Necessary Conditions on Balanced Boolean Functions with Maximum Nonlinearity

\author{
Faruk Göloğlu ${ }^{1}$ and Melek D. Yücel ${ }^{2}$
 ${ }^{1}$ Dept. of Computer Technology and Information Systems, Bilkent University also Institute of Applied Mathematics, Middle East Technical University gologlu@bilkent.edu.tr
 ${ }^{2}$ Institute of Applied Mathematics and
 Dept. of Electrical and Electronics Engineering Middle East Technical University
 ```
yucel@eee.metu.edu.tr

```
}

\section*{1. At first glance}
- Problem: What is the upper bound on the nonlinearity of balanced Boolean functions with \(n=2 k\) variables? Specifically, is \(2^{n-1}-2^{\frac{n}{2}-1}-2\) a sharp bound for \(n \geq 8\) ?
- Tools:
- Numerical Normal Form (NNF) by Carlet and Guillot [1].
- Möbius inversion in \(\mathbb{F}_{2}^{n}\) viewed as a partially ordered set (Rota, [3]).
- Purposes:
- Find a relation between algebraic degree and the Walsh spectrum.
- Try to find necessary conditions for balanced Boolean functions with maximal nonlinearity.

\section*{2. Preliminaries}
- A Boolean function is a function from \(\mathbb{F}_{2}^{n}\) to \(\mathbb{F}_{2}\).
- (Hamming) Weight of a Boolean function \(f\) :
\[
\mathrm{wt}(f)=\sum_{a \in \mathbb{F}_{2}^{n}} f(a)
\]
- \(f\) is balanced if \(\operatorname{wt}(f)=2^{n-1}\).
- The discrete Fourier transform of \(f\) :
\[
F_{f}(a)=\sum_{x \in \mathbb{F}_{2}^{n}} f(x)(-1)^{a \cdot x}
\]
- Let \(\hat{f}=(-1)^{f}\), then the Walsh transform \(W_{f}\) is defined to be the discrete Fourier transform of \(\hat{f}\) :
\[
F_{\hat{f}}(a)=W_{f}(a)=\sum_{x \in \mathbb{F}_{2}^{n}} \hat{f}(x)(-1)^{a \cdot x}=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x) \oplus a \cdot x}
\]
- Relation between \(F_{f}(a)\) and \(W_{f}(a)\) is given as:
\[
W_{f}(a)=2^{n} \delta_{0}(a)-2 F_{f}(a)
\]
where \(\delta_{0}(a)=1\) if \(a=\mathbf{0}\) and 0 otherwise.
- Nonlinearity of \(f\) :
\[
n l(f)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2}^{n}}\left\{\left|W_{f}(a)\right|\right\}
\]
- Restrictions on the Walsh spectrum:
- Parseval's equality:
\[
\sum_{x \in \mathbb{F}_{2}^{n}} W_{f}^{2}(x)=2^{2 n}
\]
- An immediate fact:

\section*{Proposition 1.}
* \(W_{f}(a) \equiv 0(\bmod 4), \forall a \in \mathbb{F}_{2}^{n}\) if \(\mathrm{wt}(f)\) is even,
* \(W_{f}(a) \equiv 2(\bmod 4), \forall a \in \mathbb{F}_{2}^{n}\) if \(\mathrm{wt}(f)\) is odd.
- A multiset is a set where repetition of an element is allowed.
- Algebraic normal form (ANF) of \(f\) :
\[
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} a_{u}\left(\prod_{i=1}^{n} x_{i}^{u_{i}}\right), a_{u} \in \mathbb{F}_{2} \tag{1}
\end{equation*}
\]
- The algebraic degree of \(f\) : degree of (1).
- A partially ordered set \(P\) is a set of elements with an order relation \(\succeq\) and an equality \(=\), such that the following axioms hold:
P1: \(x \succeq x\) for all \(x \in P\) (reflexive).
P2: if \(x \succeq y\) and \(y \succeq z\) then \(x \succeq z\) for all \(x, y, z \in P\) (transitive).
P3: if \(x \succeq y\) and \(y \succeq x\) then \(x=y\) for all \(x, y \in P\) (antisymmetric).

