. COLE’S GENERAL THEOREM 295

the configuration of states of ψ(l̄) + K at kt + k depends on states at time
kt on

ψ(l̄) + K + kV (10.1)

and only on those states, unless

0̄n ∈ ψ(l̄) + K +
k−1⋃
i=0

iV (10.2)

in which case the configuration also depends on (at least some elements of)

(xtk, xtk+1, . . . , xtk+k−1).

But, if W is the stencil for A′,

the state of any cell l̄ at t + 1 must depend only on input at t and
states at t on l̄ + W , state of a cell l̄ �= 0̄p depending only on the
latter.

In view of (10.1), it so appears necessary that states of A′ at t on l̄ + W , which
are states of A at kt on ψ(l̄) + ψ(W) + K, should contain states of A at kt on
ψ(l̄) + K + kV , which leads to condition

ψ(l̄) + K + kV ⊂ ψ(l̄) + ψ(W) + K

that is

condition (1) : K + kV ⊂ ψ(W) + K

and because of (10.2) necessary also that

condition (2) : if l̄ �= 0̄p then 0̄n /∈ ψ(l̄) + K +
⋃k−1

i=0 iV

Condition (1) expresses that stencil W is large enough for neighbourhoods of
A′ to contain the k-iterated neighbourhoods of sets K in A.

Condition (2) expresses that, if l̄ is not 0̄p, then it is not influenced by inputs
in cell 0̄n of A between time 0 and time k − 1.

condition 1 implies p ≥ n

Indeed this condition implies

K + V ⊆ ψ(Zp) + K because W ⊂ Zp (10.3)

and

V ⊆ ψ(Zp) + K because 0̄nεK (10.4)

296CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

Let us suppose that p < n.
Any element of ψ(Zp) is a linear combination of

s1 = ψ(1, 0, . . . , 0), . . . , sp = ψ(0, 0, . . . , 1)

and thus belongs to the Z-submodule Zs1 + . . . + Zsp.
If every element of V were to belong to the subspace Rs1 + . . . + Rsp, then

Zn = sg(V) would be included in this subspace, and this would imply that Rn

in turn would be included in Rs1 + . . .+Rsp, which is impossible because p < n.
Thus there exists some v in V which does not belong to the R-subspace of Rn

generated by s1, . . . , sp.
Because of (10.2), v ε ψ(Zp) + K, so there exists d1 in ψ(Zp) and k1 in K

such that

v = d1 + k1 otherwise written k1 = v − d1

Because of (10.1), k1 + v ε ψ(Zp) + K, so there exists d2 in ψ(Zp) and k2 in K
such that

k1 + v = d2 + k2 otherwise written k2 = 2v − d1 − d2

And so on, for all i we find in K some

ki = iv − d1 − d2 − . . . − di.

Elements ki are all distinct, because if some ki were equal to some kj , with
i > j, we would have

(i − j)v = dj+1 + . . . + di

so that v would belong to the subspace generated by s1, . . . , sp. Thus K
is proved to be infinite, which is contrary to our hypotheses. Thus p < n is
impossible.

condition 2 implies p ≤ n

Indeed, if ψ were not injective, there would exist l̄ �= 0̄p such that ψ(l̄) = ψ(0̄p) =
0̄n , so that condition 2 could not be satisfied. Thus ψ must be an injective
morphism, which implies that p cannot be greater than n.

conclusion is that p = n

If an accelerated c.a exists, it has the same dimension as the original c.a.
From now on we shall no more distinguish 0̄p and 0̄n. Cell 0̄ of A′ codes K,

while cell 0̄ of A is only {0̄}.

10.2. COLE’S GENERAL THEOREM 297

10.2.5 The theorem

Theorem 10.2.2 Let A be an n-c.a (set of states Q) of stencil V , and

ψ : Zn −→ Zn an injective morphism

W a finite subset of Zn such that sg(W) = Zn

K a finite subset of Zn containing 0̄

satisfying, for some integer k, conditions

(1) K + kV ⊂ ψ(W) + K

(2) if l̄ �= 0̄ then 0̄ /∈ ψ(l̄) + K +
⋃k−1

i=0 iV

Then there exists a Zn-c.a A′ of stencil W such that, if A recognizes (/rejects)
an input word in time T , then A′ recognizes (/rejects) the k-grouped word in
time �T/k�.

Moreover, the number of states of A′ is at most |Q||K|, where |Q| and |K|
denote the number of states of A and the number of cells in K.

This we shall now verify, after all we need has been previously collected in
preceding sections.

Cells l̄ of A′ are the ψ(l̄) + K and states of A′ are the K-configurations of
states of Q (hence the upper bound for the number of states of A′).

Transition for a cell l̄ (with its W -neighbourhood around) is obtained by
repeting k times transition of A to cells of ψ(l̄)+K (each with its V -neighbourhood
around).

For any c.a A we must distinguish two transitions : one for ordinary cells,
δ, and one for cell 0̄, δ0, which takes the input into account. It will be the same
for A′. If we consider a cell l̄ �= 0̄, the k successive applications of δ to cells of
ψ(l̄)+K will concern cells among which, by condition (2), 0̄ never appears. On
the other hand, condition (1) guarantees that l̄ +W contains all the cells whose
states contribute when we apply δ k times.

As for cell 0̄, application of transition of A to K comprises one application of
δ0 to cell 0̄ of K and to an input xtk+k−1, while next applications all comprise
an application of δ0 to cell 0̄ and successively to inputs xtk+k−2, . . . , xtk+1,
xtk. With condition (1) and input (xtk, xtk+1, . . . , xtk+k−1) we have all the
information to compute δ′0.
With this definition it is clear that state of l̄ at time t will be the K-configuration
of states of ψ(l̄) + K at time kt.
Let us now examine halting and halting states : if a halting state a, accepting
or rejecting, appears on cell 0̄ of A at time kt, at time t cell 0̄ of A′ which is
set K of cells of A, has its cell 0̄ in state a. We shall naturally agree that any
K-configuration having state a on cell 0̄ is a halting state of A′, of the same
sort, accepting or rejecting, as a. If however state a should appear at some time
τ

k(t − 1) < τ < kt

298CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

computing of δ′ cannot be completed up to time t, unless we complete δ′ by
deciding that for a state of A′ and a W -configuration leading to such a situation
this transition leads to state {a}K of A′, (which is, by the same convention as
we made a few lines before , of the same sort, accepting or rejecting, as a).

A′ with set of states and transition so completed for each halting state a
of A will recognize the same input words that A recognized in time T , but
k-grouped, in time �T/k�.

Conclusion about this theorem : we could not hope for more general a
result, and we shall now apply it to various situations. The theorem tells us
what materials we need, and then, not only guarantees the existence of A′ but
tells us effectively how to build it.

Now the materials must be found : no problem, Cole has found everything
for us !

10.3 Application to weak speeding up

Here we want to prove that it is possible to speed up a Zn-c.a by any (integer)
factor k.

10.3.1 The weak speeding up theorem of Cole

Theorem 10.3.1 for any c.a A on Zn (with stencil V and input alphabet X)
which recognizes some language L in time T (m) and for any k ≥ 2,

there exists a c.a A′ on Zn, having stencil H1, input alphabet Xk which
recognizes in time �T (m)/k� the words of L k-grouped.

Note that if we usually denote by n the length of the words to be recognized,
or not, we must presently change our habits because at the moment n is the
dimension of the c.a.

Let j = max{ ‖v‖ | v̄εV } and K = H(k−1)j = {z̄ | ‖z̄‖ ≤ (k − 1)j} and let
ψ be defined by ψ(z̄) = [2(k−1)j+1]z̄. Clearly, K is a finite subset of Zn which
contains 0̄. We check that the two conditions in Cole’s theorem are satisfied.
Let us examine condition (1) : we have V ⊆ Hj , so that

kV ⊆ kHj = Hj + . . . + Hj︸ ︷︷ ︸
k times

= Hkj

K + kV ⊆ H(k−1)j + Hkj = H(2k−1)j .

We also have

ψ(H1) = {(u1, . . . , un) | ui = −2(k − 1)j − 1 or 0 or 2(k − 1)j + 1}.

Let z̄ ∈ K + kV , we have :

∀i = 1, . . . , n − (2k − 1)j ≤ zi ≤ (2k − 1)j.

10.3. APPLICATION TO WEAK SPEEDING UP 299

For all i let us define ū by

ui =

2(k − 1)j + 1 if (k − 1)j + 1 < zi ≤ (2k − 1)j
0 if −(k − 1)j ≤ zi ≤ (k − 1)j

−2(k − 1)j − 1 if −(2k − 1)j ≤ zi < −(k − 1)j

ū is in ψ(H1). It is easy to check that for all i, either |zi − ui| ≤ (k − 1)j
either |zi − ui| ≤ j − 1. But j − 1 < j ≤ (k − 1)j because k ≥ 2. So for all
i we have |zi − ui| ≤ (k − 1)j, which proves that z̄ − ū ∈ H(k−1)j = K hence
z̄ ∈ ψ(H1) + K. Condition (1) is satisfied.

Now for condition (2) : for i = 0, . . . , k − 1 we have

iV ⊆ iHj = Hij ⊆ H(k−1)j

300CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

k−1⋃
i=0

iV ⊆ H(k−1)j

K +
⋃

iV ⊆ H(k−1)j + H(k−1)j = H2(k−1)j .

If l̄ �= 0̄, then l̄ has at least one non zero coordinate, so that ψ(l̄) has at least
one coordinate whose absolute value is at least 2(k − 1)j + 1. Therefore

−ψ(l̄) /∈ K +
⋃

iV

and condition (2) is satisfied. An example in dimension 2 is given in Figure 5.

10.3.2 Example : n = 1, k = 3, V = H1, W = H1

This theorem naturally contains the weak acceleration of linear c.a’s of scope 1,
so let us see what it gives us for this example.

For A′ it proposes

ψ(z̄) = 5z̄ K = H2

that is grouping cells by 5. But in chapter 7 (Figure 1) we would have grouped
them only by 3 . Does this mean that by treating a particular case directly we
can find better solutions than those given by the theorem ? No, at least not in
the present case. Indeed, if we examine things a bit more closely, we notice that
in chapter 7 we deal with half-lines. If cells are grouped by 3, condition (2) is
satisfied for half-lines, but not for lines !

10.3.3 Strong speeding up of recognizers

Exactly as we did in section 7.2 in dimension 1, we can precede the weak accel-
erated c.a by a grouping process for the inputs. This process may be achieved
in any direction, for example in Z×{0}× . . .×{0}. It takes time m + 1, where
m is the length of the input.

Thus we have exactly the same strong speeding up results in any dimension
n as we had in dimension 1.

Proposition 10.3.2 For any Zn-c.a recognizing a language L in time T (m) >
m + 1, and any integer k ≥ 2, there exists a Zn-c.a recognizing L in time

m + 1 + �T (m)
k

�

Corollary 10.3.3 If a language L is recognized by some Zn-c.a in linear time
T (m) = am (a an integer), then it may be recognized by some Zn-c.a in time
1 + �m(1 + ε)�, for arbitrary ε > 0.

10.4. APPLICATION TO NEIGHBOURHOOD CHANGES 301

10.3.4 Slowing down

We mention this possibility for the sake of completeness : to slow down a Zn-c.a
by a factor k, as we did in dimension 1, we let it work one time-step out of k.

10.4 Application to neighbourhood changes

No more speeding up here, k = 1.

Inputs for the two automatons A and A′ enter at the same rythm, the time
scale is not changed. In this case, nothing forbids observing the outputs, which
are unchanged, so the following results are valid for all c.a’s, computers as well
as recognizers.

In this section we shall declare that two c.a’s are equivalent, (Cole uses the word
“indistinguishable”), if they accomplish the same task in the same time, that
is they recognize the same words or compute the same functions, and need the
same time.

10.4.1 First result : neighbourhood can always be en-
larged

This is of course obvious. Let us nevertheless observe that it is given by Cole’s
theorem. If V ′ ⊃ V , then build A′ with

ψ = IdZn

K = {0̄}.

In particular, for any Zn-c.a having stencil J1, there exists an equivalent c.a A′

with stencil H1.

10.4.2 second result : neighbourhood H1 is universal

Proposition 10.4.1 For any Zn-c.a A (with arbitrary stencil V) there exists
an equivalent c.a A′ on Zn with stencil H1.

Let then j = max{‖v̄‖ | v ∈ V } and A′ be the c.a defined by

ψ(z̄) = (2j + 1)z̄

K = Hj .

Clearly, K is a finite subset of Zn which contains 0̄. We check that the two
conditions in Cole’s theorem are satisfied.

302CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

Let us examine condition (1) : we have

V ⊆ Hj

K + kV = K + V ⊆ Hj + Hj = H2j .

We also have

ψ(H1) = {(u1, . . . , un) | ui = −2j − 1 or 0 or 2j + 1}.

Let z̄ ∈ K + kV = K + V , we have :

∀i = 1, . . . , n − 2j ≤ zi ≤ 2j.

For all i let us define ū by

ui =

2j + 1 if j + 1 ≤ zi ≤ 2j
0 if −j ≤ zi ≤ j

−2j − 1 if −2j ≤ zi ≤ −j − 1

We have ū ∈ ψ(H1) and z̄ − ū ∈ Hj = K so z̄ ∈ ψ(h1) + K. Condition (1) is
satisfied.

Here condition (2) reduces to 0̄ /∈ ψ(l̄)+K. But for any l̄ �= 0̄, l̄ has at least one
non zero coordinate, so ψ(l̄) has at least one coordinate whose absolute value is
at least 2j + 1, so −ψ(l̄) cannot be in K = Hj . Condition (2) is satisfied.

So we can limit ourselves to considering Zn-c.a’s with stencil H1 without any
loss in generality.

In dimension 1, these are the c.a’s with only first neighbours, so called “of
scope 1”. We discover here that it is no use studying linear c.a’s of scope greater
than 1, as far as the number of states is not considered.

10.4.3 Third result : neighbourhood J1 is universal

At last, with Cole’s theorem we shall prove

Proposition 10.4.2 For any Zn-c.a with stencil H1, there exists an equivalent
c.a with stencil J1.

This is not an easy result.
We may start by some attempts with ψ a homothetie ψ(z̄) = λ(z̄) and

set K having a simple shape, H or J : we find that we do not manage to
satisfy conditions. So we try more complicated sets of the form K = Hα + Jβ .
Fastidious calculations lead to smallest possible values

λ = α + β + 1

10.4. APPLICATION TO NEIGHBOURHOOD CHANGES 303

α = (n − 1)2 − (n − 1) + 1

β = (n − 1)2

Cole proposes simpler values

K = Hn2 + Jn2

ψ(z̄) = (2n2 + 1)z̄

for which we shall now check that conditions are actually satisfied. Condition
(2) reduces to

∀z̄ �= 0̄ − ψ(z̄) /∈ K.

But

K ⊂ Hn2 + Hn2 = H2n2

and if z̄ has some non zero coordinate, then ψ(z̄) has some coordinate with
absolute value not less than 2n2 + 1, so cannot be in K.

It is condition (1) which is really tricky.
We must check that

K + H1 ⊆ ψ(J1) + K

that is

Hn2 + Jn2 + H1 ⊆ ψ(J1) + Hn2 + Jn2 .

