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1. Preliminaries

1.1. Boolean Functions

– GF (2): finite field with binary values.

– GF (2)n: vector space of binary n-tuples over GF (2) with respect

to addition ⊕ and scalar multiplication.

– A Boolean function is an GF (2) valued function defined on GF (2)n.

– Weight of the function f :

w(f ) =
∑

α∈GF (2)n

f (α).



Properties:

– f is called balanced if w(f ) = 2n−1.

– Support of f :

Supp(f ) = {x ∈ GF (2)n|f (x) = 1}.

– Algebraic Normal Form of a Boolean function:

f (x) =
⊕

u∈GF (2)n

aux
u =

⊕
u∈GF (2)n

au(
∏

xu1 · · ·xun)

– Affine functions are of the form:

f (x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn,

for all ai in GF (2) and i = 0, . . . , n.



Properties Cnt’d:

– Any nonconstant affine function is balanced.

– An affine Boolean function is called a linear function if a0 = 0.

– For each Boolean function f on GF (2)n, the function Wf :

GF (2)n → R defined by:

Wf(a) =
∑

x∈GF (2)n

(−1)f(x)+a·x

is called the Walsh transform of f , for a ∈ GF (2)n.

– Nonlinearity Nf of f in terms of Walsh transform:

Nf = 2n−1 − 1

2
maxa∈GF (2)n{|Wf(a)|}



1.2. Bent Functions

– Bent functions is a family of Boolean functions with maximal

distance to the set of affine functions.

– They exist only for even n.

– A Boolean function f is called bent if Wf(a) = ±2
n
2 , (i.e.,

Nf = 2n−1 − 2
n
2−1)

– Weight of bent functions can take two values: w(f ) = 2n−1 ± 2
n
2−1.



1.3. Normal Boolean Functions

Definition 1. A Boolean function f is called normal, if restriction

of f to an dn/2e-dimensional affine subspace is constant.

Fact 1 (Dobbertin:[3]) Let f be a normal bent function, which is

constant on an affine subspace V ⊆ GF (2)n with dim(V ) = n
2 .

Then f is balanced on each proper coset of V .

Definition 2. A Boolean function f is called k-normal, if there

exists a k-dimensional flat on which f is constant.



Properties:

– For n ≤ 7, all Boolean functions are bn/2c-normal (Dubuc:[4]).

– Canteaut et. al. verified that there exist non-normal bent functions

defined on GF (2)10 (Canteaut:[1]).

– Direct sum of normal and non-normal bent function produces non-

normal bent function (Carlet et. al.:[2]).



1.4. Correlation Immunity of a Boolean Function

– Boolean functions are said to be correlation immune of order m,

if distribution of their truth table is unaltered while fixing any m

inputs (Siegenthaler:[5]).

– (Siegenthaler’s Inequality,[5]) Let f be a Boolean function defined

on GF (2)n with algebraic degree d, then d ≤ n−m with m < n.

– Balanced Boolean functions with correlation immunity m is called

m-resilient functions.

– (Characterization of correlation immune functions, Xiao-Massey: [6])

A Boolean function f defined on GF (2)n is correlation immune of

order m if Wf(α) = 0 for all α ∈ GF (2)n such that 1 ≤ w(α) ≤ m.



1.5. Autocorrelation Function of a Boolean Function

– The autocorrelation function of f with the shift α:

∆f(α) =
∑

x

(−1)f(x)+f(x+α).

– Absolute indicator of f [7]:

∆(f ) = maxα∈GF (2)n∆f(α).

Proposition 1. Let f be any Boolean function with algebraic

degree d on GF (2)n. Then, ∆f(s) is a multiple of 2d
n
d e+1 if d 6= 1.



Remark 1. We have the following:

– Boolean functions having algebraic degree less than n, have auto-

correlation function a multiple of 8. In particular, autocorrelation

function of a balanced Boolean functions is a multiple of 8.

