Necessary Conditions on Balanced Boolean Functions with Maximum Nonlinearity

Faruk Göloğlu¹ and Melek D. Yücel²

¹ Dept. of Computer Technology and Information Systems, Bilkent University also Institute of Applied Mathematics, Middle East Technical University gologlu@bilkent.edu.tr

² Institute of Applied Mathematics and Dept. of Electrical and Electronics Engineering Middle East Technical University yucel@eee.metu.edu.tr

1. At first glance

- Problem: What is the upper bound on the nonlinearity of balanced Boolean functions with n = 2k variables? Specifically, is $2^{n-1} - 2^{\frac{n}{2}-1} - 2$ a sharp bound for $n \ge 8$?
- Tools:
 - Numerical Normal Form (NNF) by Carlet and Guillot [1].
 - Möbius inversion in \mathbb{F}_2^n viewed as a partially ordered set (Rota, [3]).
- Purposes:
 - Find a relation between *algebraic degree* and the *Walsh spectrum*.
 - Try to find necessary conditions for balanced Boolean functions with maximal nonlinearity.

2. Preliminaries

- A Boolean function is a function from \mathbb{F}_2^n to \mathbb{F}_2 .
- (Hamming) *Weight* of a Boolean function *f* :

$$\operatorname{wt}(f) = \sum_{a \in \mathbb{F}_2^n} f(a)$$

- f is balanced if wt(f) = 2^{n-1} .
- The discrete Fourier transform of f:

$$F_f(a) = \sum_{x \in \mathbb{F}_2^n} f(x)(-1)^{a \cdot x}$$

– Let $\hat{f} = (-1)^f$, then the *Walsh transform* W_f is defined to be the discrete Fourier transform of \hat{f} :

$$F_{\hat{f}}(a) = W_f(a) = \sum_{x \in \mathbb{F}_2^n} \hat{f}(x)(-1)^{a \cdot x} = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus a \cdot x}$$

– Relation between $F_f(a)$ and $W_f(a)$ is given as:

$$W_f(a) = 2^n \delta_0(a) - 2F_f(a)$$

where $\delta_0(a) = 1$ if a = 0 and 0 otherwise.

- *Nonlinearity* of *f* :

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} \left\{ \left| W_f(a) \right| \right\}$$

- Restrictions on the Walsh spectrum:
 - Parseval's equality:

$$\sum_{x\in\mathbb{F}_2^n}W_f^2(x)=2^{2n}$$

• An immediate fact:

Proposition 1.

* $W_f(a) \equiv 0 \pmod{4}, \forall a \in \mathbb{F}_2^n \text{ if } \operatorname{wt}(f) \text{ is even},$ * $W_f(a) \equiv 2 \pmod{4}, \forall a \in \mathbb{F}_2^n \text{ if } \operatorname{wt}(f) \text{ is odd}.$

- A *multiset* is a set where repetition of an element is allowed.
- Algebraic normal form (ANF) of f:

$$f(x_1, \dots, x_n) = \bigoplus_{u \in \mathbb{F}_2^n} a_u \left(\prod_{i=1}^n x_i^{u_i} \right), \ a_u \in \mathbb{F}_2$$
(1)

- The algebraic degree of f: degree of (1).
- A partially ordered set P is a set of elements with an order relation ≽ and an equality =, such that the following axioms hold:
 P1: x ≿ x for all x ∈ P (reflexive).
- *P2*: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$ for all $x, y, z \in P$ (transitive).
- *P3*: if $x \succeq y$ and $y \succeq x$ then x = y for all $x, y \in P$ (antisymmetric).

3. Numerical Normal Form [Carlet and Guillot]

NNF is an integer valued polynomial representation of Boolean functions.

- Coefficients:

$$\lambda_u = (-1)^{\operatorname{wt}(u)} \sum_{a \in \mathbb{F}_2^n \mid a \preceq u} (-1)^{\operatorname{wt}(a)} f(a)$$

- Recovery of DFT:

$$F_f(a) = (-1)^{\operatorname{wt}(a)} \sum_{u \in \mathbb{F}_2^n \mid a \preceq u} 2^{n - \operatorname{wt}(u)} \lambda_u$$
(2)

- An immediate consequence of a theorem of Carlet and Guillot [2]:

Corollary 1. Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a balanced Boolean function with even $n \ge 6$. If $nl(f) = 2^{n-1} - 2^{\frac{n}{2}-1} - 2$ then degree d of f is n - 1.

4. A necessary condition on the Walsh spectrum

The following result not only generalizes Proposition 1, but also relates algebraic degree to the Walsh spectrum of the function.

Theorem 1. Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a Boolean function with $n \ge 3$ and NNF coefficients λ_u , $u \in \mathbb{F}_2^n$. Then:

- If d = n - 1, then:

- $W_f(u) \equiv 0 \pmod{8}$ for all $u \in I$,
- $W_f(u) \equiv 4 \pmod{8}$ for all $u \in J$,
- If d < n 1, then $W_f(u) \equiv k \pmod{8}$ for all $u \in \mathbb{F}_2^n$, with k = 4 or k = 0, depending on λ_1 .
- If d = n, let r be the terms in ANF with degree d 1.
 - if r = n, then $W_f(u) \equiv k \pmod{8}$ for all $u \in \mathbb{F}_2^n$, with k = 6 or k = 2, depending on λ_1 ,
 - otherwise
 - * $W_f(u) \equiv 2 \pmod{8}$ for all $u \in I$,
 - * $W_f(u) \equiv 6 \pmod{8}$ for all $u \in J$,

for two index sets $I, J \subseteq \mathbb{F}_2^n$, with $I \cap J = \emptyset$, $I \cup J = \mathbb{F}_2^n$ and $|I| = |J| = 2^{n-1}$.

