
Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Algorithms Course

Programming and Algorithms Workshop

RUPP, 5-16 September 2022



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Références

Cormen, Leiserson, Rivest, Stein, “Introduction to

algorithms”.

Aho, Hopcroft, Ullman,“Data structures and algorithms”.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

algorithms

An algorithm is a procedure described in terms of elementary

steps, allowing to determine the solution of a problem starting

from any of its possible data (said instance of the problem).

We say that the algorithm solves the problem.

For any given instance , an algorithm must always stop after a

finite number of operations providing always the right

solution/answer to the problem.

Algorithm 6= Program



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Examples of problems, instances

Given a number, determine if it is a power of 2.

an instance: an integer number; expected answer: yes or no.

Given an array of integers, compute the sum of its values.

an instance: an array of integers; expected answer: an integer.

Given an array of integers, compute the array obtained

by rearranging its values in increasing order.

an instance: an array of integers; expected answer: an array of integers.

Given a text and a pattern, determine if the text contains

the pattern.
an instance: a couple of sequences of characters (strings);

expected answer: a boolean.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Correction, efficiency

There are two fundamental questions to ask :

Verify/prove that the algorithm is correct.

En general, difficult. There are some methods in simple

cases (loops).

Mesure the efficiency of the algorithm.

In particular, compare the “performances” of two

algorithms solving the same problem.

but how to mesure the performances of an algorithm?



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Notion of Complexity

It is reasonable to consider two aspects:

the quantity of memory necessary for executing the

algorithm (or rather the program that implements it) on a

machine (space complexity).

the time (of computation) necessary to obtain the

answer/solution after entering the data (time complexity).

How to mesure time?



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

How to mesure time

Use the second and its fractions ? −→ bad idea !

As unity of mesure of time we choose the elementary

operation.

Example

Assignments

Arithmetic operations

Comparaisons (of scalar type data )

Inputs/outputs (of scalar type data )

Functions calls

Functions returns ...



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

How to mesure space (memory)

Memory is classically mesured in bytes (1 byte = 8 bits).

Typically :

A character is stored using 1 byte.

An integer number is stored using 4 bytes.

An array of integers of length n hence needs 4n bytes of

memory to be stored.

A long integer number or a real (float) number in double

precision is stored using 8 bytes.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Complexity Function (for time complexity)

Remark

the number of operations depends on the size of the data.

(Imagine the computation of the sum of all the values of an

array)

Note : sometimes this number may depend also on properties

of the data other than the size

But if this number depends only on the size, then this number

is the same for all the data having size n.

In this case we can define a function f such that:

f(n) = the number of elementary operations carried out

by the algorithm on any data of size n.

(time complexity function of the algorithm)



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

An example

Example

SUM (T[0..n-1]:array of integers):integer;

i, res : integer;

res = 0;

for i from 0 to n-1 do

res= res + T[i];

endfor

return(res);



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

An example : Computation of the complexity function

El. op.

1

n times...

2 (1 add and 1 assign)

1

= 2n+2 total

f(n) = 2n + 2 (linear complexity)



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

An example : Computation of the complexity function

Forgotten something ???

← maybe here ?

1 incrementation and 1 comparison for each iteration of
the loop

−→ f(n) = 4n + 2 (remains linear)



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

An example : space complexity

Rule : we never count the space used for data and result.

1 integer variable (i)

4 bytes (regardless of the

size n of the array)

Space complexity is constant

(g(n) = 4)



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Another example

Example

MIN (T[0..n-1]:array of integers):integer;

i, min : integer;

min = T[0];
for i from 1 to n-1 do

if (T[i] < min) then
min = T[i];

endfor

return(min);



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Another example, computation of time complexity
Example

Min (T[0..n-1]:array of int):int;

i, min : integer;

min = T[0];
for i from 1 to n-1 do

if (T[i] < min) then
min = T[i];

endfor
return(min);

1 assignment
1 incr. and 1 comparison (n− 1 times)
1 comparison (n− 1 times)
← this assignment is not always
carried out!

In this case the number of el. op. is not the same for all arrays

of size n.

We analyse then the complexity in the best and in the worst

case.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Another example : worst case

Q: When does it occur?

R: When the array is decreasing (non increasing)

Example

Min (T[0..n-1]:array of int):int;

i, min : integer;

min = T[0];
for i from 1 to n-1 do

if (T[i] < min) then
min = T[i];

endfor
return(min);

1 assignment
1 incr. and 1 comparison (n− 1 times)
1 comparison (n− 1 times)
1 assignment (n− 1 times)

1 return

1+4(n−1)+1 = 4n−2 el. op.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Another example : best case

Q: When does it occur?