Let us take ā ε Hn2 , b̄ ε Jn2 , c̄ ε H1. We are looking for q̄ ε J1, r̄ ε Hn2 , ū ε Jn2

such that

ȳ = ā + b̄ + c̄ = ψ(q̄) + r̄ + ū.

We have

‖ȳ‖ ≤ 2n2 + 1.

Let E be

E = {i | yi > n2}.

In case E is empty, then

ȳ ε Hn2 ,

304CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

and we can take

q̄ = 0̄ r̄ = ȳ ū = 0̄.

So let us suppose that E is not empty. Let µ be such that

yµ = max|yi| = ‖y‖

we clearly have

µ ∈ E and |yµ| > n2;

With the help of Figure 6 we can see that there exists

qµ = −1 or 1

and

rµ with |rµ| ≤ n2

such that

yµ = (2n2 + 1)qµ + rµ.

If we take uµ = 0 we already have

yµ = (2n2 + 1)qµ + rµ + uµ.

If for all i �= µ we take qi = 0 we have

q̄ ∈ J1.

Let us complete definition of r̄ and ū for indexes i of E − {µ} : since n2 ≤
|yi| ≤ 2n2 + 1, it is possible to find ri and ui such that

|ri| = n2

|ui| ≤ n2 + 1

yi = ri + ui.

10.4. APPLICATION TO NEIGHBOURHOOD CHANGES 305

At last, for indexes i not belonging to E we take

ri = yi which is ≤ n2

ui = 0.

It is clear that

ȳ = (2n2 + 1)q̄ + r̄ + ū

and that

r̄ ∈ Hn2 .

We are left to show that ū ∈ Jn2 . But

|ū| =
n∑

i=1

|ui| =
∑

i∈E−{µ}
|ui| =

∑
i∈E−{µ}

|yi − ri| =
∑

i∈E−{µ}
(|yi| − n2) ≤

∑
i∈E

(|yi| − n2).

If this last sum is not greater than n2 we are done. If it is not the case, then
we have

n2 <
∑
i∈E

(|yi| − n2) ≤
∑
i∈E

(|yµ| − n2) ≤ n(|yµ| − n2)

hence

|yµ| − n2 > n.

306CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

But

yi = ai + bi + ci

|yi| ≤ n2 + |bi| + |ci|

|yi| − n2 ≤ |bi| + |ci|

so ∑
E

(|yi| − n2) ≤
∑

|bi| +
∑

|ci| ≤ n2 + n.

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 307

As

|yµ| − n2 > n

we have

|ū| =
∑

E−{µ}
(|yi| − n2) =

∑
E

(|yi| − n2) − (|yµ| − n2) < n2

so ū ∈ Jn2 . (See Figure 7).
Proof of the proposition is thus achieved.
For the case of dimension n = 2, Cole’s choice is

K = H4 + J4

ψ(z̄) = 9z̄

whilst the smallest possible values would give

K = H1 + J1

ψ(z̄) = 3z̄.

It is easy in this case to draw the figures and verify that both solutions are good.

Combining this proposition with the second result, we see that for any c.a
there exists an equivalent c.a with stencil J1.

As a conclusion, with no loss in generality, we may limit ourselves to con-
sidering only c.a’s with stencil J1.

10.5 Languages recognized by c.a’s in real time

These languages are recursive languages, this is a consequence of Church’s thesis.
A direct check is in fact easy.

We shall now develop some useful tools

10.5.1 Study of the syntactical equivalences

Let us first recall their definitions, which were already given in 3.2.3. For any
language L on alphabet X we define a family of equivalence relations in X∗ as
follows.

Syntactic equivalence mod L, denoted ≡L, for words of X∗ is defined by

w ≡L w′ if and only if ∀u ∈ X∗ wu ∈ L ⇔ w′u ∈ L.

308CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

In the same way we define, for any integer k, syntactic equivalence ≡L
k by

w ≡L
k w′ if and only if ∀u ∈ X∗ such that |u| ≤ k wu ∈ L ⇔ w′u ∈ L.

It may be handy to define also equivalence ∼L
k

w ∼L
k w′ if and only if ∀u ∈ X∗ of length |u| = k wu ∈ L ⇔ w′u ∈ L.

Note that

w ≡L w′ ⇒ w ≡L
k w′ ⇒ w ∼L

k w′

and

≡L
k = ∩k

h=0 ∼L
h .

Another presentation of these equivalences can be given, using the following
mapping from words to languages :

w �→ w−1L = {u | wu ε L} : X∗ −→ P(X∗).

Then

w ≡L w′ ⇐⇒ w−1L = w′−1
L

w ∼L
k w′ ⇐⇒ w−1L ∩ Xk = w′−1

L ∩ Xk

w ≡L
k w′ ⇐⇒ w−1L ∩ X≤k = w′−1

L ∩ X≤k

where

X≤k = ∪k
i=0X

i.

Using this presentation, we may easily bound the indexes of the syntactical
equivalences ∼L

k and ≡L
k . In the general case when the alphabet X has at least

2 letters :

α = |X| ≥ 2

the number of words of length k is αk, and the number of words in X≤k is

1 + α + . . . + αk =
αk+1 − 1

α − 1
.

The number of sets of words of length k is 2αk

, and the number of sets of words
of length at most k is 2αk+...+1. As a consequence, for any language L, the
syntactic equivalences ∼L

k and ≡L
k have finite indexes bounded by

index(∼L
k) ≤ 2αk

index(≡L
k) ≤ 2αk+...+1.

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 309

It is easy to show that these bounds are actually reached for some languages.
Indeed, let

L1, L2, . . . , LN

be any sequence of languages in X∗, and a and b 2 letters of X. Then the
language

L = aL1 ∪ baL2 ∪ . . . ∪ bN−1aLN

is such that

a−1L = L1 , (ba)−1L = L2 , . . . , (bN−1a)−1L = LN .

If the languages Li are all distinct, the N words

a , ba , . . . , bN−1a

are thus in different classes, so that the number of classes is at least N . The
language L obtained by this way from the sequence of all sets of words of length
k has index of ∼L

k equal to 2αk

. The language L obtained by this way from
the sequence of all sets of words of length at most k has index of ≡L

k equal to
2αk+...+1.

These considerations will emphasize the interest of the following criterion
of Cole, which, for c.a-recognizable languages L, bounds the indexes of the ≡L

k

relations by an exponential of a polynomial in k.

10.5.2 Cole’s criterion in dimension n

We have already proved this criterion in section 3.2.3 in a very restricted frame :
dimension 1, neighbourhood H1, and for a half-line only.

We give it now in the most general circumstances.

Criterion 10.5.1 If a language L is recognizable in strictly real time by some
n-dimensional c.a A, then there exists h such that, for all k, equivalence ≡L

k has
index (number of classes) less than

h(2k+1)n

.

Note : we point out that, for n = 1 the polynomial is (2k+1) and not (k+1)
as in section 3.2.3. The reason is that we now deal with a complete line instead
of a half-line only.

Indeed, if L is recognized in strictly real time by an n-dimensional c.a A, it
is recognizable in strictly real time by an n-dimensional c.a A′ with stencil H1.
Number h of the criterion will be the number of states of A′.
For any k, if two words w and w′ belong to two distinct classes of ≡L

k , there

310CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

exists a word u of length at most k such that wu is recognized and w′u is not :
this results from the definition of relations ≡L

k .
But, state of cell 0̄ just after input of wu, which is accepting (/respectively

of w′u, which is rejecting) depends only on u and states on

0̄ + H1 + . . . + H1︸ ︷︷ ︸
|u|times

= |u|H1 ⊆ kH1 = Hk

just after input of w (/resp. w′).
Configurations of states on Hk after input of w and w′ should therefore be

different. But as Hk has (2k + 1)n cells, there are only

h(2k+1)n

such configurations. So there can’t be more than this number of classes in ≡L
k .

It is interesting to note that this criterion may be considered a generaliza-
tion to c.a’s of one of the conditions in Nerode’s theorem [44] for languages
recognizable by finite automata (in strict real time goes in this case without
saying). Indeed, finite automata are the extreme case of c.a’s of dimension 0.
If we put n = 0 in the statement of the above criterion, we obtain that there
exists some constant h such that, for all k, equivalence ≡L

k has at most h classes.
This implies that equivalence ≡L has index at most h too, and there we have
condition (iii) of Nerode’s theorem.

However, Nerode’s condition (iii) was not only a necessary condition, it was
also sufficient for a language to be recognizable by some finite automaton.

10.5.3 Converse of this criterion is false

Let K be a set of integers which is not recursive, and let Λ = {1n | n ∈ K},
which is then a non recursive language.
Let us count the equivalence classes of ≡Λ

k : two words w and w′ belong to two
different classes if and only if there exists a word u of length at most k such
that wu ∈ Λ and w′u /∈ Λ. But the alphabet is {1}, and there are only k + 1
words with length less than k : 10,1, . . . , 1k. So w and w′ are in two different
classes if and only if the two k + 1-tuples of 0’s and 1’s

(1Λ(w), 1Λ(w1), . . . , 1Λ(w1l), . . . , 1Λ(w1k))

(1Λ(w′), 1Λ(w′1), . . . , 1Λ(w′1l), . . . , 1Λ(w′1k))

where 1Λ is the characteristic function of Λ, are different. So there can’t be
more than 2k+1 classes.
As a consequence there exists h = 2 such that, for any k, ≡Λ

k has a number of
classes less than

2(2k+1)1 .

If the converse of Cole’s criterion were true, Λ should be recognized by some
linear c.a, which is not the case because it is not even recursive.

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 311

10.5.4 Families formed by these languages

In the large family of languages recognized in strictly real time we can distinguish
sub-families :

Ln the family of languages recognized (in real time) by some n-dimensional
c.a

Ln(X) the family of languages recognized (in real time) by some n-dimensional
c.a with alphabet X.

We insist that X is finite, and the only interesting information about it is
its number of elements.
We are interested in the closure properties of these families for several opera-
tions, some of them unary : complement, operation *

L∗ = {ε} ∪ L ∪ L2 ∪ . . . ∪ Lm ∪ . . . ,

(where ε is the empty word), product with X∗, reversal,
others binary : union, intersection, set difference , product.

Let us first observe that if L is a language on alphabet X, then, for every X ′ ⊇ X

L ε Ln(X) ⇔ L ε Ln(X ′).

In fact it is clear that a c.a on X ′ recognizing L still recognizes it if we limit its
input alphabet to X, and it is easy to modify a c.a with alphabet X recognizing
L into a c.a with alphabet X ′ : we can decide that any letter of X ′ \X acts like
some determined letter of X, and in addition deposits on cell 0̄ a definite mark
which makes any state rejecting. So finally there is no real difference.
This comment allows us to consider all operations, unary or binary, as operating
inside families of languages having a determined alphabet : we thus perform
unions, products, . . . only with languages on the same alphabet.

Thus, if the fact that all Ln(X) for any X are closed for some operation on
languages implies that Ln too, the converse is also true. So it is equivalent to
state for some determined operation, that Ln is closed or that all the Ln(X)
are.

On the other hand, should some family Ln(X) not be closed for some oper-
ation then family Ln would not be either. (In this case, for any larger alphabet
X ′, Ln(X ′) is not closed either).

10.5.5 Closure properties of the Ln families

Ln is closed under boolean set theoretical operations

If L is recognized by the n-c.a A, its complement is recognized by the c.a ob-
tained by exchanging accepting and rejecting states. If L1 is recognized by A1

and L2 by A2, the product c.a (resulting from the simultaneous working of the
two), recognizes L1 ∩ L2 if accepting states are the couples of two accepting
states, and recognizes L1 ∪ L2 if its accepting states are the couples where at
least one of the two states is accepting, while L1 \ L2 is the intersection of L1

and the complement of L2.

312CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

It is not known wether Ln is closed under operation * or not

All Ln(X) are closed under the right product with X∗

Indeed, if L is recognized by some n-c.a A, LX∗ is recognized by the n-c.a
obtained by deciding that any accepting state definitely marks cell 0̄ with a sign
that makes any state accepting.

If |X| ≥ 2, no family Ln(X) is closed for the left product with X∗

Of course, if X has only a single letter x, then {x}∗L is the set of all words on
{x} of length greater than the length of the smallest word of L and obviously
belongs to Ln({x}) for any n.

This case is not interesting, so we suppose that X has at least two letters.
As in chapter 3, P3 will denote the set of palindromes on alphabet X having
length 3 at least.

In section 3.4.3 we proved that P3 is recognized (in strictly real time) by
some c.a on N. We shall easily admit, before we prove it later on (10.5.6), that
consequently it belongs to Ln(X) for any n.
As for X∗P3, we proved in 3.4.5 that it does not belong to L1(X), using Cole’s
criterion in dimension 1.
We had then proved, concerning equivalence ≡X∗P3

k , that, m being any integer,

for k = 2m + 3

this equivalence had at least

22m

classes .

But, for any n and any h, it is clear that, for m large enough

2m > log2h.(4m + 7)n

hence

22m

> h(4m+7)n

= h(2k+1)n

.

Cole’s criterion in dimension n fails, so that X∗P3 cannot belong to Ln(X).

Families Ln(X) are not closed, neither under the product, nor for the
reversal

Indeed P3 belongs to Ln(X) and so does X∗ (recognized by any n-c.a where all
states are accepting). Yet product X∗P3 is not in Ln(X).

P3X
∗ belongs to Ln(X), but its reverse X∗P 3 does not

These counter-examples demand that X has at least 2 letters. If X has only one
single letter, the reverse operation is the identity, so that closure for reversal is
trivial.

As far as we know, the question whether Ln({x}) is closed for the product
remains open.

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 313

No Ln contains the family of context-free languages

Observe that language X∗P3 is context-free and is not recognized (in strictly
real time) by any c.a of any dimension whatever.

10.5.6 Power of c.a’s increase with their dimension

More precisely, real-time recognition increases with dimension.

It is intuitively clear that an (n+1)-c.a has more possibilities than an n-c.a,
so that Ln ⊆ Ln+1. However we shall detail the argument.
Let us first notice, that for any c.a we can suppose (if necessary a second quies-
cent state may be introduced), that the original quiescent state can only main-
tain itself, so that it never appears in the active area of the s.t.d.

Let us first show that a c.a on N (of scope 1) can be modified in a c.a on Z

(of scope 1) : for this we complete it with cells −1,−2,. . . , in quiescent state at
time 0, we complete transition function by

∀q ∈ Q δ′(e, e, q) = e

so that cells having a negative number constitute a quiescent area, and we adapt
the transition by defining

δ′(e, q, d) = δ(β, q, d) ∀q, d ∈ Q

so that this quiescent area replaces the original left border. Clearly the Z-a.c
obtained accomplishes the same task as the N-c.a, in the same time.

Let us now prove that any n-c.a with stencil Jn
1 (J1 stencil of Zn) can easily be

modified in an (n + 1)-c.a with stencil Jn+1
1 (J1-stencil of Zn+1) :

- first we place it in Zn+1 by giving all cells a n + 1-st coordinate of
value 0
- all cells with non zero n+1-st coordinate are set in quiescent state
at time 0
- if C is a Jn+1

1 -configuration of states of Q we define

δ′(C) = δ(C restricted to Jn
1)

which is to say that states of the cells which find themselves in the
part of its Jn+1

1 -neighbourhood which is not in its Jn
1 -neighbourhood

have no influence on a cell. This amounts in fact to keeping the
ancient Jn

1 -neighbourhood.

