
RUPP Workshop on Mathematical Programming and Algorithm Year 2022

Python programming
Lab. Work no 3 : Basic sorting

Preliminaries : Please remind that teachers can be called to help you on any problem
you get. Don’t get stuck on an issue for too long.

Exercise n°1 : Bubbles

1. Create a script named bubble.py and define a function named random_array(n) that
when called creates a list of n random integers in the range [0, 3∗n[. Call that function
and print the results :

Size? 10
[28, 29, 20, 11, 1, 21, 8, 27, 26, 18]

2. Modify bubble.py to add a function named bubble_sort(a) that when called sorts
(by ascending order) the elements of the array a with the bubble sorting algorithm.
A pass of the bubble sort consists in the scanning of all adjacent elements and their
swapping in the case they are not correctly ordered. The bubble sort then consists in
runing as many passes as necessary (what could be the stopping condition ?). Test it :

Size? 10
Before sorting: [9, 19, 15, 6, 20, 18, 5, 11, 26, 28]
After sorting: [5, 6, 9, 11, 15, 18, 19, 20, 26, 28]

3. Add some measure into the function bubble_sort so that in return you will get : the
total number of swaps and the total number of comparisons :

Size? 10
Before sorting: [25, 2, 20, 4, 6, 1, 28, 30, 29, 2]
After sorting: [1, 2, 2, 4, 6, 20, 25, 28, 29, 30]
72 comparisons and 19 swaps

4. Modify the script so that for a given size, e sorting experiences are generated and the
mean of the results is computed :

Size? 10
Number of experiments? 1000
66.726 comparisons and 21.642 swaps in the mean for array of size 10.

5. One can remark that at pass i the i-th last element is at its final location. So, we
can optimise the algorithm such that the i ending comparisons can be eliminated.
Implement it in a function bubble_sort_optimised(a) and compare the results :

Size? 10
Number of experiments? 1000
Basic bubble sorting: 66.4812 comps and 21.7221 swaps for arrays of size 10.
Optimised bubble sorting: 41.6934 comps and 21.7221 swaps for arrays of size 10.

1



RUPP Workshop on Mathematical Programming and Algorithm Year 2022

6. Another optimisation is possible if one can remark that more than the i-th last elements
can be a their right location at pass i... At a given pass i, we know that all elements
after the last swap are at their final location... Implement it in a function named
bubble_sort_super_optimised(a) and compare the results :

Size? 15
Number of experiments? 20000
Basic bubble sorting: 161.4655 comps and 51.28295 swaps for arrays of size ▷

▷ 15.
Optimised bubble sorting: 98.71885 comps and 51.28295 swaps for arrays of size ▷

▷ 15.
Super opt bubble sorting: 92.47475 comps and 51.28295 swaps for arrays of size ▷

▷ 15.

7. (Hard) Draw functions for comparisons and swaps from different sizes (10, 20, 50,
100, 200, 500, 1000, 2000, 5000)... Warning : don’t use too many experiences for long
arrays, it may take too much time and may convert your computer to a radiator..
Hint : use gnuplot tool or mathplotlib Python module.

Exercise n°2 : Cocktail

1. Leave all the three bubble algorithms in the module bubble.py and create a
bubble_main.py that contains the code that makes the experiments bubble.py

2. Bubble sort has a major drawback, if highest values moved quickly to their final lo-
cation, it is the converse for low values (why ?). The cocktail sort is just alternation
of left-to-right then right-to-left bubble passes. Implement the basic cocktail sort (in a
module cocktail.py) and compare results with bubble sort :

Size? 10
Number of experiments? 10000
Basic bubble sorting: 66.4632 comps and 21.7236 swaps for arrays of size 10.
Optimised bubble sorting: 41.6588 comps and 21.7236 swaps for arrays of size 10.
Super opt bubble sorting: 38.6336 comps and 21.7236 swaps for arrays of size 10.
Cocktail sorting: 49.9713 comps and 21.7234 swaps for arrays of size 10.

3. Implements the cocktail_sort_optimised and cocktail_sort_super_optimised...

Size? 15
Number of experiments? 10000
Basic bubble sorting: 161.476 comps and 51.4261 swaps for arrays of size 15.
Optimised bubble sorting: 98.7368 comps and 51.4261 swaps for arrays of size 15.
Super opt bubble sorting: 92.4789 comps and 51.4261 swaps for arrays of size 15.
Cocktail sorting: 125.8572 comps and 51.4261 swaps for arrays of size 15.
Opt cocktail sorting: 97.9426 comps and 51.4261 swaps for arrays of size 15.
Super opt cocktail sort: 89.6867 comps and 51.4261 swaps for arrays of size 15.

4. (Hard) Draw all the functions and compare them to n2.
Hint : use gnuplot tool or mathplotlib Python module.

Number of experiments? 10
10, 15, 20, 50, 100, 200, 500, 1000, 2000, 5000,
Bubble: 62.1 comps and 19.1 swaps (size 10)
Bubble: 163.8 comps and 51.3 swaps (size 15)

2



RUPP Workshop on Mathematical Programming and Algorithm Year 2022

Bubble: 304.0 comps and 97.1 swaps (size 20)
Bubble: 2077.6 comps and 590.0 swaps (size 50)
Bubble: 8910.0 comps and 2548.1 swaps (size 100)
Bubble: 37392.1 comps and 9775.5 swaps (size 200)
Bubble: 239320.4 comps and 62012.2 swaps (size 500)
Bubble: 957241.8 comps and 251157.7 swaps (size 1000)
Bubble: 3877460.3 comps and 1003253.9 swaps (size 2000)
Bubble: 24556087.8 comps and 6245843.2 swaps (size 5000)
Opt bubble: 40.7 comps and 19.1 swaps (size 10)
Opt bubble: 100.4 comps and 51.3 swaps (size 15)
...
Opt cocktail: 414824.4 comps and 251157.7 swaps (size 1000)
Opt cocktail: 1640822.7 comps and 1003253.9 swaps (size 2000)
Opt cocktail: 10175999.6 comps and 6245843.2 swaps (size 5000)
Super cocktail: 37.0 comps and 19.1 swaps (size 10)
Super cocktail: 88.4 comps and 51.3 swaps (size 15)
Super cocktail: 162.8 comps and 97.1 swaps (size 20)
Super cocktail: 967.0 comps and 590.0 swaps (size 50)
Super cocktail: 4034.6 comps and 2548.1 swaps (size 100)
Super cocktail: 15062.3 comps and 9775.5 swaps (size 200)
Super cocktail: 94434.9 comps and 62012.2 swaps (size 500)
Super cocktail: 380100.9 comps and 251157.7 swaps (size 1000)
Super cocktail: 1510832.3 comps and 1003253.9 swaps (size 2000)
Super cocktail: 9387841.7 comps and 6245843.2 swaps (size 5000)

3



RUPP Workshop on Mathematical Programming and Algorithm Year 2022

5. How are you convinced that your sorting algorithms are correctly implemented ? Add
some verification code at appropriate steps.

4


