Python programming Lab. Work nº 4 : Searching

Preliminaries : Please remind that teachers can be called to help you on any problem you get. Don't get stuck on an issue for too long.

Exercise $n^{\circ}1$: Search

😻 Sida

1. In the module myarray.py add a function sorted_array(n) that creates an array of n elements, all stored in ascending order, such that $A[i+1] - A[i] \in [0, 5]$. Test it :

```
Size?10
[2, 5, 6, 10, 15, 17, 21, 25, 27, 30]
```

- 2. Create a module search.py
- 3. In module search.py, write a function linear_search(a,e) that returns True if element *e* in in the sorted array *a* and False if not. Test it in a module search_main.py :

```
[3, 6, 7, 9, 13, 15, 15, 15, 19, 21, 26, 31]

Value to search? 4

False

[3, 6, 7, 9, 13, 15, 15, 15, 19, 21, 26, 31]

Value to search? 15

True

[3, 6, 7, 9, 13, 15, 15, 15, 19, 21, 26, 31]

Value to search? 3

True

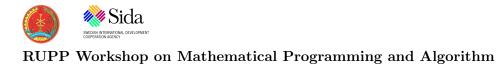
[3, 6, 7, 9, 13, 15, 15, 15, 19, 21, 26, 31]

Value to search? 31

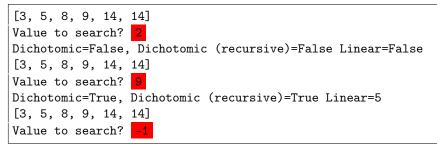
True

[3, 6, 7, 9, 13, 15, 15, 15, 19, 21, 26, 31]

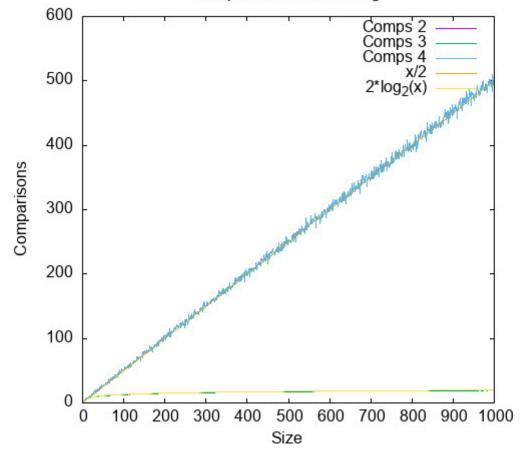
Value to search? 31


True

[3, 6, 7, 9, 13, 15, 15, 15, 19, 21, 26, 31]


Value to search? -1 \leftarrow value \ to \ stop...
```

4. In module search.py, add a function dichotomic_search(a,e) that return True>
▷ if element e in the sorted array a and False if not, using the iterative dichotomic method. Test it in the module search_main.py such that both linear_search and dichotomic_search are computed :


[0, 2, 6, 11, 12] Value to search? 3 Dichotomic=False Linear=False [0, 2, 6, 11, 12] Value to search? 5 Dichotomic=False Linear=False [0, 2, 6, 11, 12] Value to search? 12 Dichotomic=True Linear=True [0, 2, 6, 11, 12] Value to search? -1

5. In module search.py add a function recursive_dichotomic_search(a,e) that computes the same as linear_search in a recursive way. Modify search_main.py to test it against the two others :

- 6. In search_main.py add a function test that tests if all three searching algorithms have consistent results over N sorted arrays $\{A_{1 \leq s \leq N}\}$, $\forall s \in [1, N], |A_i| = s$. For each A_k , you may test consistency for all integer values in $[A_k[0] 1, A[k-1] + 1]$. If results are not consistent, then you need to find the bug!
- 7. Modify all of these such that you will be able to collect the number of comparisons made in the mean for all three algorithms and draw the corresponding functions (compare with fx() = x and $g(x) = \log_2 x$) :

Complexities of Searching