It is clear that these modifications bring no change to the run of the c.a nor
to the running time.
We can thus conclude

Ln(X) ⊆ Ln+1(X)

Ln ⊆ Ln+1

314CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

10.5.7 This power increases strictly

Now we want to show that, for any n,

Ln(X) �= Ln+1(X)

by producing a language of Ln+1(X) not belonging to Ln(X).
This happens to be a rather difficult result.

L0 �= L1

Let us not disregard first proving that L0 �= L1. A c.a of dimension 0, which
extends in no direction, is reduced to cell 0. This cell can have no neighbour,
its state depends only on its proper state and the input at preceding time-step.
If it works in strictly real time, we recognize it is a classical finite automaton.
So family L0 is the family of regular (rational) languages. Family L1, which
contains non regular languages ({anbn}, the sets of palindromes, see chapter 3),
and even non context-free languages (the set of square words), is considerably
more large.

L1 �= L2

This is the only case in which we shall detail the proof entirely.

Definition of language L

Let Λ be the language on alphabet {0, 1, a} of all words

wpa . . . awma aw0

where the wi’s are non-empty words on {0, 1}, that is words of

W = {0, 1}+ = {0, 1}∗ \ {ε}

where ε is he empty word.
And let L be the language on {0,1,a,d} of words

wpa . . . awma aw0d
mw̃m

formed of one word of Λ and one suffix dmw̃m , where 1 ≤ m ≤ p and w̃m is the
reversal of one of the words of W which compose the first part, precisely the
one of index m.

L does not belong to L1

We shall show that Cole’s criterion fails :

∀h ∃k such that index(≡L
k) > h2k+1.

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 315

Let p be an integer that we reserve ourselves to choose later. Let us consider
the particular words of Λ

wpa . . . awma aw0 with wi ∈ {0, 1}p and w0 = 0p fixed .

There are 2p2
of these words. If two such words ω and ω′ are distinct, there

must be some m between 1 and p such that

wm �= wm′ .

From this we get

ωdmw̃m ∈ L while ω′dmw̃m /∈ L

with

|dmw̃m| ≤ p + p = 2p.

Thus for k = 2p, ω and ω′ are not equivalent for relation ≡L
k . So this equivalence

must have at least 2p2
classes. If we have taken p large enough, for example

p > 5 log h

then

p2 > 5p log h > (4p + 1) log h = (2k + 1) log h

2p2
> h2k+1

and

index(≡L
k) > h2k+1

so L does not belong to L1 . Proving it belongs to L2 will need some work.

A simple and fundamental mechanism

We first present a linear c.a which harbours the very simple mechanism that we
shall afterwards systematically use. It works with two elementary moves :

- if a cell contains 3 elements, the right one passes in the right neigh-
bouring cell at next time-step

- if a cell contains only 1 element, at next time-step it draws the left-
most element from its right neighbour, providing this right neighbour
is not empty.

(we can say that a cell is balanced only when it contains 2 elements, less is too
little, more is too much, and it recovers balance by exchanging elements with
the right neighbouring cell, see table of rules in Figure 8)

316CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

and a few simple principles :

- letters 0 and 1 enter cell 0 and pack there before being pushed on
the right by the preceding mechanism

- input of letter d definitely modifies the working of cell 0 : after d
has entered, input of some letter 0 or 1

- on the same letter : destroys this letter

- on a different letter : destroys this letter and sets a
permanent rejecting state

- on no letter : settles the input letter in cell 0

- the only accepting state is when cell 0 is empty and the rejecting
state has not appeared.

Functioning of this c.a is illustrated in Figure 9. It is clear that it recognizes
input words wdw̃ and rejects all other words.

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 317

L is in L2

We shall now describe a c.a on N2 with stencil H1 recognizing L. This c.a will
work using the preceding mechanism, in two directions : in the first direction
to string and unstring letters (at most 3 per cell), and in the second to stack
and unstack words (at most 3 per cell), or rather pieces of length 3 of tracks
intended to contain the words. Figure 10 will enlighten explanations.

How does the c.a work with some input ω = wpa . . . awma . . . aw0dmw ?
(In Figure 10 the input word taken as example is

01010101a11a011101a00a1010dd101110)

The initial state is an impulse state, where cell 0 contains a first piece of
track. Tracks will extend rightwards, piece by piece, at each time-step.

When letters 0 or 1 enter, they fill the (first) track beginning in cell 0, by
pushing through the successive cells.

318CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 319

320CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 321

322CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 323

324CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

When input is an a-letter, a new piece of track is created, seed for a second
track. This piece pushes the first piece of the first track (in the second direction).
Now, as the second track progressively extends (in direction 1), all the first track
will be progressively pushed (in direction 2), piece after piece, in the successive
cells.

When a new word of 0 and 1 letters arrives, it will settle in this new track.
And so on. Now as soon as 3 pieces of track are stacked in a cell, one is

pushed out in next cell, in direction 2. So the words wp, . . . , wm, . . . , w0

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 325

progressively settle on successive tracks.
When the first d-letter arrives cell 0 undergoes a definite equal change, (it is

now marked in black on Figure 10), which will concern the effect of the future
entering of letters 0 and 1 : instead of settling, they will destroy the likes of
them, or make cell 0 rejecting.

But before, each d-letter entering starts the destruction of a track (with the
letters carried) : this destruction progresses as letter d advances in direction 1.
And as this goes along, pieces of tracks become scarce in cells, so that more
ancient tracks are progressively drawn back. As a result, when the last part w
of the input word arrives, as many tracks as there were d-letters are (at least
partly) destroyed. So the track beginning in cell 0 is the track carrying word
wm.

If w = w̃m, word w̃m is progressively destroyed. If the accepting states are
all states where the first track still present in cell 0 is empty, it is clear that all
words of L2 are accepted.

We are left to show that all other words are rejected. If w is too short, equal
to a prefix of w̃m, the first track is not emptied when input ends. If w is too
long, equal to w̃m with a suffix, the supplementary letters enter cell 0, which
will not be empty at the end. If w differs from w̃m, at least one of w’s letters
(which could be new a or d-letters) arrives on a different letter in cell 0, so cell
0 becomes rejecting. If there are more than p d-letters, there is no track left in
cell 0, we decide that cell 0 becomes rejecting. If there is no d-letter, track in
cell 0 cannot be emptied.

Ln �= Ln+1

Definition of language Ln

Let us try and generalize preceding proof. And to start with, we must define
the appropriate Ln language on alphabet {0, 1, a1, . . . an, d1, . . . dn}.

Let us first present the sequence of languages Λ1, Λ2, . . . , Λn : Λ1 is the
language formed by the products w of W separated by a1’s, Λ2 is the language
of products of words of Λ1 separated by a2’s, and so on, Λn is the language of
products of words of Λn−1 separated by an’s.

Ln is then obtained by extending the words of Λn by suffixes of form
dmn

n . . . dm1
1 w̃, mi ≥ 1, convenient, in the sense that they must correspond to

one of the w’s composing the word of Λn : this means that, by destroying the
mn first (from the right) words of Λn−1, then (in what is left) the mn−1 first
words of Λn−2, . . . , and at last the m1 first words of W , we find a w, and that
the end of the suffix is precisely is reversal.

Ln does not belong to Ln

We want first to show that Ln is not in Ln by showing that

∀h ∃k such that index(≡L
k) > h(2k+1)n

.

326CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

For some fixed p, which we shall choose later, we shall consider a particular
subset of Λn : the one we obtain with words of W of length p to start with, by
gathering p+1 of these words (the first on the right being 0p) with p a1-letters,
then p + 1 such words with p a2-letters, and so on, finishing by gathering p + 1
words of Λn−1 (the first one having only 0’s) with p an-letters. Let us give one
or two examples :

with n = 2, p = 3

110a1100a1010a1000 a2 111a1100a1011a1000 a2

111a1010a1111a1000 a2 000a1000a1000a1000

et avec n = 4, p = 1

1a10a20a10 a3 1a11a20a10 a4 0a10a20a10 a3 0a10a20a10

The number of these words is 2pn+1
. But if 2 such words, ω and ω′ are

distinct, they have at least one of their w factors which are different. Then
there exists a sequence mn, mn−1, . . . , m1, 1 ≤ mi ≤ p and a word w such that

ωdmn
n . . . dm1

1 w̃ ∈ Ln

ω′dmn
n . . . dm1

1 w̃ /∈ Ln.

As

|dmn
n . . . dm1

1 w̃| ≤ (n + 1)p

the two words ω and ω′ are in different classes of equivalence ≡Ln

k if we take

k = (n + 1)p.

Relation ≡Ln

k will so have at least 2pn+1
classes. But, for any h, we can choose

p so that

2pn+1
> h(2k+1)n

that is

pn+1 > (2k + 1)n. log h = [(2n + 2)p + 1]n. log h

for this it suffices that

pn+1 > [(2n + 3)p]n. log h = (2n + 3)npn. log h

or

p > (2n + 3)n. log h

That is how we choose p at the very beginning .

10.5. LANGUAGES RECOGNIZED BY C.A’S IN REAL TIME 327

Ln is in Ln+1

Initial state of cell 0 is the bud for a track that will extend in direction 1. Each
a1-letter will create the bud for a new track. The successive tracks progressively
reconstruct a dimension 2-subspace. Each a2-letter will create the bud for a new
plane layer, that is a unit square which will extend simultaneously in directions
1 and 2, or better expressed, a unit slab around which (stencil is H1) new slabs
are generated at each time-step, . . . , each an-letter will create the bud for a new
n-dimensional subspace, that is an n-dimensional unit cube which will extend
in the n first directions simultaneously.

Words of W slip in the tracks, then words of Λ1 in the plane layers, and so
on, words of Λn take place in the subspaces of dimension n, whose piling up
reconstructs the entire n+1-dimensional space. Now each dn-letter will destroy
a dimension n subspace as it advances in the n first directions, each dn−1-letter
a dimension (n − 1) subspace as it advances in the n − 1 first directions, . . . ,
finally each d1-letter destroys a track as it advances in direction 1. Finally word
w will meet its reversal starting in the first track of the first plane . . . of the first
n-subspace starting in cell 0, and it will exactly destroy this word and empty
the track.

This is far from a proof. But we hope it helps understand the part played
by the successive supplementary dimensions to recognize the successive Ln-
languages, and that this can convince one that each increase of the dimension
makes new languages recognizable.

328CHAPTER 10. N -DIMENSIONAL C.A’S WITH ARBITRARY NEIGHBOURHOODS

Chapter 11

Synchronization of a pair
with delay

This chapter is based on Mazoyer’s work in [38]

Up to now, we have supposed that communication between adjacent cells
needs no delay, so that signals can propagate at speed 1. Now we introduce
delays in the intercommunications between cells in linear c.a’s. We first consider
lines of two cells. The case of lines with an arbitrary number of cells is the
subject of next chapter.

But we shall always suppose that the delay for communication between two
cells is symmetric.

11.1 Introduction of the notion of delay

11.1.1 Preliminary comment on couples and pairs

In a line each automaton has 2 I/O ports, a left one and a right one. Using
the fictitious border state β as in 1.1.3 and following chapters, the transition
function for the 2 cells of a line of 2, that we may call a couple, is thus

< A1, t + 1 >= δ(β, < A1, t >, < A2, t >) = δ1(< A1, t >, < A2, t >)

< A2, t + 1 >= δ(< A1, t >, < A2, t >, β) = δ2(< A2, t >, < A1, t >).

In a pair, we do not distinguish a left and a right cell, the 2 automata have one
single I/O port, and the same transition function

< Ai, t + 1 >= δ(< Ai, t >, < Aj , t >).

It seems that in the first case we may have 2 different transition functions for
the 2 cells, and not in the second case. But the couple is reduced to a pair if

329

330 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

δ1 = δ2, and the pair may become a couple if we distinguish states for A1 from
states for A2.

Thus, there is no fundamental difference between a pair and a couple.

11.1.2 The notion of delay

In the case of a pair communicating with delay τ , the transition function has
arity 2 and

< Ai, t + 1 >= δ(< Ai, t >, < A3−i, t − τ >) where i = 1, 2.

Now, how do we intend to visualize the evolution of such a pair ? Some imagi-
nation will help us here, moreover well suited to the large delays that we want
to consider. We shall lift our eyes from cell clusters up to the skies, and dream
of stars exchanging rays of light perceived long after they were sent. We shall
represent automata interacting with delays according to this imagination, by
attributing delays to distances that signals, sent by the automata according to
their states, must cross. Thus, if the interaction delay between A1 and A2 is
τ , we shall represent them at a distance of τ , that signals will cross at speed 1,
one distance unit per time unit, and we shall represent the space-time diagram
as shown in Figure 4 : the fictitious signal sent by state q leaves the (square
representing the) automaton at the time when it appears, and is perceived by
the other automaton at the time when it penetrates (the square representing)
it.

We insist that the signals that we evoke here have nothing in common with
the signals of preceding chapters. Those were trajectories of states from cell to
cell, at various speeds. The ones we imagine now, cross, at constant speed, a
void space that has no mathematical existence, only meant to help us visualize
delays.

11.1. INTRODUCTION OF THE NOTION OF DELAY 331

11.1.3 The clock signal

Let us first examine the simplest and quickest possible dialog between the two
automata : a single (non quiescent) state s appears during one time-unit on
one automaton, then on the other one as soon as it is perceived by it, the
corresponding signal is reflected from one automaton to the other (Figure 5).
State s appears on each automaton periodically, every 2τ + 2 time-steps, and
takes time τ + 1 to go from one automaton to the other. This elementary
exchange gives the basical rythm for the functioning of our system. Its half-
period being τ + 1 and not τ , we shall define a new delay, the reaction delay

∆ = τ + 1

as opposed to the perception delay τ . Let us note that

τ ≥ 0 and ∆ ≥ 1.

It is clear that our pair of automata can function only with such exchanges as
we have just mentioned. In the sequel, we shall describe these exchanges by
speaking of signals sent, received, reflected, rather than speaking of states being
perceived.

332 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

We have not spoken of other states than s. In fact, two states are sufficient
for the clock signal : s and the quiescent state.

11.1.4 The synchronization problem

We consider the problem for the family of pairs with arbitrary delay, all integers
being possible values for this delay.

We look for a set of states Q, containing the quiescent state, a general
(commanding) state and a fire state, and a transition function δ such that,
whatever the delay ∆, if the pair starts at time 0 in state

< A1, 0 >= general state < A2, 0 >= quiescent state,

then, the fire state appears for the first time and simultaneously on the two
automata, at a certain time depending on ∆ (the synchronization time).

For such elements (set Q and transition δ) we shall use the name synchro-
nizing solution.

It is quite imaginable that this could be a real problem : we may think of
two satellites needing to be synchronized. It is probably impossible to synchro-
nize them exactly by some external action. So they must achieve this only by

11.1. INTRODUCTION OF THE NOTION OF DELAY 333

communicating with one another. This implies that the process is initiated by
one only of the two automata.