5. Weight Spectrum

- The subspace weight of f for all $u \in \mathbb{F}_2^n$:

$$s_u = \sum_{a \preceq u} f(a) \tag{3}$$

- s_u is simply the weight of $f|_E$, the restriction of f to the subspace E, where $E = \{v \in \mathbb{F}_2^n | v \leq u\}$
- We can view \mathbb{F}_2^n as a locally finite partially ordered set with a greatest lower bound; hence we can employ Möbius inversion. By Möbius inversion and (3):

$$f(u) = (-1)^{\operatorname{wt}(u)} \sum_{a \in \mathbb{F}_2^n \mid a \preceq u} (-1)^{\operatorname{wt}(a)} s_a$$

– The discrete Fourier transform of f can be defined in terms of subspace weights. In the sequel, \bar{a} denotes the complement of a.

Proposition 2. Let f be a Boolean function and s_u be the subspace weight coefficients of f for all $u \in \mathbb{F}_2^n$. Then:

$$F_f(a) = (-1)^{\operatorname{wt}(\bar{a})} \sum_{u \in \mathbb{F}_2^n \mid \bar{a} \leq u} (-1)^{\operatorname{wt}(u)} 2^{n - \operatorname{wt}(u)} s_u$$

Proof is in the manner of Carlet and Guillot.

The following theorem gives a restriction on the weight structure of the hyperplanes of a balanced Boolean function having maximum nonlinearity.

Theorem 2. Let *n* be even and $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a balanced Boolean function. *f* has nonlinearity $nl(f) = 2^{n-1} - 2^{\frac{n}{2}-1} - 2$, only if

(a) $2^{n-2} - 2^{\frac{n}{2}-2} - 1 \le s_u \le 2^{n-2} + 2^{\frac{n}{2}-2} + 1$ if wt(u) = n - 1, and (b) $2^{n-3} - 2^{\frac{n}{2}-2} - 2^{\frac{n}{2}-3} - 1 \le s_u \le 2^{n-3} + 2^{\frac{n}{2}-2} + 2^{\frac{n}{2}-3} + 1$ if wt(u) = n - 2

6. A sketch of Proof of Theorem 1

Complete proof can be found in the paper.
 We will just prove d = n - 1 case.

– We will make use of the following:

Lemma 1. Let $A = \{ * z_1, ..., z_n * \}, z_i \in \mathbb{Z}$ be a multiset. Let the subset sum S_X be defined on the subsets $X \subseteq A$ as:

$$S_{X} = \begin{cases} 0 & \text{if } X = \emptyset, \\ \sum_{x \in X} x & \text{otherwise.} \end{cases}$$

Then

$$|\{X \subseteq A \mid S_X \text{ is even}\}| = \begin{cases} 2^{n-1} \text{ if } \exists z_i \in A \text{ s.t. } z_i \text{ is odd,} \\ 2^n \text{ otherwise.} \end{cases}$$

Proof (of Theorem 1). Let $\Lambda_w = \{* \lambda_i \mid wt(i) = w *\}$ be the multi-set of NNF coefficients with weight w of f. In the following formula, let $X_{w,a} \subseteq \Lambda_w$ for $0 \le w < n$, and $S_{X_{w,a}}$ be the subset sum of the subset corresponding to a. By (2) the discrete Fourier transform of f at a can be written as:

$$F_f(a) = (-1)^{\text{wt}(a)} \left[\lambda_{1\dots 1} + 2S_{X_{n-1,a}} + 2^2 S_{X_{n-2,a}} + \dots + 2^n S_{X_{0,a}} \right]$$

where for any $a \in \mathbb{F}_2^n$, $X_{w,a} \subseteq \Lambda_w$ for $0 \le w < n$ is completely determined by:

$$X_{w,a} = \{\lambda_i \mid wt(i) = w \text{ and } i \succeq a\}$$

Recall that

$$W_f(a) = 2^n \delta_0(a) - 2F_f(a)$$

Then we have:

$$W_f(a) = (-1)^{\text{wt}(a)+1} \left[2\lambda_{1\cdots 1} + 2^2 S_{X_{n-1,a}} + 2^3 S_{X_{n-2,a}} + \cdots + 2^{n+1} S_{X_{0,a}} \right]$$
(4)

for any $0 \neq a \in \mathbb{F}_2^n$. Let a = 110101 then $S_{X_{n-1,a}}$ consists of the λ 's that are printed blue.

By the fact that at least one λ_u with wt(u) = n - 1 is odd and Lemma 1, since d = n - 1 (indeed $a_u \equiv \lambda_u \pmod{2}$), half of $a \in \mathbb{F}_2^n$ corresponds to even subset sums and the other half of $a \in \mathbb{F}_2^n$ corresponds to odd subset sums. Since λ_1 is even and by (4) we reach the conclusion.

Questions and Comments

References

- 1. Carlet, C., and Guillot, P. A new representation of Boolean functions. In *Proceedings of AAECC'13* (1999), no. 1719 in Lecture Notes in Computer Science.
- 2. Carlet, C., and Guillot, P. Bent, resilient functions and the numerical normal form. *DIMACS Series in Discrete Mathematics and Theoretical Computer Science* 56 (2001), 87–96.
- 3. Rota, G.-C. On the foundations of Combinatorial Theory. Springer Verlag, 1964.