– Absolute indicator of any quadratic Boolean function with an even

number of variables is divisible by 2
n
2 +1.(1)



2. Constructing Highly Nonlinear Balanced Boolean

Functions

– In most cryptosystems, desired properties of Boolean functions are

balance, high nonlinearity, correlation immunity, and good propaga-

tion characteristics.

– Upper bound on nonlinearity of balanced Boolean functions is the-

oretically 2n−1 − 2
n
2−1 − 2, but for n ≥ 8, finding balanced Boolean

functions defined on GF (2)n achieving that nonlinearity value is a

challenge.

– Some constructions of highly nonlinear balanced Boolean functions

exist (having nonlinearity strictly smaller than 2n−1 − 2
n
2−1 − 2) in

literature.



Dobbertin’s Conjecture:

H. Dobbertin conjectured in [3] that the nonlinearity of balanced

Boolean function defined on GF (2)n cannot exceed 2n−1 − 2
n
2 + Nθ

where Nθ denote the maximum achievable nonlinearity of a balanced

Boolean function θ defined on GF (2)
n
2 .



Dobbertin’s Construction:

Proposition 2. ([3]) Let U = GF (2)
n
2 and V = U 2. Let f be a

normal bent function on V . Without loss of generality f (x,0) = 0

for all x ∈ U . Furthermore let a balanced function h : U → GF (2)

be given. Set for x, y ∈ U

g(x, y) =

{
f (x, y), if y 6= 0

h(x), otherwise.

Then g is balanced and we have

Wg(a, b) =

{
Wf(a, b) + Wh(a), if a 6= 0

0, otherwise.

It follows that

Ng = 2n−1 − 2n/2 + Nh.



2.1. Our Modification

Theorem 2. Let U = GF (2)
n
2 and V = U 2. Let f be a normal bent

function on V . That is without loss of generality f (x,0) = 0 for

all x ∈ U . Furthermore let h : U → GF (2) with w(h) = 2n/2−1 − c

and p : V → GF (2) with w(p) = c, p(x,0) = 0 for all x ∈ U and

Supp(p) ∩ Supp(f ) = ∅ be given. Set for x, y ∈ U

g(x, y) =

{
f (x, y) + p(x, y), if y 6= 0

h(x), otherwise.

Then g is balanced and we have

Wg(a, b) =

{
Wf(a, b) + Wh(a) + δ(a, b), if a 6= 0

2c + δ(0, b), otherwise

where the real-valued function δ(a, b) = 2
∑

(x,y)∈Supp(p)(−1)a·x+b·y+1.



Remarks:

– If one chooses w(p) = c = 0, that is h to be balanced, then our

construction coincides with the Dobbertin’s construction [3].

– If we alter bits of f merely on the restriction to proper cosets of A,

in other words h(x) = 0, Walsh transform of g can be expressed as:

Wg(a, b) = Wf(a, b) + δ(a, b).



Examples:

For n = 8, we have chosen a normal bent function f on GF (2)8 with

f (x, 0) = 0 for all x ∈ GF (2)4. Then we have constructed balanced

Boolean functions g as below:

1. Let h be any bent function on GF (2)4 with w(h) = 6 and p be any

function satisfying the conditions in our construction,

2. Let h be a function on GF (2)4 with w(h) = 7 and Nh = 5 and p be

any function satisfying the conditions in our construction;

with nonlinearity 116.



3. Cryptographic Properties of the Construction

Bn: the set of balanced Boolean functions on GF (2)n modified from

normal bent functions by changing 2
n
2−1 bits.

Proposition 3. All functions in Bn are 0-resilient.

Proposition 4. Absolute indicator of functions in Bn is at most

2
n
2 +1.(1)

Corollary 1. By combining Remark 1 and Proposition 4, we have

the fact that autocorrelation function of quadratic functions in Bn

takes three values 0,±2
n
2 +1 and so their absolute indicator is 2

n
2 +1.



Hans Dobbertin (1952-2006)

We extend our condolences to all who appreciate his

works.

Questions and Comments
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