R: When the min is in first position

Example

Min (T[0..n-1]:array of int):int;

i, min : integer;

min = T[0];
for i from 1 to n-1 do

if (T[i] < min) then
min = T[i];

endfor
return(min);

1 assignment
1 incr. and 1 comparison (n− 1 times)
1 comparison (n− 1 times)
0 affectations

1 return

1+3(n−1)+1 = 3n−1 el. op.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Another example : average (random) case ?

Best case : 3n− 1

Worst case : 4n− 2

For all other cases (of arrays of size n) the number of el. op. is

between these two values.

Can we compute the complexity in the average case (average

complexity)? −→ difficult!

If there are m possible cases, for each case i you need to know

its complexity Ci and its probability to occur pi and compute:

m∑
i=1

piCi

For this algo, we know at least that the complexity is linear in

all cases (because it is linear in the best and in the worst).



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Compare two functions

We have two algorithms solving the same problem. One has

complexity function f(n), the other g(n).

How to compare the two functions f and g to determine which

of the two algorithms is more efficient?

We need to define an order (dominance order) on functions.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

the notation big-O

Definition

Let f , g : N→ R+. We say that f ∈ O(g) ("f is O of g") if there exist a positive integer
n0 and a positive (real) constant c such that :

f(n) ≤ cg(n) for all n ≥ n0

Maybe clearer with a picture:

the growth rate of f is smaller than or equal to the growth rate of g, we say that f is
dominated by g (or that g dominates f ).

O(g) is the set of all functions dominated by g.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

the notation big-O, examples

Example

Let f = n and g = 2n + 4.
Is f ∈ O(g)?
In this case, for all integers n we have n < 2n + 4, so if we choose n0 = 0, c = 1 we
have:

f(n) ≤ cg(n) for all n ≥ n0.

Example

Let f = n and g = n2.
Is f ∈ O(g)?
Since for all n ≥ 0 we have n ≤ n2, if we choose n0 = 0, c = 1 we have:

f(n) ≤ cg(n) for all n ≥ n0.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

the notation big-O, examples

Let f = n and g = n2 − 6.
Is f ∈ O(g)?

For computing n0 we can compute the point of intersection having positive abscissa.
From the equation n2 − 6 = n we obtain n = −2 or n = 3.
Since for all n ≥ 3 we have f(n) ≤ g(n), if we choose n0 = 3, c = 1, we have that:

f(n) ≤ g(n) for all n ≥ n0.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

the notation big-O, examples

Let f = n and g = 2n + 4.
Is g ∈ O(f)?

There exist n0 ∈ N+ and c ∈ R+ such that g(n) ≤ cf(n) for all n ≥ n0?

If we take c = 3?

the two lines y = 3x and y = 2x + 4 cross at the point of abscissa n0 = 4 and on the
right of this abscissa, 3n is always higher than 2n + 4.

So g(n) ≤ 3f(n) for all n ≥ 4, that is, g ∈ O(f)



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

the notation Big-Θ (big-theta)

Two functions may dominate one another (f ∈ O(g) and g ∈ O(f)).

Definition

We say that f ∈ Θ(g) if f ∈ O(g) and g ∈ O(f).

Formally : f ∈ Θ(g) if there exist a positive integer n0 and two positive constants c1

and c2 such that :
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

Remark

f ∈ Θ(g) iff g ∈ Θ(f) (this is false in general for O).

Θ(g) = {all functions having the same growth rate as g}.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Classes Θ

We already saw that 2n + 4 ∈ Θ(n), the class of linear growth, very good.

More generally, every polynomial of degree k is in the class Θ(nk). (polynomial
growth, acceptable if k small)

If two polynomials have different degrees, the one with larger degree always strictly
dominates the other. This is also true for non integer exponents: if α > β ∈ R+ then
nβ ∈ O(nα) (and nα /∈ O(nβ)

All constants are in the class Θ(1).

log n is dominated (strictly) by any polynomial, and in fact is dominated (strictly) by
any function nα with α > 0. (croissance logarithmic growth, excellent)

2n dominates all polynomials, and in fact dominates any function nα with α > 0.
(exponential growth, horrible)

the class Θ(n · log(n)) contains functions whose growth rate is between linear and
quadratic.



Admin Introduction Notion of complexity An example, the sum Another example, the minimum of an array The notion of Big-O

Note : the notation (X) indicates a number made of X digits en base 10. So for

instance “(72) siècles = (72) centuries" is not 72 centuries, but a number of

centuries written with 72 digits.


	Admin
	

	Introduction
	

	Notion of complexity
	

	An example, the sum
	

	Another example, the minimum of an array
	

	The notion of Big-O
	