11.1.5 Linear lower bounds for synchronization time

Let us suppose that (Q, δ) is a synchronizing solution. Initial state is state G
on A1, while A2 is in quiescent state. Whatever the delay ∆, A2 necessarily
remains in this state up to time ∆ − 1 when it receives the signal sent by the
general. So certainly

∀∆ T (∆) ≥ ∆.

A1 can receive no signal before time 2∆ − 1 as a non quiescent state may not
appear on A2 before time ∆. Therefore states of A1 before time 2∆ do not
depend on the second automaton. Should the fire state appear before time
2∆, it would appear likewise if the second automaton were at any distance
∆′ > ∆. If we consider ∆′ > 2∆, then for the pair with delay ∆′ we would have
T (∆′) < ∆′ (see Figure 6). From this we conclude that

∀∆ T (∆) ≥ 2∆.

Now states of A2 from time ∆ to time 3∆−1 for the pair with delay ∆, or from
time ∆′ to time ∆′ + 2∆− 1 for the pair with delay ∆′ > ∆ (Figure 7), depend
only on states of A1 up to time 2∆ − 1, so they are exactly the same. Should
T (∆) be strictly less than 3∆, then the fire state would appear among these
states and T (∆′)would then be less than 2∆′. From this we conclude that

∀∆ T (∆) ≥ 3∆.

As we shall see in 11.3.4 and 11.4.5, this is the best possible linear lower bound
and the above arguments cannot be extended further on.

334 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

�

11.2 Transitions for successive divisions by 2

We define a system of states and transitions. This system is structured by the
clock signal s, emitted by state G at time 0 (cf.11.1.3) and which determines on
A1 periods of time of 2∆ units. Period number 0 starts at time 0, and the i-th
period starts at time i2∆.

The general idea is the following : during period 0, signals are emitted at
regular time intervals of 2 units, and at each next period only one out of two
(approximately) will be reflected. These signals thus get further apart and less
frequent, they break the successive periods in larger and larger portions. Process
ends when one single portion covers the entire period.

11.2. TRANSITIONS FOR SUCCESSIVE DIVISIONS BY 2 335

Let us examine this more precisely, and to begin with we set

∆ = 2p + εp−12p−1 + . . . + ε12 + ε0 p ≥ 0

11.2.1 Period 0

This period is devoted to emitting signals ; state G, which emits the clock signal
s, is followed by states

ī , p , p̄ , i , ī . . . till s returns,

p and i emitting r signals.
The 2∆ long period is thus divided in ∆ sequences of pairs of successive

states G, ī or i, ī, and p, p̄ (Figure 8). According to wether s returns on p̄ or ī,
we know that ∆ is even or odd, i.e that ε0 = 0 or 1.

The total number of signals emitted, s included, is ∆.

336 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.2.2 Period 1

No more signals are emitted now. We introduce states

- x, ap and ai which absorb r signals

- ep and ei which reflect them.

Changes of states are determined by the arrival of the r signals reflected by A2

(Figure 9), and they succeed one another in the following order

(x) ai ei ap ep ai

In the present case each state thus remains 2 time-steps on cell A1.
State x appears only if s has returned on ī (indicating that ε0 = 1), and

then it suppresses the first r signal. One out of two of the ∆ = 2p + . . . + ε1.2

11.2. TRANSITIONS FOR SUCCESSIVE DIVISIONS BY 2 337

signals arriving next are absorbed by the a states, so that the number of signals
starting off again (s always included) is

∆ − ε0

2
= ε1 + 2ε2 + . . . + 2p−1.

The r signals are sent back every 4 time-steps, the first one starting off at time

2ε0 + 4 = 2(ε0 + 2)

of the period.
The number of signals reflected (s included) equals the number of [(x)ae]

sequences. If this number is even, at the end of the period s falls on state ep, if
it is odd, s falls on state ei. In the first case ε1 = 0, and we decide that s falling
on ep sets state ai, in the second case ε1 = 1, we decide that s falling on ei sets
state x, which will suppress the first r signal arriving in period 2 (see Figure
14).

11.2.3 Following periods

During period 2, ε1 + 2ε2 + . . . + 2p−1 signals arrive and ε2 + . . . + 2p−2 start
off again, at intervals of 23 time units. The first r signal sets off at time 2(ε0 +
2ε1 + 22).

It is easy to check by induction on i that during period i, εi + . . . + 2p−i

signals (s included) start off again, at intervals of 2i+1 time units, the first r
signal setting off at time

2(ε0 + 2ε1 + . . . + 2i−1εi−1 + 2i),

and εi is determined, its value being 0 or 1 according to wether s falls on ep or
ei.

During period p−1 (Figure 10) εp−1+2 signals start off again (which amounts
to 2 or 3 [(x)ae] sequences), the first r signal setting off at time

2(ε0 + . . . + 2p−2εp−2 + 2p−1),

and the value of εp−1 is determined.
During period p, one or two of the r signals are absorbed, the only signal

that starts off is s, at time

2(ε0 + 2ε1 + . . . + 2p−1εp−1 + 2p) = 2∆.

338 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.3 A first solution

We shall complete the preceding system so as to obtain a synchronization in
period p.

11.3.1 Locating period p

To be advised of the entering in period p, end of period p − 1 must have been
spotted. Having this in aim, we shall distinguish the first a, e states from the

11.3. A FIRST SOLUTION 339

next ones. Thus states succeeding to one another will be

(x) a1
i e1

i a1
p e1

p a2
i e2

i ap ep ai ei ap . . .

If s falls on e1
p or e2

i (end of second and third a, e sequence), we shall thereby
know that we are at the end of period p − 1.

This will determine A1 to enter state syn, which sends signal ssyn, which
sets A2 in turn in state syn (see Figures 14, 15) and is reflected.

11.3.2 The shifted signal

Besides, at the same time as we emit the r signals, that is in period 0, we shall
emit a second signal system which will work in a similar way. For the sake of
clarity, in figures we shall represent these signals going leftwards.

So, during period 0, all states (not G) emit a t signal (see Figure 14).
From period 1 up, states on A1 will be double (Figure 11), they will be

couples, first (or left) component managing the t signals, second (or right) com-
ponent managing the r signals. Let us point out that the a and e states of left
component, whose only task is spacing the t signals, will never have indexes as
those of the right component, which compute the εi and spot the p-th period.

Clearly, the first t signal starts, in each period, at the time half of the starting
time of the first r signal. Thus in period p this signal will start at time ∆.

By this mean we have succeeded, by progressive shiftings, to obtain a signal
synchronized with the reflection of ssyn.

11.3.3 Fire

During period p (see Figures 14 and 15) we shall need states (x) a e of left
component to determine the first t signal to start off (at time ∆). On the
contrary, on the rightside a single syn state, indicating that we are in period
p, is enough. This state returns signal ssyn instead of s, ssyn determines state
syn on A2 and is reflected. Fire state is set by

- ssyn falling on syn (on A1)

- t falling on syn (on A2).

So we have synchronization, at time

2∆(p + 1) = 2∆(log ∆
 + 1).

11.3.4 Short lines

For ∆ = 2 = 21 + 0 and ∆ = 3 = 21 + 1, p = 1, we want to synchronize at
the end of period 1. For this, state syn must be set by s falling on the first p̄
or the second ī, that we must thus distinguish. So on the whole we have states
(Figure 12)

G ī1 p1 p̄1 i2 ī2 p p̄ i ī p . . .

340 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

For ∆ = 1, p = 0 and 2∆(p + 1) = 2∆ = 2. We have seen that synchroniza-
tion at time 2 cannot be thought of. But we can synchronize at time 3 if we
add the particular rules indicated in Figure 13 : s falling on ī1 sets state f , f
gives fire on A1 and fire sets on A2 when f is perceived.

11.3. A FIRST SOLUTION 341

Finally synchronizing time is

T2[∆] =
{

2∆(log ∆
 + 1) if ∆ ≥ 2
3∆ = 3 if ∆ = 1

11.3.5 Counting the states

To achieve this tedious task, it is essential we should clearly identify the objects
to be counted. Particularly, as we have made use of signals, we must emphasize
that a signal sent by some state is indeed part of this state. Let us give an
example :

- state (e, ai) not sending any signal

- and the same state (e, ai) sending signal r

are not the same state. Better have a clear notation : we shall always have 1 or
2 states, accompanied by 1 or 2 signals, so we shall write these signals on the
right if they are s or r, and on the left if they are t, as we did in the figures.
Here again let us give a few examples

(., G, s) (t, p1, r) (t, ī, .)

(t, a, ap, r) (., e, ei, .) (., x, x, s) (., a, syn, ssyn)

and on A2

(., e, .) (t, e, .).

For the while we just give the number of states we have counted, which is 55.
Because we shall detail the counting in a more general case in 11.4.4.

342 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.3. A FIRST SOLUTION 343

344 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.4. A FAMILY OF SOLUTIONS 345

11.4 A family of solutions

Solution in basis 2, which we have precisely explained, will help us understand
the general solution, with basis m, necessarily more cumbersome but which
works with exactly the same principle. The only little difference will appear at
the end. Let then m be some integer, m ≥ 2, and

∆ = εpm
p + εp−1m

p−1 + . . . + ε1m
1 + ε0 p ≥ 0 , 0 ≤ εi < m , εp �= 0

11.4.1 In period 0

r and t signals are emitted. States that succeed to one another are

(., G, s) (t, M̄1, .) (t, M2, r) (t, M̄2, .) . . .

(t, Mi, r) (t, M̄i, .) . . . (t, Mm−1, r) (t, M̄m−1, .) (t, M0, r) (t, M̄0, .)

(t, M1, r) (t, M̄1, .)

∆ s and r signals are emitted (Figure 16).

If s returns on M̄j , then ε0 = j : indeed, as the length of a sequence
M1M̄1 . . . M0M̄0 is 2m, we have

2∆ = 2m × number of complete sequences + 2j

so

2ε0 = 2j.

This determines as next state state (., xj , xj , s)

346 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.4. A FAMILY OF SOLUTIONS 347

11.4.2 In period 1 and following periods

Figure 17, where m = 3, can serve as illustration.

348 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

Suppression of signals

It is possible that 1 to m − 1 of the r and t signals have to be suppressed, for
what we shall need m − 1 suppression states

xm−1 xm−2 . . . x1,

each of them, when receiving some r(/t), which it does not send back, changes
into the next one. As for x1, it changes into am−1.

If, at the beginning of any period we have state (., xj , xj , s), then j of the r
and t signals will be suppressed.

Spacing

To make m times less frequent the r and t signals after suppression of some of
them by the x states, we shall need m states

am−1 . . . a1 e am−1 . . .

each ai absorbing the r(/t) signal which changes it into next state, e reflecting
it.

In period 0, r signals are separated by 2 time-units, in period k they will be
separated by 2mk, length of the [ae] sequences of this period.

Determining the εk’s

We shall have to count, modulo m, the [(x)ae] sequences in period k : for this
we must number them

[a1
m−1 . . . a1

1e
1] [a2 e2] . . . [am−1 em−1] [a0 e0].

The number of these sequences in period k will be⌊
2∆
2mk

⌋
= εpm

p−k + . . . + εk+1m + εk

modulo m this number is εk. So, if s returns on ej we have εk = j, and the first
state of next period must be

(., am−1, a
1
m−1, s) if j = 0

(., xj , xj , s) if j �= 0

so that εk = j signals may be suppressed before the m-spacing.

Reflection of the signals

It is easy to check by induction that during period i

- εi + . . . + εpm
p−i s and r signals start off and we have as much

[(x)ae] sequences
- the first t signal starts off at time ε0 + ε1m + . . . + εi−1m

i−1 + mi

- next ones are separated by mi time-steps.

11.4. A FAMILY OF SOLUTIONS 349

Period p

Namely, during period p on the right we have εp [(x)ae] sequences, 1 ≤ εp ≤
m − 1, s returns thus on the first series of sequences

[a1 e1] [a2 e2] [am−1em−1]

that we shall distinguish (by index 1 left up) so as to recognize the end of period
p

[1a1 1e1] [1a2 1e2] . . . [1am−1 1em−1].

First t signal starts off at time

ε0 + . . . + εp−1m
p−1 + mp

and next ones are separated by mp time-steps.
At the end of this period εp is determined, equal to j if s falls on 1ej .

Difference with basis 2 construction

It comes from the fact that εp must be determined as the other εk’s, knowing it
is not null not being sufficient when basis is greater than 2. So one more period
will be necessary, and synchronization will occur in period p + 1.

In order that, in period p + 1 the first t signal should start off at time

∆ = ε0 + . . . + εpm
p,

we must suppress the first εp − 1 t signals. For this we establish that s falling
on 1ej (of right component) sets state

(., xj−1, syn, ssyn) or, if j = 0 (., e, syn, ssyn)

and that

(., x1, syn, .) is followed by (., e, syn, .) (not(., am−1, syn, .))

which reflects t. Next signals have no importance whatever, the simplest is to
decide that state (., e, syn, .) is permanent.

Synchronizing time is thus

Tm(∆) = 2∆(p + 2) = 2∆	logm ∆
 + 4∆.

11.4.3 Short lines

We think it wiser to examine them separately and carefully.
For p = 1 every thing works out normally.

Let us examine case p = 0

∆ = ε0 1 ≤ ε0 ≤ m − 1.

350 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

Is it really possible in this case to obtain synchronization at time indicated by
the general formula above, which is

2∆(p + 2) = 4∆ ?

We recognize that we are in this case when, in period 0, s returns on the first
sequence

M̄1 M̄2 . . . M̄m−1

that, for the purpose, we distinguish by an index 1, left up

1M̄1
1M̄2 . . . 1M̄m−1.

s falling on 1M̄j (1 indicating that ∆ = ε0 and j that ε0 = j, so ∆ = j) must
then bring state

(., aj−1, syn, ssyn),

j−1 t signals will be absorbed by the successive a states and the jth one, which
starts off at time j = ∆, will be reflected, everything works nicely (examples in
Figure 18).

Conclusion : for the synchronization problem for pairs with arbitrary delay ∆,
we have found a family of solutions (Am)m≥2, whose synchronizing time is

Tm(∆) = 2∆	logm ∆
 + 4∆.

11.4. A FAMILY OF SOLUTIONS 351

352 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.4.4 Counting the states

In period 0

on A1 we may find

(., G, s) (t, 1M̄1, .) . . . (t, 1Mm−1, r) (t, 1M̄m−1, .)

(t, M0, .) (t, M̄0, .) (t, M̄1, r) (t, 1M̄1, .) . . . (t, 1Mm−1, r) (t, 1M̄m−1, .)

which makes 4m − 2 states

In period 1 and following

we find couples having

- as possible left components

xm−1 . . . x1 am−1 . . . a1 e

- as possible right components

1a1
m−1 . . . 1a1

1
1e1 . . . 1am−1

m−1 . . . 1am−1
1

1em−1

a1
m−1 . . . a1

1 e1 . . . am−1
m−1 . . . am−1

1 em−1 a0
m−1 . . . a0

1e
0

Let us momentarily forget indexes up at the right of the right component
to examine how left and right states are associated : next to two [am−1 . . . a1e]
sequences on the left we have on the right a sequence [am−1am−1 . . . a1a1ee]
(Figure 19), with a shifting of 0 to m− 1 time-steps, depending on first state of
the period.

