
Necessary Conditions on Balanced Boolean

Functions with Maximum Nonlinearity
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1. At first glance

– Problem: What is the upper bound on the nonlinearity of balanced

Boolean functions with n= 2k variables? Specifically, is 2n−1−2
n
2
−1−2

a sharp bound for n≥ 8?

– Tools:
• Numerical Normal Form (NNF) by Carlet and Guillot [1].
• Möbius inversion in Fn

2 viewed as a partially ordered set (Rota, [3]).
– Purposes:
• Find a relation between algebraic degree and the Walsh spectrum.

• Try to find necessary conditions for balanced Boolean functions with

maximal nonlinearity.



2. Preliminaries

– A Boolean function is a function from Fn
2 to F2.

– (Hamming) Weight of a Boolean function f :

wt( f ) =
∑

a∈Fn
2

f (a)

– f is balanced if wt( f ) = 2n−1.

– The discrete Fourier transform of f :

F f (a) =
∑

x∈Fn
2

f (x)(−1)a·x

– Let f̂ = (−1) f , then the Walsh transform Wf is defined to be the dis-

crete Fourier transform of f̂ :

F f̂ (a) =Wf (a) =
∑

x∈Fn
2

f̂ (x)(−1)a·x =
∑

x∈Fn
2

(−1) f (x)⊕a·x



– Relation between F f (a) and Wf (a) is given as:

Wf (a) = 2nδ0(a)− 2F f (a)

where δ0(a) = 1 if a = 0 and 0 otherwise.

– Nonlinearity of f :

nl( f ) = 2n−1−
1

2
maxa∈Fn

2

¦�

�Wf (a)
�

�

©

– Restrictions on the Walsh spectrum:

• Parseval’s equality:
∑

x∈Fn
2

W 2
f (x) = 22n

• An immediate fact:

Proposition 1.

∗ Wf (a)≡ 0 (mod 4), ∀a ∈ Fn
2 if wt( f ) is even,

∗ Wf (a)≡ 2 (mod 4), ∀a ∈ Fn
2 if wt( f ) is odd.



– A multiset is a set where repetition of an element is allowed.

– Algebraic normal form (ANF) of f :

f (x1, . . . , xn) =
⊕

u∈Fn
2

au

� n
∏

i=1

xui
i

�

, au ∈ F2 (1)

– The algebraic degree of f : degree of (1).

– A partially ordered set P is a set of elements with an order relation �
and an equality =, such that the following axioms hold:

P1: x � x for all x ∈ P (reflexive).

P2: if x � y and y � z then x � z for all x , y, z ∈ P (transitive).

P3: if x � y and y � x then x = y for all x , y ∈ P (antisymmetric).



3. Numerical Normal Form [Carlet and Guillot]

NNF is an integer valued polynomial representation of Boolean func-

tions.

– Coefficients:

λu = (−1)wt(u)
∑

a∈Fn
2 | a�u

(−1)wt(a) f (a)

– Recovery of DFT:

F f (a) = (−1)wt(a)
∑

u∈Fn
2 | a�u

2n−wt(u)λu (2)

– An immediate consequence of a theorem of Carlet and Guillot [2]:

Corollary 1. Let f : Fn
2 → F2 be a balanced Boolean function with even

n≥ 6. If nl( f ) = 2n−1− 2
n
2
−1− 2 then degree d of f is n− 1.



4. A necessary condition on the Walsh spectrum

The following result not only generalizes Proposition 1, but also relates

algebraic degree to the Walsh spectrum of the function.



Theorem 1. Let f : Fn
2 → F2 be a Boolean function with n ≥ 3 and NNF

coefficients λu, u ∈ Fn
2. Then:

– If d = n− 1, then:

• Wf (u)≡ 0 (mod 8) for all u ∈ I ,

• Wf (u)≡ 4 (mod 8) for all u ∈ J,

– If d < n − 1, then Wf (u) ≡ k (mod 8) for all u ∈ Fn
2, with k = 4 or

k = 0, depending on λ1.

– If d = n, let r be the terms in ANF with degree d − 1.