\section*{3. Numerical Normal Form [Carlet and Guillot]}

NNF is an integer valued polynomial representation of Boolean functions.
- Coefficients:
\[
\lambda_{u}=(-1)^{\operatorname{wt}(u)} \sum_{a \in \mathbb{F}_{2}^{n} \mid a \preceq u}(-1)^{\operatorname{wt}(a)} f(a)
\]
- Recovery of DFT:
\[
\begin{equation*}
F_{f}(a)=(-1)^{\mathrm{wt}(a)} \sum_{u \in \mathbb{F}_{2}^{n} \mid a \leq u} 2^{n-\mathrm{wt}(u)} \lambda_{u} \tag{2}
\end{equation*}
\]
- An immediate consequence of a theorem of Carlet and Guillot [2]:

Corollary 1. Let \(f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\) be a balanced Boolean function with even \(n \geq 6\). If \(n l(f)=2^{n-1}-2^{\frac{n}{2}-1}-2\) then degree \(d\) of \(f\) is \(n-1\).

\section*{4. A necessary condition on the Walsh spectrum}

The following result not only generalizes Proposition 1, but also relates algebraic degree to the Walsh spectrum of the function.

Theorem 1. Let \(f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\) be a Boolean function with \(n \geq 3\) and NNF coefficients \(\lambda_{u}, u \in \mathbb{F}_{2}^{n}\). Then:
- If \(d=n-1\), then:
- \(W_{f}(u) \equiv 0(\bmod 8)\) for all \(u \in I\),
- \(W_{f}(u) \equiv 4(\bmod 8)\) for all \(u \in J\),
- If \(d<n-1\), then \(W_{f}(u) \equiv k(\bmod 8)\) for all \(u \in \mathbb{F}_{2}^{n}\), with \(k=4\) or \(k=0\), depending on \(\lambda_{1}\).
- If \(d=n\), let \(r\) be the terms in ANF with degree \(d-1\).
- if \(r=n\), then \(W_{f}(u) \equiv k(\bmod 8)\) for all \(u \in \mathbb{F}_{2}^{n}\), with \(k=6\) or \(k=2\), depending on \(\lambda_{1}\),
- otherwise
\[
\begin{aligned}
& * W_{f}(u) \equiv 2(\bmod 8) \text { for all } u \in I, \\
& * W_{f}(u) \equiv 6(\bmod 8) \text { for all } u \in J,
\end{aligned}
\]
for two index sets \(I, J \subseteq \mathbb{F}_{2}^{n}\), with \(I \cap J=\emptyset, I \cup J=\mathbb{F}_{2}^{n}\) and \(|I|=|J|=2^{n-1}\).

\section*{5. Weight Spectrum}
- The subspace weight of \(f\) for all \(u \in \mathbb{F}_{2}^{n}\) :
\[
\begin{equation*}
s_{u}=\sum_{a \leq u} f(a) \tag{3}
\end{equation*}
\]
- \(s_{u}\) is simply the weight of \(\left.f\right|_{E}\), the restriction of \(f\) to the subspace \(E\), where \(E=\left\{v \in \mathbb{F}_{2}^{n} \mid v \preceq u\right\}\)
- We can view \(\mathbb{F}_{2}^{n}\) as a locally finite partially ordered set with a greatest lower bound; hence we can employ Möbius inversion. By Möbius inversion and (3):
\[
f(u)=(-1)^{\operatorname{wt}(u)} \sum_{a \in \mathbb{F}_{2}^{n} \mid a \_u}(-1)^{\operatorname{wt}(a)} s_{a}
\]
- The discrete Fourier transform of \(f\) can be defined in terms of subspace weights. In the sequel, \(\bar{a}\) denotes the complement of \(a\).

Proposition 2. Let \(f\) be a Boolean function and \(s_{u}\) be the subspace weight coefficients of \(f\) for all \(u \in \mathbb{F}_{2}^{n}\). Then:
\[
F_{f}(a)=(-1)^{\mathrm{wt}(\bar{a})} \sum_{u \in \mathbb{F}_{2}^{n} \mid \bar{a} \preceq u}(-1)^{\operatorname{wt}(u)} 2^{n-\mathrm{wt}(u)} s_{u}
\]

Proof is in the manner of Carlet and Guillot.

The following theorem gives a restriction on the weight structure of the hyperplanes of a balanced Boolean function having maximum nonlinearity.