11.4. A FAMILY OF SOLUTIONS 353

Let us first count couples with an x state : we count

0 + 2 + . . . + 2(m − 1) = m(m − 1),

but if we look more attentively we note that one couple out of two, except the
last 2(m − 1), is obtained twice, so we really have only (m + 2)(m − 1)/2.

354 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

Let us now count couples with two a states : in each column of Figure 19,
corresponding to shiftings from 0 to m−1, we find 2m couples, but from shifting
1 up, one couple out of two has already been found in preceding column, so the
total number of couples is

2m + m(m − 1) = m2 + m.

If we reintroduce the up indexes of the right states, the number of couples is
multiplied by 2m − 1, so the number becomes

(2m − 1)(m2 + m) = 2m3 + m2 − m

and for the central periods we have a total of

2m3 + 1.5m2 − 0.5m − 2.

At last we must mention that on the right, state 1a1
m−1 will be sometimes

associated with a starting off of signal s, sometimes not, and the other states
1ai

m−1 and all states ai
m−1 may be or not associated with a reflection of signal

r, which doubles the number of am−1 states on the right, and finally adds
2m2 + m + 1 to our count.

In period p + 1

- on A1 we find states

(., xm−1, syn, ssyn) . . . (., x1, syn, ssyn) (., e, syn, ssyn) (t, e, syn, .)

- on A2

e (., e, s) (., e, r) (t, e, r) (., syn, ssyn) syn

- on A1 and A2 fire state *

a total of m + 8 states. The total number of states of Am, from period 0 to
period p + 1, is thus

2m3 + 3.5m2 + 5.5m + 5.

For m = 2 this amounts to 46, a little less than the number of states of the first
solution, whose synchronizing time was also a little less.

11.4.5 Reducing the synchronization time

We shall now proceed to a trifling modification of the Am’s into the Bm’s whose
synchronizing time will be

Tm(∆) =

2∆	 log ∆
log m
 + 4∆ if ∆ ≥ m

3∆ if ∆ < m

11.5. LOWER BOUNDS FOR SYNCHRONIZATION TIME 355

We just add m − 1 states

fm−1 . . . f2 f1

such that each of them gives the next one and f1 gives the fire, and decide that
s falling on 1M̄j (thus indicating that p = 0) gives fj and A2 enters state fire
as soon as it perceives state fj (Figure 20).

The family of solutions (Bm)m≥2 realizes, for the small delays, the minimal
possible time. Because of this property, this family has a theoretical interest
which we shall use later on.

11.5 Lower bounds for synchronization time

We now prove that synchronization times obtained in the preceding sections are
optimal in order of magnitude.
Let A be a synchronizing solution, with N states. From now on, we shall
consider very large delays, much larger than N and even than powers of N .

We shall number the periods in a different manner, more suitable for our
new purpose :

(k − 1)∆ ≤ period k < (k + 1)∆.

Now the odd periods are determined by the clock signal’s return on A1, the
even periods by its return on A2 (Figure 21).

356 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.5.1 Periodicity of states and first result

Period 1

A2 being quiescent up to time ∆ − 1 included, during period 1, A1 progresses
without being influenced by A2. Among the N + 1 first states of this period, 2
must be the same, so there exists

0 ≤ i1 < i1 + h1 ≤ N

such that

< A1, i1 >=< A1, i1 + h1 > .

From time i1 to time 2∆− 1, A1 thus behaves periodically with period h1. Let
us observe that i1 ≤ N − 1 and h1 ≤ N .

So, from some instant of time not greater than N − 1 of period 1, evolution
of A1 is periodical with period not greater than N .

11.5. LOWER BOUNDS FOR SYNCHRONIZATION TIME 357

Period 2

From time ∆ − 1 + i1, that we shall call time i1 − 1 of period 2, A2 repeatedly
receives the same series of h1 states. Let us consider, on A2, the instants where
the first state of these series is perceived. Among the N + 1 states of the first
N + 1 of these instants, two must be the same (Figure 22).

So there exists

0 ≤ i2 < i2 + h2 ≤ N

such that

< A2,∆ − 1 + i1 + i2h1 >=< A2,∆ − 1 + i1 + (i2 + h2)h1 > .

from what follows that from time

∆ − 1 + i1 + i2h1

so a fortiori from time

∆ + i1 + i2h1

and up to time 3∆−1, A2 behaves periodically with period h2h1. Let us observe
that

i1 + i2h1 ≤ N − 1 + (N − 1)N = N2 − 1 and h1h2 ≤ N2

358 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

11.5. LOWER BOUNDS FOR SYNCHRONIZATION TIME 359

Following periods

By induction on k it is easy to check that, during period k,

- from some time ≤ Nk − 1

- the automaton concerned behaves periodically with period ≤ Nk

as a result : any state appearing during period k appears there before time

(k − 1)∆ + 2Nk − 1.

11.5.2 A first proposition and a corollary

Proposition 11.5.1

∀∆ ≥ 2Nk−1, T (∆) ≥ k∆

Proof is by induction. For k = 1, 2 and 3, this result is already known, and
for all ∆.

Consider ∆ ≥ 2Nk : if fire should appear before time (k+1)∆, end of period
k, from preceding result, it should have appeared before time

(k − 1)∆ + 2Nk − 1 < (k − 1)∆ + ∆ = k∆.

If, by induction hypothesis, for ∆ ≥ 2Nk−1 fire cannot appear before time k∆,
we have a contradiction !

Figure 23 illustrates this proposition, and makes next corollary intuitive.

Corollary 11.5.2 no synchronizing solution can synchronize in time a linear
function of ∆

360 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

But we can get more . . .

11.5.3 A second proposition and a consequence

Proposition 11.5.3

∀∆ T (∆) >
1

log N
∆(log ∆ − 1)

Proof : for all ∆ (≥ 2), there exists some integer k (≥ 1) such that 2Nk−1 ≤
∆ < 2Nk. This k satisfying

Nk >
∆
2

k >
log(∆/2)

log N
=

log ∆ − 1
log N

.

From proposition 11.5.1 results that

T (∆) ≥ k∆ > ∆
log ∆ − 1

log N

11.5. LOWER BOUNDS FOR SYNCHRONIZATION TIME 361

We shall now compare the synchronization time of solutions Am with this
lower bound. For the Am’s :

Tm(∆) = 2∆(logm ∆
 + 2) ≤ 2∆(
log ∆
log m

+ 2).

The Am’s have number of states N = 2m3 + 3, 5m2 + 5, 5m + 5 ≈ 2m3.
For such a number of states, the preceding lower bound is

Tmin(∆) =
1

3logm + 1
∆(log ∆ − 1)

which gives

Tm(∆)
Tmin(∆)

= 6
[
1 +

1
3 log m

] 1 + 2 log m
log ∆

1 − 1
log ∆

≈ 6

if m is large and ∆ very large.
This remarkable result leads us to think that the solutions of Mazoyer are

quite good.
Let us think about criterions for appreciating solutions.

11.5.4 Reflection on the notion of optimality

A synchronizing solution

for a class of c.a’s consists of some automaton A and its transition function
which, starting from an initial configuration where one automaton is in state
general and the others are quiescent, leads the whole c.a to the fire state at
some determined instant of time whose value depends on the particular c.a in
the class.

Example : for the class of finite lines without delay we have several solutions,
Minsky’s solution (taking time about 3n, n length of the line), those of Goto,
Waksman, Balzer, Mazoyer (in time 2n − 2).

For the class of pairs with delay we have an infinite number of solutions,the
Am and the Bm.

Which are the best solutions ?

For the finite lines, Goto’s solution is better than Minsky’s in time, but worse
as regards the number of states (it has thousands), Mazoyer’s solution is better
in both respects.

For the pairs with delay, if m′ > m, Am′ is better in time than Am, but it
has more states.

362 CHAPTER 11. SYNCHRONIZATION OF A PAIR WITH DELAY

When shall we declare that a solution is optimal ?

The first idea, the simplest one too, is to consider only the time and to demand
as much as possible : that the solution realizes the best possible time for each
network of the family considered.

In this acceptation, solutions of Goto and the other minimal time ones are
all optimal. For pairs, the best possible time for each pair is 3∆, because less is
impossible and this time is effectively realized by the Bm’s for m > ∆. As there
is no solution in time 3∆, there is no optimal solution.

We see that this first idea, if it has the advantage of simplicity, very much
lacks subtlety : it does not place Mazoyer, Balzer and Waksman on the podium,
and indistinctly rejects all solutions for pairs with delay. So we go on thinking
and striving for a good definition.

The example of pairs seems less particular and miraculous than that of the
lines in as much as gaining in time appears to necessitate increasing the means,
that is the number of states : we observe this fact for our two families of
solutions, and the value of our lower bound, smaller if the number of states is
greater, confirms it. And we know that this is the normal and general rule.

It seems thus more realistic to compare solutions realizing the same time, or
solutions having the same number of states.

For lines, among all minimum time solutions, Mazoyer (6 states) is then
recognized as the best.

For pairs with delay, if we evaluate Mazoyer’s Am solutions with this point
of view, they appear to be excellent, as, with the same number of states, their
time is of the same order, not as the minimal time which we do not know, but
as a lower bound, very loosely calculated. We may certainly declare them quasi-
optimal, and risk the conjecture that they are the fastest possible ones for their
number of states.

Chapter 12

Synchronizing a line with
non uniform delays

The interest of the solution we hereafter present and which is due to Mazoyer
[37], is emphasized if we recall Jiang’s results. Jiang [30] describes a solution
for the synchronization problem of the class of all networks of finite automata,
whatever be the graph of their (symmetrical) connections and the delays for
communication through them. The synchronizing time of this solution is of
order

O(DR3)

where DR, the “delay-radius”, is the delay for communication between the
“general” automaton and the farthest among the “soldier” automata. The idea
of this solution (cf. chapter 13) consists in using a spanning tree with the general
as root for the graph of the network, and to replace synchronization of this tree
by the synchronization of the subtrees, having generals at their roots. These
synchronizations must be properly delayed for a good orchestration of the whole.
The automata will compute the necessary delays from the delays between one
another by circulating signals. Synchronization of each subtree will be likewise
decomposed, till the subtrees are reduced to single nodes.

Mazoyer’s solution has very general features in common with Jiang’s : it
is also a divide-and-conquer process, the line is repeatedly broken in smaller
sublines, and the synchronizations of the sublines are conveniently delayed. But
the involved techniques are completely different : the method for breaking the
line is related to Minsky’s solution for a line without delays (see chapter 1),
and the computations of delays does not use Jiang’s techniques. To be sure, its
time is noticeably better, being of order O(DR2) but for a class which is also
incomparably more restricted.

Indeed the family we consider now consists of particularly simple networks,
lines with delays. The class is nevertheless quite important, as the number n of
automata and the communication delays as well, are completely arbitrary.

363

364CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

In Figure 1, delays τi,i+1 between Ai and Ai+1 are represented as in chapter
11, by proportional distances between the automata.

As for the case of a pair in chapter 11, we shall prefer using what we have
called the “reaction” delays

∆i,i+1 = τi,i+1 + 1 ≥ 1.

We shall denote ∆i,j the cumulated delay from i to j

∆i,j = ∆i,i+1 + ∆i+1,i+2 + . . . + ∆j−1,j

and ∆ the cumulated delay from the first to the last automaton

∆ = ∆1,n

which is Jiang’s delay-radius in this case. For a couple (line of two) without
delay we have ∆ = 1 and we decide that ∆ = 0 characterizes a line reduced to
one single automaton.

For ∆ > 1, the synchronizing time of the solution we give next will be

T (∆) = 2∆2.

So as not to be interrupted by technical details when we present the synchroniz-
ing process, we shall first show how the automata can do computations about
their delays. To this effect, we expose several examples, the results of which will
be used in the sequel, to delay sub-synchronizations.

Let us underline once and for all that the left(/right)-end automaton has
his left(/right) input unused, so it knows all along that it is the first(/last)
automaton of the line.

365

366CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

12.1 Some times which are computable with a
pair of cells

We deal now with time computations that an automaton can perform with
the communication delay between itself and a single second automaton, let this
(reaction) delay be D. We insist that these times are not synchronization times,
as they are obtained only on the automaton which starts the computation. To
avoid confusions, the state marking these times will be denoted by a new symbol,
#, and not by ∗.

The lower bound we have for these times is here

T (D) ≥ 2D.

Indeed to compute with the delay, a signal must be sent and the response signal
must come back, and this takes two times the reaction delay.

As in chapter 11, the basic signal is the clock signal s, which appears on the
automaton which starts it at successive times 0 (starting time), 2D, 4D, . . .

12.1.1 Time T1(D) = 2D2.

In addition to the clock signal s, we use a signal u, emitted in first period at
time 2, reflected normally by the second automaton and with delay 2 on the
first one : the states needed, u2, u1 and u are represented in Figure 2. Signal u
being delayed by 2 time-steps at each period, is delayed by exactly 2D at period
D, which means that at the end of this period, s returns on state u1. We decide
that this circumstance sets up state # (Figure 2).

12.1.2 Time T2(D) = 2D(D − 1).

To be more precise, time will be exactly

T2(D) =
{

2D(D − 1) if D > 1
2D = 2 if D = 1

Minor modifications on the preceding example suffice (see Figure 3) :

- u starts at time 4, (so a new state u3 is needed)

- for the case when D = 1 : return of s on state u3 sets up state #.

12.1. SOME TIMES WHICH ARE COMPUTABLE WITH A PAIR OF CELLS367

12.1.3 Time T3(D) = 2D(D − 2).

More precisely

T3(D) =
{

2D(D − 2) if D > 2
2D if D = 1 or 2

Now (Figure 4)

- u starts at time 6 (new states u4 and u5 are needed)

- for cases when D = 2 or D = 1 : return of s on u3 or u5 sets up
state #.

368CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

The times which follow now are obtained by an extra delay, of one period
or half a period, on preceding times. No new figures are needed, a few pencil
strokes on the old ones are sufficient to visualize things.

To get computation times in 12.1.4 to 12.1.6, we start with the signals used
for delay T1.

12.1.4 Time T4(D) = 2D2 + D.

We use a supplementary signal denoted v. It starts at time 1 in period 1,
and is delayed by one time-step at each reflection on the first automaton. Its
cumulated delay in period D is then D. We just decide that state + is obtained
when v returns to cell 1 after state # has appeared. Time T4 is obtained when
state + appears.

12.2. SOME TIMES COMPUTABLE WITH THREE AUTOMATA 369

12.1.5 Time T5(D) = 2D2 + D − 1.

If we emit signal v at time 0, we obtain time T5. Except in case D = 1 : for
this case we simply decide that the return of s and v together on state u1 sets
state +.

12.1.6 Time T6(D) = 2D2 + 2D − 2.

Our signal v, still starting at time 0, is now delayed by 2 time-steps at each
reflection on the first automaton, exactly as u is. And for case D = 1 we
likewise decide that the return of s and v together on state u1 sets state +.

To get the next times, we start with the signals for delay T3

12.1.7 Time T7(D) = 2D(D − 2) + D − 1 = 2D2 − 3D − 1.

More precisely

T7(D) =
{

2D(D − 2) + D − 1 if D > 2
2D if D = 1 or 2

Here we use signal v started in period 1 at time 2, reflected on the first
automaton with delay 1, this if D > 2. For the remaining cases, we just decide
that the return of s on state u3 or u5 sets state +.

