
ABSTRACT
In this paper we define and evaluate a framework for estimating 

the energy consumption of Java-based software systems. Our pri-
mary objective in devising the framework is to enable an engineer 
to make informed decisions when adapting a system’s architecture, 
such that the energy consumption on hardware devices with a finite 
battery life is reduced, and the lifetime of the system’s key soft-
ware services increases. Our framework explicitly takes a compo-
nent-based perspective, which renders it well suited for a large 
class of today’s distributed, embedded, and pervasive applications. 
The framework allows the engineer to estimate the software sys-
tem’s energy consumption at system construction-time and refine it 
at runtime. In a large number of distributed application scenarios, 
the framework showed very good precision on the whole, giving 
results that were within 5% (and often less) of the actually mea-
sured power losses incurred by executing the software. Our work 
to date has also highlighted a number of possible enhancements.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques, Model-
ing techniques, Performance attributes.

General Terms
Measurement, Performance.

Keywords
Performance measures, energy estimation, component-based soft-
ware, distributed system, Java

1. INTRODUCTION
Modern software systems are predominantly distributed, 

dynamic, and mobile. They increasingly execute on heterogeneous 
platforms, many of which are characterized by limited resources. 
One of the key resources, especially in long-lived systems, is bat-
tery power. Unlike the traditional desktop platforms, which have 
uninterrupted, reliable power sources, a newly emerging class of 
computing platforms have finite battery lives. For example, a 
space exploration system may comprise satellites, probes, rovers, 
gateways, sensors, and so on. Many of these are “single use” 
devices that are not rechargeable. In such a setting, minimizing the 

system’s power consumption, and thus increasing its lifetime, 
becomes an important quality-of-service concern.

Consider the scenario depicted in Figure 1, in which seven soft-
ware components are deployed on four battery-powered hardware 
hosts, and are communicating over the network. Without concern-
ing ourselves with any other details of this application, we can ask 
a number of questions about its energy consumption. For example, 
does the location of a given component (e.g., c4) impact its energy 
consumption rate? Would redeploying a component (e.g., c4) from 
one host (e.g., H4) to another (e.g., H2) change the system’s, or a 
given system service’s, life span? Can we compare the likely 
energy consumption profiles of two or more candidate deploy-
ments? What is the best deployment for the system with respect to 
energy consumption?

The simple observation guiding our research is that if we could 
estimate the energy costs of a given software system in terms of its 
constituent software components ahead of its actual deployment, 
or at least early on during its execution, we would be able to 
answer the above questions. In turn, this would allow us to take 
appropriate actions to prolong the system’s life span: unloading 
unnecessary or expendable software components, redeploying 
highly CPU-intensive components to more capacious hosts, collo-
cating frequently communicating components, and so on.

To this end, in this 
paper we present a 
framework that esti-
mates the power con-
sumption of a distributed 
Java-based software sys-
tem at the level of its 
components, both prior 
to and during runtime. 
We chose Java because 
of its intended use in 
network-based applica-
tions (including sensor 
networks [4]), its popu-
larity, and very importantly, its reliance on a virtual machine, 
which justifies some simplifying assumptions possibly not 
afforded by other mainstream languages. We have evaluated our 
framework for precision on a large number of distributed Java 
applications, by comparing its estimates against actual electrical 
current measurements. Our results suggest that the framework is 
always able to estimate the power consumed by a distributed Java 
system to within 5% of the actual consumption.

One novel aspect of our estimation framework is its compo-

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.
ASE’07, November 5-9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011...$5.00.

An Energy Consumption Framework
for Distributed Java-Based Systems

Chiyoung Seo1 Sam Malek 2 Nenad Medvidovic1

1 Computer Science Department 
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{cseo, neno}@usc.edu

2 Department of Computer Science
George Mason University

Fairfax, VA 22030-4444 U.S.A.
smalek@gmu.edu

H1

C1 …

I1

I2

In

C4

C2

C6

C3

C5

C7

H2

H3

H4

H1

C1 …

I1

I2

In

C4

C2

C6

C3

C5

C7

H2

H3

H4
Figure 1. Interactions 

among distributed 
components.