Theorem 2. Let \(n\) be even and \(f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\) be a balanced Boolean function. \(f\) has nonlinearity \(n l(f)=2^{n-1}-2^{\frac{n}{2}-1}-2\), only if
(a) \(2^{n-2}-2^{\frac{n}{2}-2}-1 \leq s_{u} \leq 2^{n-2}+2^{\frac{n}{2}-2}+1\) if \(\mathrm{wt}(u)=n-1\), and
(b) \(2^{n-3}-2^{\frac{n}{2}-2}-2^{\frac{n}{2}-3}-1 \leq s_{u} \leq 2^{n-3}+2^{\frac{n}{2}-2}+2^{\frac{n}{2}-3}+1\) if \(\operatorname{wt}(u)=n-2\)

\section*{6. A sketch of Proof of Theorem 1}
- Complete proof can be found in the paper.

We will just prove \(d=n-1\) case.
- We will make use of the following:

Lemma 1. Let \(A=\left\{* z_{1}, \ldots, z_{n} *\right\}, z_{i} \in \mathbb{Z}\) be a multiset. Let the subset sum \(S_{X}\) be defined on the subsets \(X \subseteq A\) as:
\[
S_{X}=\left\{\begin{array}{lc}
0 & \text { if } X=\emptyset \\
\sum_{x \in X} x & \text { otherwise } .
\end{array}\right.
\]

Then
\[
\mid\left\{X \subseteq A \mid S_{X} \text { is even }\right\} \left\lvert\,= \begin{cases}2^{n-1} & \text { if } \exists z_{i} \in A \text { s.t. } z_{i} \text { is odd }, \\ 2^{n} & \text { otherwise } .\end{cases}\right.
\]

Proof (of Theorem 1). Let \(\Lambda_{w}=\left\{* \lambda_{i} \mid \operatorname{wt}(i)=w *\right\}\) be the multi-set of NNF coefficients with weight \(w\) of \(f\). In the following formula, let \(X_{w, a} \subseteq \Lambda_{w}\) for \(0 \leq w<n\), and \(S_{X_{w, a}}\) be the subset sum of the subset corresponding to \(a\). By (2) the discrete Fourier transform of \(f\) at \(a\) can be written as:
\[
F_{f}(a)=(-1)^{\mathrm{wt}(a)}\left[\lambda_{1 \cdots 1}+2 S_{X_{n-1, a}}+2^{2} S_{X_{n-2, a}}+\cdots+2^{n} S_{X_{0, a}}\right]
\]
where for any \(a \in \mathbb{F}_{2}^{n}, X_{w, a} \subseteq \Lambda_{w}\) for \(0 \leq w<n\) is completely determined by:
\[
X_{w, a}=\left\{\lambda_{i} \mid \mathrm{wt}(i)=w \text { and } i \succeq a\right\}
\]

Recall that
\[
W_{f}(a)=2^{n} \delta_{0}(a)-2 F_{f}(a)
\]

Then we have:
\[
\begin{equation*}
W_{f}(a)=(-1)^{\mathrm{wt}(a)+1}\left[2 \lambda_{1 \cdots 1}+2^{2} S_{X_{n-1, a}}+2^{3} S_{X_{n-2, a}}+\cdots+2^{n+1} S_{X_{0, a}}\right] \tag{4}
\end{equation*}
\]
for any \(0 \neq a \in \mathbb{F}_{2}^{n}\).
Let \(a=110101\) then \(S_{X_{n-1, a}}\) consists of the \(\lambda\) 's that are printed blue.


By the fact that at least one \(\lambda_{u}\) with \(\mathrm{wt}(u)=n-1\) is odd and Lemma 1 , since \(d=n-1\) (indeed \(a_{u} \equiv \lambda_{u}(\bmod 2)\) ), half of \(a \in \mathbb{F}_{2}^{n}\) corresponds to even subset sums and the other half of \(a \in \mathbb{F}_{2}^{n}\) corresponds to odd subset sums. Since \(\lambda_{1}\) is even and by (4) we reach the conclusion.

\section*{Questions and Comments}

\section*{References}
1. Carlet, C., and Guillot, P. A new representation of Boolean functions. In Proceedings of AAECC'13 (1999), no. 1719 in Lecture Notes in Computer Science.
2. Carlet, C., and Guillot, P. Bent, resilient functions and the numerical normal form. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 56 (2001), 87-96.
3. Rota, G.-C. On the foundations of Combinatorial Theory. Springer Verlag, 1964.```