12.1.8 Time T8(D) = 2D(D − 1) − 1.

Thereagain let us be quite precise

T8(D) =
{

2D(D − 1) − 1 if D > 2
2D if D = 1 or 2

This time can be expressed

T8(D) = T3(D) + 2D − 1

We emit signal v at time 5, and this signal is reflected on the first automaton
with delay 2.

For the cases D = 1 or D = 2, we decide that state + is set by the return of
s on u3 or u5.

12.2 Some times computable with three automata

We deal here with computations done by the central automaton on the delays
d and D (d, D ≥ 1) with the left and right automata. These lines of three work
mainly with the two clock signals s and S, which determine the “small” and the
“big” periods, as we shall call them, having values 2d and 2D.

370CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

We shall continue to speak of signals, so convenient, though we know that
they are fictitious and we have only states perceived with delays. For example,
when we say that a signal is sent to a particular automaton, this means that
only the perception of the state by the concerned automaton is of interest for
us, perception by the other automaton having no consequence.

12.2.1 Time T9(D, d) = 2D(2d − 2)

During the first “small” period, signals r are emitted, starting at time 4. They
are destroyed at the rythm of 1 per “big” period : each return of S sets up state
a, which absorbs one signal r and disappears (Figure 5). In period (2d− 2), no
more signal r arrives, S returns on state a, and this sets up state #.

12.2.2 Time T10(D, d) = 2D2 + 2D − d

We rewrite this time as follows :

2D2 + d + 2(D − d).

To spot the D-th period 2D we use the same u signal as in the first example of
the preceding section.

To obtain the shift of d + 2(D − d) time-steps, we use a signal v emitted
at time 1, which is delayed d − 1 times by 1 time-step and (D − d) times by 2
time-steps. To this effect, during period 1 we emit, from time 2 up and every 2
time-steps (Figure 6)

- r-signals till s returns, a total of d − 1

- then t-signals till S returns, a total of D − d.

At each big period, one signal r or t (the first arriving) is absorbed. Return of
S at the end of a period where at least one r signal has started sets a state that
delays reflection of v by 1 time-step, and at the end of a period where no signal
r but at least one signal t has started delays this reflection by 2 time-steps (here
again details are tedious and present no particular interest).

12.2. SOME TIMES COMPUTABLE WITH THREE AUTOMATA 371

372CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

12.3. SYNCHRONIZATION OF A LINE OF AUTOMATA WITH DELAYS IN TIME 2∆2.373

12.3 synchronization of a line of automata with
delays in time 2∆2.

Mazoyer’s method uses a simple transposition of Minsky’s technique for lines,
presented in chapter 1. He breaks the line in two halves at the meeting point of
a signal of speed 1/3 with the reflection of a speed 1 signal, to restart a same
process on the two sublines, till the sublines are too small to be broken.

Synchronization time will be exactly

T (∆) =

2∆2 if ∆ > 1
3 if ∆ = 1
1 if ∆ = 0

12.3.1 Breaking in two a line with delay ∆ > 1.

The automaton in state general is the first one (i.e. the left one). In the sequel,
on the sublines, state G will be either on the left end or on the right end, so we
shall have all the rules symmetrical of those we shall next describe.

Here, to realize the equivalent of a signal of speed 1/3 (on the fictitious line)
we shall use a (fictive naturally) signal Z running a zigzag between cells. Instead
of going directly from cell c to its neighbour cell c′, signal Z goes from c to c′,
then is reflected (Z1) back to c and finally returns (Z2) to c′. Z2 crosses c′,
thereby becoming Z anew (see Figure 7).

State G at the left border sends rightwards (that is through its connexion to
the next automaton) the zigzag signal Z and a fast signal S which crosses all the
automata and is at last reflected by the right end automaton (that is by the the
right border state) thus becoming R. In addition, signal Z2 puts all automata
in state red (automaton i at time 3∆1i) and signal R puts all automata in state
blue (automaton j at time ∆ + ∆jn).

374CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

12.3. SYNCHRONIZATION OF A LINE OF AUTOMATA WITH DELAYS IN TIME 2∆2.375

On the left side automata, R falls after Z2, so on a red state or on the left
border, and on the right side automata, on the contrary, Z2 comes after R,
that is on a blue state or on the right border. This circumstance will permit us
distinguish the left and right automata. Let us note that Z2 and R may arrive
at the same time on some automaton k, this if and only if

3∆1k = ∆ + ∆kn

that is

∆1k = ∆kn

that is if automaton k is exactly at the middle (equidistant in delay from the
two extremities). In this case automaton k passes in state “middle” or m (at
time 3∆1k = ∆ + ∆kn) and signals Z2 and R, after having crossed each other
become Z ′ and R′ (Figure 8). The line is broken in two half-lines [1, k] and [k, n]
equal (in delay), and automaton in state m will act as right border for signals
coming from the left and as left border for signals coming from the right.

If there is no automaton right at the middle there will be

- a first automaton k on which R falls on a red state

- and a first automaton h = k + 1 on which Z2 falls on a blue state

k is the greatest integer such that

3∆1k < ∆ + ∆kn

that is, since ∆ = ∆1k + ∆kn,

∆1k < ∆kn

while h is the smallest integer such that

3∆1h > ∆ + ∆hn

that is

∆1h > ∆hn.

When k receives R (see Figure 7), it enters state rb (at time ∆ + ∆kn) and R
becomes R′. likewise, when h receives Z2 it enters state lb (at time 3∆1h) and
becomes Z ′. We can consider that state m is lb and rb together. Signals R′ and
Z ′ rub out respectively the red and blue states, after what they vanish when
arriving at the borders.

376CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

12.3. SYNCHRONIZATION OF A LINE OF AUTOMATA WITH DELAYS IN TIME 2∆2.377

k and h are the two automata just left and just right of the theoretical
middle of the line (h = k + 1). The half-lines [1, k] and [h, n] are thus the most
equal possible. This does not exclude that a half-line can be reduced to the only
border automaton (Figure 9).

378CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

12.3.2 Synchronization of the very small lines, with delay
∆ ≤ 1.

These are the lines too small to be broken, and which result from the above
breaking process.

Their synchronizations are illustrated in Figure 10.

∆ = 0 characterizes a line which is reduced to a single automaton. We have
announced that such a line synchronizes immediately. For this we decide that
a line which cumulates states left border or lb, right border or rb, and general
G, immediately enters fire state. The word “cumulate” is a practical way of
alluding to the fact that our states are in fact products of states.

∆ = 1 characterizes a line which is reduced to 2 automata without delay,
in immediate contact with each other. We have announced that such a line
synchronizes in 3 time-steps. Let us comment rules of Figure 10 : the immediate
return of R suffices to inform the first automaton that ∆ = 1, and this one
communicates the information immediately, that is one time-step later to the
second. To implement this, we decide that the state G becomes state G1, and
that G1 receiving R becomes state δ1, and that any automaton in state δ1 or in
contact with this state enters fire state at next time-step.

12.3.3 Locating the half-lines of delay 1

In the sequel we shall have to know, at the moment when a delimiting automaton
is determined, if the half-line it determines has delay 0, 1, or more. If this half-
line is reduced to a single automaton, we know this because signal R or Z2 has
fallen not on a red or blue state but on a border state. It is less easy to know
that the new line consists of two automata in contact (with delay 0).

12.3. SYNCHRONIZATION OF A LINE OF AUTOMATA WITH DELAYS IN TIME 2∆2.379

If the half-line is at the left (see Figure 11) : when the breaking process
starts, if Z1 comes back on G1, the left automaton knows that it is in contact
with the second one, and at next time-step the latter has the information. It
then suffices to memorize this information in addition to the red character of
the state.

If the half-line is at the right : right end automaton n receiving S enters
state R, which sends signal R back and progressively vanishes through state
R1. If R is reflected in T on the first automaton it meets, automaton n − 1 is
in contact with n if and only if T falls on state R1. This information is then
known by n and n − 1 one time-step later, and can be memorized.

Let us not forget noticing that this will always be early enough, that is before
the breaking in two, except in the case of a line of 3 automata with no delay.
But in this last case the cell in state middle perceives the two borders, so knows
that the two half-lines have delay 1.

12.3.4 Postponing synchronization of half-lines

Half-lines [1, k] and [h, n] (h = k + 1) will normally have synchronizing times
T (∆1k) and T (∆hn). We hope to synchronize the line by using these partial
synchronizations. Since these half-lines are created at times ∆ + ∆kn for [1, k]
and 3∆1h for [h, n], for these sub-synchronizations to happen at the same time
and more precisely at time T (∆) we must start them with respective delays
(Figure 12) :

380CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

Σk = T (∆) − (∆ + ∆kn) − T (∆1k)

Σh = T (∆) − 3∆1h − T (∆hn).

The line has delay ∆ > 1, so T (∆) = 2∆2. But the half-lines [1, k] and [h, n]
may have any delays, 0, 1 or more, so that we shall have different expressions
according to the different cases.

For each of the two respective automata k and h, we shall express these
delays in terms of the distances to the extremity automata, denoting by D the
greatest one and d the smallest one :

for k : dk = ∆1k and Dk = ∆kn

for h : Dh = ∆1h and dh = ∆hn

using the fact that ∆ = Dk + dk = Dh + dh.

12.3. SYNCHRONIZATION OF A LINE OF AUTOMATA WITH DELAYS IN TIME 2∆2.381

We may then obtain the following expressions :

Σk =

[2D2
k + 2Dk − dk] + [2Dk(2dk − 2)] if dk > 1

2D2
k + 2Dk − 2 if dk = 1 (⇒ Dk ≥ 1)

2Dk(Dk − 1) − 1 if dk = 0 (⇒ Dk > 1)

Σh =

[2D2
h + Dh] + [2Dh(2dh − 2)] if dh > 1

2D2
h + Dh − 1 if dh = 1 (⇒ Dh ≥ 1)

2Dh(Dh − 2) + (Dh − 1) if dh = 0 (⇒ Dh > 1)

(If ∆1k = ∆kn, k = h, D = d, Σk = Σh = 6D2 − 3D, and the case D = 1 of a
line of 3 cells with no delay is dealt with in 12.3.3).

We observe that these delays are times that our automata k and h can
compute by exchanging signals with the extremity automata. Indeed, using the
notations from 12.1 and 12.2

Σk =

T10(k, n, 1) + T9(k, n, 1) if ∆1k > 1
T6(k, n) if ∆1k = 1
T8(k, n) if ∆1k = 0 and ∆kn > 2
3 if ∆1k = 0 and ∆kn = 2

Σh =

T4(h, 1) + T9(h, 1, n) if ∆hn > 1
T5(h, 1) if ∆hn = 1
T7(h, 1) if ∆hn = 0 and ∆1h > 2
1 if ∆hn = 0 and ∆1h = 2

In case d = 0, we must separate the case when D = 2 because then times T8

and T7 have different expressions, which are no more the values we want for Σk

and Σh.
Naturally, to perform these computations all the automata must have the

states described in the first section.
It is also necessary that at the time when k and h are determined, these

automata know what computation they should start, and for this they must
know if their half-line has delay greater than 1, or is reduced to two automata,
or to a single one, and in this case if ∆ = 2.

The half-line is reduced to two automata if the separating automaton is in
contact with the corresponding border, information which it may have (in time)
as we have seen (12.3.3). The half-line is reduced to a single automaton if the
separating automaton is a border, and in this case, we must know if the broken
line had delay ∆ = 2. For this it is sufficient to know if R and Z1 return together
on G2, which the first automaton knows at time 3, and communicates to the
second who knows it at time 5 (Figure 13) : so the two automata know just in
time that their delays must then be 3 and 1.

382CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

When the separating automata have computed their delays, they become
generals for their half-line, with of course all the symmetrical transition rules
for the left half-line.

In this way the initial line is progressively broken in very small lines of 1
automaton or 2 siamese automata, all synchronizing at time 2∆2.

12.4. COMPARISON WITH JIANG’S GENERAL RESULT 383

12.4 Comparison with Jiang’s general result

Jiang has not treated the case of a line separately. As an instance of the general
case of tree-structured networks, for which his solution is in time

TJ = 118DR3 + 1,

a line, for which DR = ∆, may so be synchronized in time

TJ = 118∆3 + 1.

Mazoyer’s solution in time 2∆2 is indeed much faster.

384CHAPTER 12. SYNCHRONIZING A LINE WITH NON UNIFORM DELAYS

Chapter 13

Synchronization of a
network of finite automata

13.1 Definition of a network of finite automata

The word suggests automata interconnected by wires. Our mathematical model
must be more precisely defined. Here as in all the preceding chapters the au-
tomata are all identical. The basic automaton has d inputs and outputs (abbre-
viated as IO), numbered 1 to d. The wires connect 2 IO’s, and in our particularly
simple model, 2 IO’s of 2 distinct automata (there are no loops). We also ex-
clude double connections. Wires communicate the state of the automaton at
one end to the automaton at the other end, in both directions. Thus the au-
tomata and wires form a non-oriented connected graph, with a supplementary
precision : the IO’s are labeled. An example is given in Figure 1.

385

386CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

The lines and the Zn-c.a’s of the preceding chapters are particular regular
networks

- in lines the labels of the two IO’s are “left” and “right”

- more generally, in Zn-c.a’s, nodes have degree 2n.

The transition function for all cells of the network is

< A, t + 1 >= δ(< A, t >, < v1(A), t >, . . . , < vd(A), t >)

where vi(A) is the automaton connected to IO i of automaton A. If this IO
is unused, the argument in δ is a symbol for emptyness, (for example −), or a
special constant state similar to the border state for linear c.a’s.

We may further imagine that wires have different lengthes, so that commu-
nication through them arrive with delays τi. The transition function will then
be

< A, t + 1 >= δ(< A, t >, < v1(A), t − τ1 >, . . . , < vd(A), t − τd >)

and we then speak of networks with delays. The line of chapter 12 is the simplest
possible example of such a network.

Let us mention that the set of states of the basic automaton always contains
a quiescent state, such that any cell in quiescent state surrounded by quiescent
neighbours remains quiescent.

As for the lines and Zn-c.a’s of the preceding chapters, one particular cell
in the network may receive an input from the outside, and produce an output,
which are not to be confused with the inner IO’s for interconnections. We may
call this cell the origin cell (or cell 0).

13.2 An automaton to set up a spanning tree

13.2.1 Recalling definitions for graphs

For extensive explanations we recommend [8].
A tree is a non-oriented connected graph which contains no cycle. A rooted

tree has a distinguished node, the root, through which it acquires a natural
orientation, from the root to the nodes, from fathers to sons. Each node except
the root has a father. The nodes which have no sons are the leaves.

A spanning tree for a graph, is a subset of the edges which is acyclic, and
connects all the vertices.

Note that if the graph has degree d, the root of a spanning tree has at most
d sons, and the other nodes of the tree have at most d − 1 sons.

If the graph has n nodes, the spanning tree has the same n nodes. The
number of edges of the tree is then n − 1, because each edge is between a son
and its father, and each node, except the root, has one, and only one, father.
Each edge contributes for 2 in the total degree (sum of the degrees of all the
nodes), which is thus 2n − 2.