• if r = n, then Wf (u)≡ k (mod 8) for all u ∈ Fn
2, with k = 6 or k = 2,

depending on λ1,

• otherwise

∗ Wf (u)≡ 2 (mod 8) for all u ∈ I ,

∗ Wf (u)≡ 6 (mod 8) for all u ∈ J,

for two index sets I , J ⊆ Fn
2, with I ∩ J = ;, I ∪ J = Fn

2 and |I |= |J |= 2n−1.



5. Weight Spectrum

– The subspace weight of f for all u ∈ Fn
2:

su =
∑

a�u

f (a) (3)

– su is simply the weight of f |E, the restriction of f to the subspace E,

where E =
�

v ∈ Fn
2 | v � u
	

– We can view Fn
2 as a locally finite partially ordered set with a great-

est lower bound; hence we can employ Möbius inversion. By Möbius

inversion and (3):

f (u) = (−1)wt(u)
∑

a∈Fn
2 | a�u

(−1)wt(a)sa

– The discrete Fourier transform of f can be defined in terms of subspace

weights. In the sequel, ā denotes the complement of a.



Proposition 2. Let f be a Boolean function and su be the subspace weight

coefficients of f for all u ∈ Fn
2. Then:

F f (a) = (−1)wt(ā)
∑

u∈Fn
2 | ā�u

(−1)wt(u)2n−wt(u)su

Proof is in the manner of Carlet and Guillot.



The following theorem gives a restriction on the weight structure of the

hyperplanes of a balanced Boolean function having maximum nonlinear-

ity.

Theorem 2. Let n be even and f : Fn
2→ F2 be a balanced Boolean function.

f has nonlinearity nl( f ) = 2n−1− 2
n
2
−1− 2, only if

(a) 2n−2− 2
n
2
−2− 1≤ su ≤ 2n−2+ 2

n
2
−2+ 1 if wt(u) = n− 1, and

(b) 2n−3− 2
n
2
−2− 2

n
2
−3− 1≤ su ≤ 2n−3+ 2

n
2
−2+ 2

n
2
−3+ 1 if wt(u) = n− 2



6. A sketch of Proof of Theorem 1

– Complete proof can be found in the paper.

We will just prove d = n− 1 case.

– We will make use of the following:

Lemma 1. Let A = {∗ z1, . . . , zn ∗}, zi ∈ Z be a multiset. Let the subset

sum SX be defined on the subsets X ⊆ A as:

SX =

¨

0 if X = ;,
∑

x∈X x otherwise.

Then

|{X ⊆ A |SX is even}|=
¨

2n−1 if ∃zi ∈ A s.t. zi is odd,

2n otherwise.



Proof (of Theorem 1). Let Λw = {∗ λi | wt(i) = w ∗} be the multi-set

of NNF coefficients with weight w of f . In the following formula, let

Xw,a ⊆ Λw for 0 ≤ w < n, and SXw,a
be the subset sum of the subset

corresponding to a. By (2) the discrete Fourier transform of f at a can

be written as:

F f (a) = (−1)wt(a)
�

λ1···1+ 2SXn−1,a
+ 22SXn−2,a

+ · · ·+ 2nSX0,a

�

where for any a ∈ Fn
2, Xw,a ⊆ Λw for 0 ≤ w < n is completely determined

by:

Xw,a = {λi | wt(i) = w and i � a}

Recall that

Wf (a) = 2nδ0(a)− 2F f (a)



Then we have:

Wf (a) = (−1)wt(a)+1
�

2λ1···1+ 22SXn−1,a
+ 23SXn−2,a

+ · · ·+ 2n+1SX0,a

�

(4)

for any 0 6= a ∈ Fn
2.

Let a = 110101 then SXn−1,a
consists of the λ’s that are printed blue.

λ1

rrfffffffffffffffffffffffffffffffffffff

ttiiiiiiiiiiiiiiiiiiiiii

{{vvvvvvvvv

##HHHHHHHHH

**UUUUUUUUUUUUUUUUUUUUUU

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

λ111110 λ111101 λ111011 λ110111 λ101111 λ011111

... ... ... ... ... ... ...

By the fact that at least one λu with wt(u) = n− 1 is odd and Lemma 1,

since d = n− 1 (indeed au ≡ λu (mod 2)), half of a ∈ Fn
2 corresponds to

even subset sums and the other half of a ∈ Fn
2 corresponds to odd subset

sums. Since λ1 is even and by (4) we reach the conclusion.



Questions and Comments
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