421



nent-based development perspective, which renders it well suited 
for distributed, embedded, and pervasive applications. To facilitate 
component-level energy cost estimates, we suggest a computa-
tional energy cost model for a software component. We integrate 
this model with the component’s communication cost model, 
which is based on the experimental results from previous studies. 
This integrated model results in highly accurate estimates of a 
component’s overall energy cost. Furthermore, unlike most previ-
ous power estimation tools for embedded applications, we explic-
itly consider and model the energy overhead of a host’s OS and an 
application’s runtime platform (e.g., JVM) incurred in facilitating 
and managing the execution of software components. This further 
enhances the accuracy of our framework in estimating a distributed 
software system’s energy consumption. Another contribution of 
this work is its ability to adjust energy consumption estimates at 
runtime efficiently and automatically, based on monitoring the 
changes in a small number of easily tracked system parameters 
(e.g., size of data exchanged over the network, inputs to a compo-
nent’s interfaces, invocation frequency of each interface, etc.).

In the remainder of this paper we first present the related 
research in the energy estimation and measurement areas (Section 
2). We then introduce our energy estimation framework (Section 3) 
and explain how it is applied to component-based Java systems. 
We round out the paper with a discussion of some current and 
planned applications of this research (Section 4).

2. RELATED WORK
Several studies have profiled the energy consumption of Java 

Virtual Machine (JVM) implementations. Farkas et al. [2] have 
measured the energy consumption of the Itsy Pocket Computer and 
the JVM running on it. A JVM generally has five stages during its 
life cycle [6]: start, initialize, load main class, interpreter loop, and 
exit. Farkas et al. have discussed different JVMs’ design trade-offs 
in each stage and measured their energy consumption. The energy 
consumed at the interpreter loop stage corresponds to the actual 
energy required to execute a Java application, while the energy 
consumed by the other stages is constant [6]. Lafond et al. [6] have 
measured the energy consumption of each stage, and showed that 
the energy required for memory accesses usually accounts for 70% 
of the total energy consumed. However, none of these studies sug-
gest a model that can be used for estimating the energy consump-
tion of a distributed Java-based system.

There have been several tools that estimate the energy con-
sumption of embedded operating systems (OSs) or applications. 
Tan et al. [9] have investigated the energy behaviors of two widely 
used embedded OSs, !C/OS and Linux, and suggested their quan-
titative macro-models, which can be used as OS energy estimators. 
Sinha et al. [8] have suggested a web-based tool, JouleTrack, for 
estimating the energy cost of an embedded software running on 
StrongARM SA-1100 and Hitachi SH-4 microprocessors. While 
they certainly informed our work, we were unable to use these 
energy estimation tools directly in our targeted distributed Java 
domain because none of them provide generic energy consumption 
models, but instead have focused on individual applications run-
ning on specific OSs and platforms.

Several studies [3,11] have measured the energy consumption 
of wireless network interfaces on handheld devices that use UDP 
for communication. They have shown that the energy usage by a 
device due to exchanging data over the network is directly linear to 

the size of data. We use these experimental results as a basis for 
defining a component’s communication energy cost.

3. ENERGY COST FRAMEWORK
We model a distributed software system’s energy consumption 

at the level of its components. A component is a unit of computa-
tion and state. In a Java-based application, a component may com-
prise a single class or a cluster of related classes. The energy cost 
of a software component consists of its computational and commu-
nication energy costs. The computational cost is mainly due to 
CPU processing, memory access, I/O operations, and so forth, 
while the communication cost is mainly due to the data exchanged 
over the network. In addition to these two, there is an additional 
energy cost incurred by an OS and an application’s runtime plat-
form (e.g., JVM) in the process of managing the execution of user-
level applications. We refer to this cost as infrastructure energy 
overhead. In this section, we present our approach to modeling 
each of these three energy cost factors. We conclude the section by 
discussing how our framework can be applied to Java systems.

3.1. Computational Cost
In order to preserve a software component’s abstraction bound-

aries, we determine its computational cost at the level of its public 
interfaces. A component’s interface corresponds to a service it pro-
vides to other components.1 While there are many ways of imple-
menting an interface and binding it to its caller (e.g., RMI, event 
exchange), in the most prevalent case an interface corresponds to a 
method. In Section 3.2 we discuss other forms of interface imple-
mentation and binding (e.g., data serialization over sockets). 