13.2. AN AUTOMATON TO SET UP A SPANNING TREE 387

13.2.2 Rules in the case with no delays

Our network has a distinguished cell, the origin. We are interested in finding a
spanning tree rooted at the origin.

Let us observe that IO’s of cells being labeled, a connection between two
cells in the network is characterized by any of the 2 IO’s that it connects, and
is simultaneously designated and oriented if we give its sole origin IO.

Now we want to find states and transition rules for the automata at the
nodes such that the network, starting with all automata quiescent except one,
the origin cell, which is in some initial state, becomes, after some time, a tree
rooted at the origin.

This means that some edges of the graph have been selected (and oriented).
We can indicate that an edge is selected (and oriented) by marking its origin
IO.

If at all nodes we know which IO’s are origins of oriented edges of the tree,
i.e. edges to the sons of the node, then we know the tree. Such information
must be given by the states of the automata at each node. So we want states
to be able to indicate which IO’s are origins of selected edges. The states and
transitions rules must also do the work of selecting the tree edges.

Here, the convenient states will have d components corresponding to the d
IO’s. On each component symbols a and x may appear : a is an infectious state
and x marks the IO’s through which it is exported, which will be the origins of
the tree edges.

388CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

In the initial configuration all the states are empty, except the state of the
origin cell which has x marks at all used IO’s. States change according to the
following rules (see Figure 2a, corresponding to the network of Figure 1)

- an IO marked x transmits state a, if it arrives through an unmarked
IO. Then a is inscribed in the place corresponding to the IO through
which it has come. An x mark appears on each used IO through
which no a arrives

(note that each connection marked x at its origin is thus marked
with a at its end)

- a cannot be transmitted to a cell already in state a. So if an input
marked x leads to another input already marked x, both x marks are
(symmetrically) destroyed. We shall express things more briefly by
saying that if x marks appear on 2 connected IO’s, they disappear
at next time-step

13.2. AN AUTOMATON TO SET UP A SPANNING TREE 389

as a consequence each x IO will lead to an IO with an a state
- if a cell contains more than one a, at next time-step all but the
first one are erased (so there always remains at least one), as well
as the x marks at the origin of the connections that have exported
them (a node in a tree can have only one father).

The above rules set up transition rules since the state of each cell is completely
determined by the states at previous time-step of the cell and its neighbours.

13.2.3 The tree

Let us now study the graph formed by the edges marked x at one end and a at
the other end, that we shall denote xa-edges

- any cell (other than the origin) sooner or later contains a, as a is
transmitted by adjacency and the graph is connected
- each node has only one IO marked a, so that any path (cycles
particularly) of xa-edges goes from node to node always from the
x of one node to the a of the following node, in direction �xa (or
reversely always in direction �ax)
- but the a at the end of any �xa edge has arrived one time-step after
the x at its origin, so there can be no cycle with such edges
- starting from any cell (other than the origin) and repeatedly climb-
ing from a to x, must end at the origin cell which has no a, because
there are no cycles and the number of nodes is finite. Thus all nodes
of the graph are connected by the xa edges.

Thus the xa-edges form a tree, as defined in 13.2.1.
This tree is a spanning tree because every node is connected to the origin

cell.
At last we want to observe the orientation of the edges of this tree if it is

rooted at the origin cell. The path going from the origin, which has no a and
only x’s, to any node, necessarily starts with an �xa-edge. It must then, as
previously noted, continue with �xa oriented edges. Thus for any node the IO’s
marked x go to the sons, while the a-IO leads to the father. The leaves of the
tree are the nodes with no x-marks, only one a.

It is worth noting that in the tree as it is built here, the branch leading to
a node is the shortest path from the origin to this node in the graph. Indeed
state a takes place in a cell as soon as it arrives through the shortest path, and
the extra a’s that we suppress have arrived at the same time as the remaining
one.

13.2.4 Timing in the ordinary case

Let us call “radius” of the graph and note R, the maximum distance from the
origin cell to another cell, i.e. the length of the shortest path from the origin to
the cell in case different paths exist.

390CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

State a needs time R to set in all nodes of the graph, then one more time-step
is needed if some a states have to be erased. Thus the time needed to establish
the tree is at most R + 1.

Ttree ≤ R + 1 ≤ n

because, if the graph has n cells, the radius is certainly at most n − 1.

13.2.5 Rules in the case with delays

The same automaton can be used in a network with delays, with minor adap-
tations

- we change the formulation of the second rule : if state a exported
by an x mark arrives to an IO already marked x, then it simply
destroys this x mark

- we note for the last rule that when extra a’s are erased, a delay is
needed to return to the cell where the corresponding x marks must
also be erased

In figure 3a we have added indexes to symbols a and x indicating the time at
which they have appeared, to help follow the process.

We can note here, that as in the ordinary case, and for the same simple
reason, the delay from the root to a node of the tree is the shortest delay from
the origin to this node in the graph (the tree is a minimum-delay spanning tree).

This explains that, though the graph in Figure 3a is the same as that in
Figure 2a, the associated trees are different.

13.2. AN AUTOMATON TO SET UP A SPANNING TREE 391

392CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

13.2.6 Timing

We recall that, if the delay on a connection is τ , the time needed for a state
to travel through the connection and set in the arrival cell, ready to depart
through another connection, is δ = τ + 1, so that the delay to go through a
path where connections have delays τ1, τ2, . . . , τp and set on the last cell, is
δ1 + δ2 + . . . + δp.

Jiang [30] calls “delay-radius”, and we shall denote DR, the maximum delay
between the origin and any other node. The latter being the shortest delay
between the origin and this node if several paths lead from the one to the
other. He denotes τmax the maximum delay of a connection, and we shall
denote δmax = τmax + 1 what we have called the corresponding reaction delay.
Certainly DR ≤ (n − 1)δmax.

The time needed for state a to set on all cells, up to the furthest cell, is
DR, then possibly extra a states must be erased as well as the corresponding x
marks, which needs returning back to fathers (on connections not belonging to
the tree edges), which takes a time at most δmax. If we denote TD (total delay)
the sum of all delays δi in the graph, we have

Ttree ≤ DR + δmax ≤ TD

13.3 Improving/Completing the automaton

Is it possible for the origin cell to be advised that the process of determining
the spanning tree is accomplished ?

This tree is entirely determined if every node of the graph has received state
a and the last interconnected x marks have been erased. The leaves of the tree
then contain one single a and no x.

Now, if some cell has sons which are all leaves, the subtree under this cell is
entirely determined. If these leaves inform their father that they are leaves, the
cell knows that its subtree is determined. Likewise, if a cell knows that its sons’s
subtrees are all determined, then it knows that its proper subtree is determined.
We shall thus carry up such information, from sons to fathers, from the leaves
to the root.

The automaton to do this will be the same without or with delays.
To the preceding automaton determining the tree we add a new symbol, x

with a cercle around it, this cercle denoting that the subtree under the corre-
sponding son is completed (see Figures 2b and 3b)

And the rule : if the state of a cell contains a but no x, (or only cercled x’s),
the x mark at the IO of the father of this cell is cercled at next time-step/or
after the delay to return to the father. In case the state contains more than one
a, only the x mark to the first a will be circled, the extra a’s are erased, and
the x marks leading to them also.

When all the x marks of the root are cercled, the origin cell knows that the
tree is completed. Figures 2b and 3b are the continuation of figures 2a and 3a
with the automaton as we have just completed it.

13.3. IMPROVING/COMPLETING THE AUTOMATON 393

394CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

13.4. AUTOMATA SOLVING GRAPH PROBLEMS 395

The time needed to bring back this information to the origin (without waiting
for the interconnected x’s to be erased), is the same time as was needed for state
a to go down to the furthest leave, R or DR . So that the total time to build
the tree and warn the origin cell that this task is achieved is, in the case without
delays

Ttree−root = 2R

and in the case with delays

Ttree−root = 2DR.

13.4 Automata solving graph problems

In the preceding section we have built a finite automaton such that, if we place
a copy of this automaton at each node of any graph of maximum degree d, and
connect them in any manner so that the wires follow the edges (IO’s may be
interchanged), and place the origin automaton in some determined initial state
while all others are quiescent, after some finite time (depending on the number
of nodes of the graph and the possible delays on the connections), the automata
give us the solution of a graph problem.

Rosenstiehl had the idea of such automata since 1966 [47], and has applied
it to various graph problems in many papers later on.

Using Rosenstiehl’s idea we have built here a very simple solution for the
problem that serves our present purpose. But we are not yet finished.

13.5 Making the tree into a line

The idea is to use a depth-first search of the tree (see Figure 4).

396CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

Let us first observe that in moving around a tree, each node will be met a
number of times equal to its degree, because after first arriving to this node we
come back to it after having quitted each of its sons, and the number of sons
is the degree minus 1. The root indeed has no father, so has a number of sons
equal to its degree, but we do not come back to the root. Thus the line will
have a number of cells equal to the sum of the degrees of all the nodes of the
tree, which is 2n − 2.

As yet the tree is determined by the states on the automata at the nodes,
which have d components corresponding to the d IO’s, with one component a
(except for the root) on the IO leading to the father, and several components
x (except for the leaves) on the IO’s leading to the sons, the other components
being void.

In a first stage we just virtually split these states in pieces by considering
that each a or x-component is a node of the line (see Figure 5), and make precise
how the preceding and succeeding nodes of this node are to be found. We find
them in accomplishing the depth-first search, and precising that each time we
go through a node we go through its first/next x-component, or, when there are
no more of these, through its a-component.

13.5. MAKING THE TREE INTO A LINE 397

Some notations will be useful :

- nodes of the tree will be denoted R(the root), N , M , F . . .

- the a-component of a node N is denoted a(N)

- if the state of a node N has k x-components, we denote them here

x1(N), . . . , xi(N), . . . , xk(N)

in the order of the components, which is the order of the numbers
of the IO’s, and will also be the order of the sons of N

- the son under xi(N) will be denoted S(xi(N))

- each node N �= R has a father F such that N = S(xj(F)). We
may also write xj(F) = F(N).

We obtain the successor and the predecessor of a node simply by describing
the well-known depth-first path through the tree. The i-th time we go through
N we go through component xi(N).
This gives

succ(xi(N)) =
{

x1(S(xi(N))) if S(xi(N)) has an x-component
a(S(xi(N))) otherwise

succ(a(N)) =
{

xj+1(F) if xj(F) = F(N) and F has more than j x-components
a(F) otherwise

and

pred(a(N)) =
{

xj(F) if N has no x-component
a(S(xk(N))) if xk(N) is the last x-component of N

pred(xi(N)) =
{

xj(F) if i = 1 and N = S(xj(F))
a(S(xi−1(N))) if i > 1

The last cell of the line is a(S(xk(R)), where xk(R) is the last x-component of
the root.

Now that this is established, let us explain more clearly how the line will work,
that is how the states of the automata on the nodes of the graph simulate the
behavior of the line. It is in fact quite simple : the preceding d-component
states, which determine the tree and the line, remain as they are. The new
states will be obtained by a second sequence of d components, that we can
imagine under the first ones, where the states of the line-nodes take place (the
places under the void places are not used).

− x1 − x2 a x3 − − x4

− q1 − q2 a q3 − − q4

398CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

The state q of each line-node of automaton A evolves according to the states of
its predecessor and successor, which it recognizes among the components of the
new states of automata which are connected to A.

We may conclude by underlining that no supplementary time has been
needed to get hold of the line, when the tree is completed. So that the to-
tal time to have the line is, in the case without delays

Ttree−line = 2R

and in the case with delays

Ttree−line = 2DR.

What is the length of the line ? We already know that the line has 2n−2 nodes.
In the case with delays we may bound the total delay of the line

- by 2 times the sum of all the tree edges, which we may call the
total delay of the tree TTD, but which we do not know

- by (2n − 3)δmax, which is best if the delays are not too different
and the graph has many edges

- by 2 times the total delay TD of the graph, which is best if the
delays are very inequal and the graph has few edges

13.6 Synchronization of a network

13.6.1 The automaton

And now that our network has become a line, we want to synchronize this line
as we know to do it

- in the ordinary case by Mazoyer’s minimal time solution of chapter
2 which will take time

Tsync−line = 2(2n − 2) − 2 = 4n − 6

- in the case with delays by Mazoyer’s solution of chapter 12 which
will take time less than

Tsync−line ≤ 2(2TD)2 = 8TD2

Tsync−line ≤ 2(2nδmax)2 = 8n2δ2
max

The states on the automata of the graph will be as described just before, from
the beginning. The second line of d components may carry quiescent states
(the quiescent states of the synchronization of the line) as long as the tree is
not completed and the root not advised of this. As soon as the root R knows

13.6. SYNCHRONIZATION OF A NETWORK 399

that the tree is completed, that is when all its x-components are cercled, more
precisely at next time-step, state G, the general for the synchronization of the
line, is set under the first x-component of R, which is the first cell of the line.
Then the synchronization process of the line takes place. It ends with state fire
appearing simultaneously under all x and a-components of all nodes.

13.6.2 Time for synchronizing in the ordinary case

T = Ttree−line + 1 + Tsync−line = 2R + 1 + 4n − 6 = 6n − 7

We may further observe that the 2 ends of the line may act as generals in op-
posite directions for 2 half lines stopping when they bump in each other. Then
the synchronizing time for each of the two half-lines is 2n−4 and the total time
for synchronization is less than 2(n − 1) + 1 + (2n − 4) = 4n − 5.

Rosenstiehl manages to realize synchronization in better time, even less than
2n in [48], but with much more strain.

13.6.3 Time for synchronizing in the case with delays

T = Ttree−line + 1 + Tsync−line

≤ 2DR + 1 + 8TD2

or

≤ 2DR + 1 + 8n2δ2
max.

Theorem 13.6.1 (Mazoyer-Rosenstiehl) There exists an automaton which
synchronizes any network of degree at most d and arbitrary non-uniform delays,
in time bounded by

≤ 2DR + 8TD2 + 1

or

2DR + 8n2δ2
max + 1.

Jiang’s result in [30] is in time

118DR3 + 2DR + 2δmax + 3

The difference is in the process to synchronize the spanning tree. Unfolding the
tree into a line as we have done it is clearly a bad method, while using subtrees
seems adapted and natural, in case the graph is more like a tree than like a line.

400CHAPTER 13. SYNCHRONIZATION OF A NETWORK OF FINITE AUTOMATA

Indeed, for such an example as represented in Figure 6, where DR = hδ

and TD = d dh−1
d−1 δ, the rate between Mazoyer-Rosenstiehl and Jiang’s times is

about

1
15

1
δ

(1 +
1

d − 1
)2

d2h

h3
,

which gets worse as the height h of the tree grows.
But, as we have noted at the end of chapter 12, Mazoyer’s time is much better

for a line, 8∆2 versus 118∆3, if ∆ is the total delay of the line. The advantage
of Mazoyer’s method is certainly in the techniques of time calculations between
pairs and trios of connected automatas, which are much more complicated when
subtrees are involved. Their implementation, extensively sketched by Jiang [30],
outgrows the scope of the present work.

Bibliography

[1] ATRUBIN A.J.

A one-dimensional real-time iterative multiplier

IEEE Transactions on Electronic Computers EC-14 : pp394-
399, 1965.