As an example, Figure 1 highlights a component c1 on host H1, 
c1’s provided interfaces, and the invocation of those interfaces by 
remote components. Given the energy consumption iCompEC 
resulting from invoking an interface Ii, and the total number bi of 
invocations for the interface Ii, we can calculate the overall energy 
consumption of a component c1 with n interfaces (expressed in 
Joule or J) as follows:"

Eq. 1

In this equation, iCompEC(Ii,j), the computational energy cost due 
to the jth invocation of Ii, may depend on the input parameter val-
ues of Ii and differ for each invocation.

In Java, the effect of invoking an interface can be expressed in 
terms of the execution of JVM’s 256 Java bytecode types, and its 
native methods. Bytecodes are platform-independent codes inter-
preted by JVM’s interpreter, while native methods are library func-
tions (e.g., java.io.FileInputStream’s read() method) 
provided by JVM. Native methods are usually implemented in C 
and compiled into dynamic link libraries, which are automatically 
installed with JVM. JVM also provides a mechanism for synchro-
nizing threads via an internal implementation of a monitor. There-
fore, we can model the energy consumption iCompEC(Ii,j) of 
invoking an interface on a given JVM in terms of the energy costs 
of bytecodes, native methods, and monitor operations executed 

1. We use the them “interface” in a broader sense than the lan-
guage-level construct supported by Java. Our usage is consistent 
with component-based software engineering literature.

1
1 1

( ) ( , )
ibn

i
i j

cCompEC c iCompEC I j
# #

# $ $

422



during the invocation. Unless two platforms have the same hard-
ware configurations, JVMs, and OSs, the energy costs of each 
bytecode type, each native method, and a monitor operation will 
likely be different.

3.2. Communication Cost
Two components may reside in the same address space and thus 

communicate locally, or in different address spaces and communi-
cate remotely. When components are part of the same JVM process 
but running in independent threads, the communication among the 
threads is generally achieved via native method calls (e.g., 
java.lang.Object’s notify() method). A component’s 
reliance on native methods has already been accounted for in cal-
culating its computational cost. When components run as separate 
JVM processes on the same host, Java sockets are usually used for 
their communication. Given that JVMs generally use native meth-
ods (e.g., java.net.SocketInputStream’s read()) for 
socket communication, this is also captured by a component’s 
computational cost. 

In remote communication, the transmission of messages via 
network interfaces consumes significant energy. Given the com-
munication energy cost iCommEC due to invoking an interface Ii,
and the total number bi of invocations for that interface, we can 
calculate the overall communication energy consumption of a 
component c1 with n interfaces (expressed in Joule) as follows:

Eq. 2

In this equation, iCommEC(Ii,j), the energy cost incurred by the jth
invocation of Ii, depends on the amount of data transmitted or 
received during the invocation and may be different for each invo-
cation.

In our work, we focus on modeling the energy consumption due 
to the remote communication based on UDP. Since UDP is a much 
more light-weight networking protocol (e.g., it provides no con-
gestion control, retransmission, and error recovery mechanisms) 
than TCP, it becomes prevalent more and more in embedded and 
resource-constrained computing domains [1,10]. Previous research 
[3,11] has shown that the energy consumption of wireless commu-
nication is directly proportional to the size of transmitted and 
received data. Based on these results, we model the communica-
tion energy cost due to the jth invocation of component c1’s inter-
face Ii on host H1 in terms of the size of transmitted and received 
data and the energy consumption of transmitting/receiving a unit of 
data on H1. Note that once the platform-specific energy cost of 
sending/receiving a unit of data is profiled on each host by per-
forming an offline measurement [7], the system parameters that 
need to be monitored on the host for estimating the communication 
cost are only the sizes of messages exchanged over the network.

3.3. Infrastructure Energy Consumption
Once the computational and communication costs of a compo-

nent have been calculated based on its interfaces, its overall energy 
consumption is determined as follows:"

Eq. 3

However, in addition to the computational and communication 
energy costs, there are additional energy costs for executing a Java 

component incurred by JVM’s garbage collection and implicit OS 
routines. During garbage collection, all threads except the Garbage 
Collection (GC) thread within the JVM process are suspended 
temporarily, and the GC thread takes over the execution control. 
We estimate the energy consumption resulting from garbage col-
lection by determining the GC thread’s average energy consump-
tion rate (J/sec.) and monitoring the total time that the thread is 
active (sec.).