[2] BALZER Robert

An 8-state minimal-time solution for the firing squad synchro-
nization problem

Information and Control 10 : pp22-42, 1967.

[3] BEYER W.T.

Recognition of topological invariants by iterative arrays

Ph.D Dissertation. MIT. Cambridge, Mass., 1969.

[4] BURKS Arthur W.

Essays on Cellular Automata

University of Illinois Press, Urbana, Illinois, 1970.

[5] CODD E.F.

Cellular automata

Academic Press, Inc. New York and London, 1968.

[6] COLE Stephen N.

Real-time computation by n-dimentional iterative arrays of
finite-state machines

IEEE Transactions on Computers C-18, No 4 : pp349-365,
1969.

[7] BERLEKAMP E.R, CONWAY John, GUY Richard K.

Winning Ways for your mathematical plays, vol 1

A.K.Peters

401

402 BIBLIOGRAPHY

[8] CORMEN Thomas, LEISERSON Charles, RIVEST Ronald

Introduction to Algorithms

MIT Press, Cambridge, Mass., 1990.

[9] CULIK II Karel

Weighted growth-functions of DOL-systems and growth-
functions of parallel graph rewriting systems

Research Report CS-74-24, Dept. of Computer Science, Uni-
versity of Waterloo, Ontario, Canada, 1974.

[10] CULIK II Karel and YU Sheng

Undecidability of CA Classification Schemes

Complex Systems 2 : pp177-190, 1988.

[11] CULIK II Karel and CHOFFRUT Christian

On real-time Cellular Automata and Treillis Automata

Acta Informatica 21 : pp393-407, 1984

[12] DEHORNOY Patrick

Mathématiques de l’informatique

Collection Sciences Sup, Dunod, 2000.

[13] DUPRAT Jean

Proof of correctness of the Mazoyer’s solution of the firing
squad problem in Coq

ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR2002/RR2002-
14.ps.Z

L.I.P, ENS de Lyon, 46 allée d’Italie 69364 Lyon, France, 1998.

[14] EILENBERG Samuel

Automata, languages and machines

Academic Press 1974

[15] FATES Nazim

Les Automates Cellulaires : vers une nouvelle épistémologie

Mémoire de D.E.A - Université Paris I Sorbonne , 2001

[16] FISCHER Patrick C.

Generation of primes by a one-dimensional real-time iterative
array

Journal of the Assoc. Comput. Mach. 12(3) : pp388-394, 1965.

BIBLIOGRAPHY 403

[17] GARDNER Martin

The fantastic combinations of John Conway’s new solitaire
game of “life”.

Mathematical games Department. Scientific american 223 :
120-123, 1970.

[18] GARDNER Martin

On cellular automata, self-reproduction, the Garden of Eden
and the game of “life”.

Mathematical games Department. Scientific american 224 :
112-117, 1971.

[19] GINSBURG Seymour

The mathematical theory of context-free languages

Mac Graw-Hill New York 1966

[20] GINZBURG Abraham

Algebraic theory of automata

Academic Press 1968

[21] GOTO Eiichi

A minimum-time solution of the firing squad problem

course notes for applied mathematics, vol 298, Harvard Uni-
versity, Cambridge, MA, 1962

[22] GREFFENSTETTE John J.

Network Structure and the Firing Squad Synchronization
Problem

Journal of Computer and System Sciences 26 : pp139-152,
1983.

[23] HEEN Olivier

Economie de ressources sur automates cellulaires

Thèse, Université Paris 7, 2 place Jussieu, Paris F-75005, 1996.

[24] HEEN Olivier

Linear Speed-Up for Cellular Automata Synchronizers and
Applications

Theoretical Computer Science Volume 188, Numbers 1-2 : pp
45-57, 1997

404 BIBLIOGRAPHY

[25] HEEN Olivier

Efficient constant speed-up for one dimensional cellular au-
tomata calculators

Parallel Computing 23 : pp1663-1671, 1997

[26] HILLIS Daniel

Un ordinateur parallèle : la Connection Machine

Pour la Science Août 1999.

[27] HOPCROFT J.E. and ULLMAN J.D.

Formal languages and their relation to automata

Addison-Wesley, Reading, Mass., 1969.

[28] IBARRA O.H.,KIM S.M., MORAN S.

Sequential machine characterization of treillis and cellular au-
tomata and application

SIAM J.Comput. 14.2 : p426, date ??

[29] JIANG Tao

The Synchronization of Non-Uniform Networks of Finite Au-
tomata

30th Symposium on Foundations of Computer Science 1989,
pp376-381, 1989

[30] JIANG Tao

The synchronization of non-uniform networks of finite au-
tomata

Information and Computation 97(2) : pp234-261, 1992.

[31] KNUTH Donald

The art of computer programming : Fundamental algorithms

Addison-Wesley, Reading, Mass., 1997.

[32] KNUTH Donald

The art of computer programming : semi-numerical algo-
rithms

Addison-Wesley, Reading, Mass., 1997.

[33] KOBAYASHI Kojiro

On the minimal firing time of the f.s.s.p. for polyautomata
networks

Theoretical Computer Science 7 : pp149-167, 1978.

BIBLIOGRAPHY 405

[34] LANG Serge

Algebra

Addison-Wesley, Reading, Mass., 1997.

[35] MAZOYER Jacques

A six-state minimal time solution to the f.s.s.p.

Theoretical Computer Science 50 : pp183-237, 1987.

[36] MAZOYER Jacques

An overview of the FSSP

in Automata Networks

C.Choffrut Ed., Springer Verlag, Berlin, New York, pp82-
93,1986

[37] MAZOYER Jacques

Synchronization of a line of finite automata with non uniform
delays

L.I.P, ENS de Lyon, 46 allée d’Italie 69364 Lyon, France, 1986.

[38] MAZOYER Jacques

Synchronization of two finite automata

L.I.P Report : pp92-34, 1992.

[39] MINSKY M.

Finite and Infinite Machines

Prentice Hall, pp28-29, 1967

[40] MOORE Edward F.

Machine Models of self reproduction

Proceedings of Symposia in Applied Mathematics 14 : pp17-33,
1962

[41] MYHILL John

The converse of Moore’s Garden-of-Eden theorem

Proc. AM. Math. Soc 14 : pp685-686, 196?

[42] MYHILL John

The abstract theory of self-reproduction

Views on General Systems Theory, pp106-118 Proceedings of
the Second Symposium at Case Institute of Technology, 1964.
(Essay 8 of Burks).

406 BIBLIOGRAPHY

[43] POUNDSTONE William

The Recursive Universe

Oxford University Press, 1985

[44] RABIN M.O and SCOTT D.

Finite automata and their decision problems.

IBM Journal of research and developement vol. 3 : pp114-125,
1959.

[45] REIMEN Nicolas

Contribution à l’étude des automates cellulaires

Thèse, Université Paris 7, 2 place Jussieu, Paris F-75005, 1993.

[46] REIMEN Nicolas and MAZOYER Jacques

A Linear Speed-Up Theorem for Cellular Automata.

Theoretical Computer Science 101(1) : pp59-98, 1992

[47] ROSENSTIEHL P.

Existence d’automates finis capables de s’accorder bi-
enqu’arbitrairement connectés et nombreux

Internat. Comp. Centre 5 pp245-261 (1966)

[48] ROSENSTIEHL P., FIKSEL J.R, HOLLIGER A.

Intelligent graphs : networks of finite automata capable of
solving graph problems

Graph Theory and Computing (R.C.Read, Ed.), Academic
Press, New York : pp.219-265, 1972

[49] SETTLE Amber and SIMON Janos

Smaller solutions for the firing squad

Theoretical Computer Science 276 : pp83-109,2002

[50] SMITHAlvy R.

Cellular automata complexity trade-offs

Information and Control 18(5) : pp466-482, 1971.

[51] SMITH ALVY R.

Real-time language recognition by one-dimensional cellular
automata

Journal of Computation and System Sciences 6(3) : pp233-
253, 1972.

BIBLIOGRAPHY 407

[52] STERN Jacques

Fondements mathématiques de l’informatique

Mac Grawhill 1990

[53] TERRIER Véronique

Real time recognition with cellular automata : a meaningful
exemple

L.I.P, ENS de Lyon, 46 allée d’Italie 69364 Lyon, France, 1990.

[54] TERRIER Véronique

Temps réel sur automates cellulaires

Thèse, Université Lyon 1, 1991.

[55] ULAM Stanislaw

On some mathematical problems connected with patterns of
growth of figures.

Proceedings of Symposia in Applied Mathematics 14 : pp215-
224,1962. (Essay 9 of Burks).

[56] UMEO Hiroshi

A note on firing squad synchronization algorithms

Proc. of Cellular Automata Workshop, Kutrieb & Worsch :
pp65, 1966.

[57] UMEO Hiroshi, MAEDA Masashi, FUJIWARA Norio

An Efficient Mapping Scheme for Embedding Any One-
Dimensional Firing Squad Synchronization Algorithm onto
Two-Dimensional Arrays

ACRI 2002 (Cellular Automata for Research and Industry),
Geneva, Stefania Bandini, Bastien Chopard, Marco Tomassini
(Eds.) Lecture Notes in Computer Science2493 : pp69-81,
Springer 2002

[58] VIVIEN Hélène

A quasi-optimal time for synchronizing two interacting finite
automata

Journal of Algebra and Computation 6(2) : pp261-267, 1996

[59] VON NEUMANN John

Theory of Self-Reproducing Automata

University of Illinois Press. Edited and completed by Arthur
W.Burks, 1966.

408 BIBLIOGRAPHY

[60] WAKSMAN Abraham

An optimum solution to the firing squad synchronization prob-
lem

Information and Control 9(1) : pp66-78, 1966.

[61] WOLFRAM Stephen

Universality and Complexity in Cellular Automata

The Institute for Advanced Study , Princeton NJ 08540. 1983.

[62] WOLFRAM Stephen

Computation Theory of Cellular Automata

Communications in Mathematical Physics, 96, pp15-57, 1984

[63] WOLFRAM Stephen

Computer Software in science and mathematics

Scientific American 251(3) : pp188-203, 1984.

[64] WOLFRAM Stephen

Twenty Problems in the Theory of Cellular Automata

Physica Scripta T9, pp170-183, 1985.

[65] WOLFRAM Stephen

A New Kind of Science

Wolfram Media, Inc, 2002.

[66] YUNES Jean-Baptiste

Seven-state solutions to the firing squad synchronization prob-
lem

Theoretical Computer Science 127 : pp313-332, 1994.

[67] YUNES Jean-Baptiste

Synchronisation et automates cellulaires : la ligne de fusiliers

Thèse à l’Université Paris 7, L.I.T.P.-TH 93-01 1993

Index

409

Index

2 ends-FSSP, 36
acceptors, 82
Atrubin, 5
Atrubin’s c.a, 139
Balzer, 39
Beyer, 285
border state,19
broken sticks diagonal grouper, 277
broken sticks grouper, 278
Burks, 4, 6
calculus, 20
cell, 19
cellular automaton, 19
Choffrut, 6
clock signal, 331
closure properties, 311
Codd, 4, 6
Cole’s criterion, 88
Cole’s criterion in dimension n, 309
Cole’s general theorem, 292, 297
computability condition, 263
computers, 82
computing, 82
computing time, 85
configuration, 19, 287
conjugate signals, 215
continuity condition, 262
Conway, 4
couple, 329
covering condition, 264
Culik, 4, 6
cumulator c.a, 132
delay, 330
delay-radius, 364, 392
dimension, 289
divide-and-conquer strategy, 22
exponential functions, 198

families of synchronization delays,
228

families of synchronizing times, 227
Fibonacci function, 198
finite automaton, 17, 18, 48
finite line
finite modifications, 230
Firing Squad Synchronization Prob-

lem, 21
first signals, 24
first waves, 56
Fischer’s c.a, 161
frequency signal, 198
FSSP, 21
FSSP with general anywhere in the

line, 46
gap theorem, 174
general sequential machine, 18, 48
generation of signals, 26
global transition function, 19
Goto, 39, 48
Grigorieff, 222
grouper c.a’s, 247
half-lines, 79
halting, 81, 123
halting state, 123
halting time, 123
Heen, 215, 247
Hillis, 5
horizontal 3-grouper, 248
horizontal k-grouper, 269s
Ibarra, 6
impulse, 80
impulse c.a, 171
infinite linear c.a’s, 81
initial configuration, 20, 288
initial state, 80

410

INDEX 411

input, 18
input alphabet, 18
input and output, 80, 288
inputs and states, 84
interactive automata, 18
iterated waves, 58
Jiang, 5, 400
Jiang’s result, 363, 383
k-grouping, 217
Kim, 6
language, 85, 87
language {anbn|n ∈ N∗}, 94
language a ∗ P3, 106, 111
language of palindromes, 103
language of square words, 95
language P3X∗, 111
language X ∗ P3, 109, 111
large real time, 86
linear c.a, 19
line with delays
lower bounds, 333, 355
Mazoyer, 5, 6, 39, 329, 363
Mazoyer’s solution for the FSSP, 49
merging of states, 41
minimal synchronizing time, 36, 39
minimal time solutions, 39, 40
Minsky, 5
Minsky’s solution to the FSSP, 22
Moore, 4, 5
Moran, §
Morse word, 195
multiplication algorithm, 135
multiplier c.a, 134, 138
Myhill, 5
n-dimensional c.a’s, 285
neighbourhood, 19, 286, 289
neighbourhood changes, 301
neighbourhood H1

neighbourhood J1

network, 385
network of signals, 156
non uniform delays, 363
optimal solution, 362
optimality, 361
output function
output, 18

output alphabet, 18
pair, 329
palindromes, 103
parallel c.a, 90, 92
parallel input, 89
pelting of a signal, 56
power of c.a’s, 313
prime numbers, 161
product of a grouper c.a and a c.a
product of c.a’s, 40, 83
quiescent state, 20
radius, 389
reaction delays, 331, 364
real-time recognition, 85, 307
recognizing, 82
recognizing time, 85
recursive generation of waves, 59
reflection of signals, 24, 25
Reimen, 6
Rosenstiehl, 395, 399
semi-differences, 236
semi-infinite linear automata
sequential, 81
sequential c.a, 90, 92
sequential input
set of states
signal, 149
syntactic equivalence
slowing down
Smith, 5
space-time diagram, 20
spanning tree, 386
speed, 24
speeding up
speeding up of synchronizers, 215
space-time diagram
splitting of states, 41
square diagonal grouper, 252, 272
square words, 95
states of geometrical c.a’s
s.t.d, 20
stencil
strict real time, 86, 87
strong speeding up, 208, 211, 300
synchronization, 22
synchronization delays, 228

412 INDEX

synchronization of a line with delays
synchronization of a network, 398
synchronization problem, 22, 227, 332
synchronization time, 32
syntactical equivalences, 87, 307
Terrier, 174, 177
threadlike signal, 150
transition function, 19, 26, 288
tree, 386, 389
treillis automata, 117
Thue word, 195
Turing, 4
Turing machines, 121, 146
Ulam, 3
Umeo, 48
Von Neumann, 3
Waksman, 39
wave, 171
weak acceleration, 292
weak speeding up, 203, 298
weak speeding up theorem of Cole,

298
Wolfram, 4
word morphism, 186
Yu, 4
Yunès, 48