Since a JVM runs as a separate user-level process in an OS, it is 
necessary to consider the energy overhead of OS routine calls for 
facilitating and managing the execution of JVM processes. There 
are two types of OS routines: 
1. explicit OS routines (i.e., system calls), which are initiated by 

user-level applications (e.g., accessing files, or displaying text 
and images on the screen); and 

2. implicit OS routines, which are initiated by the OS (e.g., 
context switching, paging, and process scheduling).

Java applications initiate explicit OS routine calls via JVM’s native 
methods. Therefore, our computational model already accounts for 
the energy cost due to the invocation of explicit OS routines. How-
ever, we have not accounted for the energy overhead of executing 
implicit OS routines. Previous research has shown that process 
scheduling, context switching, and paging are the main consumers 
of energy due to implicit OS routine calls [9]. Therefore, we can 
estimate the overall infrastructure energy overhead ifEC(p) of a 
JVM process p in terms of the energy costs of the GC thread, pro-
cess scheduling, context switching, and paging.

Since there is a single GC thread per JVM process, and implicit 
OS routines operate at the granularity of processes, we estimate the 
infrastructure energy overhead of a distributed software system in 
terms of its JVM processes. In turn, this helps us to estimate the 
system’s energy consumption with higher accuracy. Unless two 
platforms have the same hardware configurations, JVMs, and OSs, 
the GC thread’s energy consumption rate and the energy costs of 
process scheduling, context switching, and paging on one platform 
may not be the same as those on the other platform.

Once we have estimated the energy consumption of all the 
components, as well as the infrastructure energy overhead, we can 
estimate the system’s overall energy consumption as follows:"

 Eq. 4

where cNum and pNum are, respectively, the numbers of compo-
nents and JVM processes in the distributed software system.

3.4. Energy Consumption Estimation
In this section, we discuss how our framework can be used for 

estimating a distributed software system’s energy consumption at 
the level of its components both during system construction-time 
and during runtime. Figure 2 shows the envisioned high-level pro-
cess followed by a system engineer for estimating a distributed 
system’s energy consumption using our framework.

In order to estimate a distributed system’s energy cost at con-
struction-time, we first need to characterize the computational 
energy cost of each component on its candidate hosts. To this end, 
we generate a large set of random inputs for a component’s inter-
face and invoke the interface with these inputs for calculating the 
energy consumption of the interface from our framework. If an 
interface’s expected inputs are known at construction-time, we can 

1
1 1

( ) ( , )
ibn

i
i j

cCommEC c iCommEC I j
# #

# $ $

( ) ( ) ( )overallEC c cCompEC c cCommEC c# %

1 1
( ) ( )

pNumcNum

i j
i j

systemEC overallEC c ifEC p
# #

# %$ $

423



use these inputs instead of a set of inputs generated randomly. To 
estimate the communication energy consumption of each interface, 
based on domain knowledge and types of input parameters and 
return values, we predict the average size of messages exchanged 
due to an interface’s invocation. Using this data we can approxi-
mate the communication energy cost of interface invocation from 
our communication energy model. Before estimating the entire dis-
tributed system’s energy cost, we also need to determine the infra-
structure’s energy overhead, which depends on the deployment of 
the software (e.g., the number of components executing simulta-
neously on each host). Unless the deployment of the system’s com-
ponents on its hosts is fixed a priori, the component-level energy 
estimates can help us determine an initial deployment that satisfies 
the system’s energy requirements (e.g., to avoid overloading an 
energy-constrained device). Once an initial deployment is deter-
mined, from our framework we can estimate the infrastructure’s 
energy cost. We do so by executing all the components on their tar-
get hosts simultaneously, with the same sets of inputs that were 
used in characterizing the energy consumption of each individual 
component. Finally, we determine the distributed system’s overall 
energy consumption based on the above energy estimates.

However, since the construction-time energy estimates are 
based on a system engineer’s guesses or domain knowledge, they 
might be incorrect compared with the system’s actual energy cost 
at runtime. Our framework can first refine the construction-time 
estimates of an interface’s computational energy cost based on the 
actual inputs to the interface. For the communication cost of a 
component’s interface, by monitoring the sizes of messages 
exchanged over the network, their effects on the interface’s com-
munication cost can be determined from our framework. In a simi-

lar way, our framework can improve the construction-time 
estimates of the infrastructure energy overhead based on the actual 
GC thread execution time and the number of implicit OS routines 
executed at runtime. Finally, based on these refined estimates, our 
framework can improve (possibly automatically) the construction-
time energy estimates of a distributed system at runtime. Each dot-
ted line in Figure 2 indicates the refinement step at runtime for the 
corresponding energy estimation step at system construction-time.

We have evaluated our energy estimation framework for a large 
number of distributed application scenarios by running them on 
top of Kaffe 1.1.5 JVM [5] on Compaq iPAQ PDAs. Our evalua-
tion results suggest that the framework is always able to estimate 
the power consumed by a distributed Java system to within 5% of 
the actual consumption. For interested readers, refer to [7] that dis-
cusses our evaluation results in more detail.

4. CONCLUSION
In this paper we have presented a framework for estimating the 

energy consumption of Java-based software systems. Our primary 
objective in devising the framework has been to enable an engineer 
or a software agent to make informed decisions when adapting a 
system’s architecture, such that the system’s energy consumption 
is reduced and the lifetime of the system’s critical services 
increases. Our framework explicitly takes a component-based per-
spective, which renders it well suited for a large class of today’s 
distributed, embedded, and pervasive applications. The framework 
is applicable both during system construction-time and during 
runtime. In a large number of distributed application scenarios the 
framework has shown very good precision on the whole, giving 
results that have been within 5% of the actual energy consumption 
incurred by executing the software. We consider the development 
and evaluation of the framework to be a critical first step in pursu-
ing several avenues of further work, which has been identified as 
important in the areas of distributed, embedded, and pervasive sys-
tems. We have recently begun exploring, and successfully applying 
in an industrial setting, one such avenue for the framework.

5. REFERENCES
[1] W. Drytkiewicz, et al. pREST: a REST-based protocol for per-

vasive systems. In Proceedings of MASS, 2004.
[2] K. I. Farkas, et al. Quantifying the Energy Consumption of a 

Pocket Computer and a Java Virtual Machine. ACM SIGMET-
RICS, 2000.

[3] L. M. Feeney, et. al. Investigating the Energy Consumption of 
a Wireless Network Interface in an Ad Hoc Networking Envi-
ronment. In Proceedings of IEEE INFOCOM, 2001.

[4] JDDAC – Java Distributed Data Acquisition and Control. 
https://jddac.dev.java.net/, 2007.

[5] Kaffe 1.1.5. http://www.kaffe.org/, 2005.
[6] S. Lafond, et al. An Energy Consumption Model for An 

Embedded Java Virtual Machine. ARCS, 2006.
[7] C. Seo, et al. An Energy Consumption Framework for Distrib-

uted Java-Based Software Systems. Tech. Report, USC-CSE-
2006-604, 2006.

[8] A. Sinha, et al. JouleTrack - A Web Based Tool for Software 
Energy Profiling. In Proceedings of DAC, 2001.

[9] T. K. Tan, et al. Energy macromodeling of embedded operat-
ing systems. ACM Trans. on Embedded Comp. Systems, 2005.

[10] UPnP Device Architecture, http://www.upnp.org/, 2007.
[11] R. Xu, et al. Impact of Data Compression on Energy Con-

sumption of Wireless-Networked Handheld Devices, ICDCS, 
2003.

Figure 2. Energy consumption estimation steps at system 
construction-time and at runtime.

Characterize the 
computational energy cost of 

each interface on each 
candidate host

Component 1 Component nComponent 2 ...

Estimate the 
communication energy cost 
of each interface on each 

candidate host

...

Estimate the 
infrastructure energy cost on 
the determined deployment 

architecture

Determine the initial 
deployment based on the 
component-level energy 

estimates 

Estimate the overall 
energy consumption of the 

distributed system

System Construction-time 
Energy Estimation

Based on the computational energy 
behavior of each interface, do the one 
of the following things for estimating its 
computational energy cost:

i) use the construction-time estimates 
   as its energy cost 
ii) refine the construction-time estimates 
    based on the actual inputs to the 
    interface  

Based on the actual size of data 
exchanged over the network, refine the 
communication cost of each interface 
estimated at construction-time 

Improve the construction-time estimates 
of infrastructure energy overhead by 
monitoring the actual GC thread 
execution time and the number of 
implicit OS routines executed 

Refine the construction-time energy 
estimates of the distributed system 

Runtime
Energy Estimation

424


