On Dihedral Group Invariant Boolean Functions (Extended Abstract)

Subhamoy Maitra ¹ Sumanta Sarkar ¹ Deepak Kumar Dalai ²

¹Applied Statistics Unit Indian Statistical Institute, Kolkata.

²Project CODES INRIA, Rocquencourt, France.

Workshop on Boolean Functions : Cryptography and Applications, 2007

Maitra, Sarkar, Dalai Dihedral Invariant Functions

Outline

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
- Our Results/Contribution
 Walsh Transform of DSBFs
 - Investigation of the matrix \mathcal{M}

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
- 2 Our Results/Contribution
 - Walsh Transform of DSBFs
 - Investigation of the matrix $\ensuremath{\mathcal{M}}$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Outline

The Basic Problem That We Studied

- Motivation for the Work
- Definitions and Background
- 2 Our Results/Contribution
 - Walsh Transform of DSBFs
 - $\bullet~$ Investigation of the matrix ${\cal M}$

ヘロト ヘ回ト ヘヨト ヘヨト

The Basic Problem That We Studied Motivation for the Work Definitions and Background

The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.

・ 同 ト ・ 三 ト ・

The Basic Problem That We Studied Motivation for the Work Definitions and Background

The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.

▲ □ ▶ ▲ □ ▶ ▲

The Basic Problem That We Studied Motivation for the Work Definitions and Background

The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Basic Problem That We Studied Motivation for the Work Definitions and Background

The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Outline

Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
- 2 Our Results/Contribution
 - Walsh Transform of DSBFs
 - $\bullet~$ Investigation of the matrix ${\cal M}$

ヘロト ヘ回ト ヘヨト ヘヨト

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Motivation

- Let A be a set of Boolean functions.
- A contains some functions having good cryptographic properties.
- $B \subset A$ contains good functions with more density.

Searching good functions in *B* is easier than searching in *A*.

Studing the functions in the set *B* could be better idea than studing in the set *A*.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Motivation

- Let A be a set of Boolean functions.
- A contains some functions having good cryptographic properties.
- $B \subset A$ contains good functions with more density.

. : Good Function

Searching good functions in *B* is easier than searching in *A*.

Studing the functions in the set *B* could be better idea than studing in the set *A*.

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Motivation

- Let A be a set of Boolean functions.
- A contains some functions having good cryptographic properties.
- $B \subset A$ contains good functions with more density.

. : Good Function

Searching good functions in *B* is easier than searching in *A*.

Studing the functions in the set *B* could be better idea than studing in the set *A*.

The Basic Problem That We Studied Motivation for the Work Definitions and Background

- Number of *n*-variable Boolean functions: 2^{2ⁿ}.
- Not feasible to search exhaustively for a good function when *n* ≥ 7.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are 2^{n+1} and 2^{c_n} respectively, where $c_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if n > 9.
- Motivation: to study some other classes inbetween these two classes.

 Motivation
 The Basic Problem That

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Backgroup

- Number of *n*-variable Boolean functions: 2^{2ⁿ}.
- Not feasible to search exhaustively for a good function when *n* ≥ 7.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are 2^{n+1} and 2^{c_n} respectively, where $c_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if n > 9.
- Motivation: to study some other classes inbetween these two classes.

 Motivation
 The Basic Problem That We Stu

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

- Number of *n*-variable Boolean functions: 2^{2ⁿ}.
- Not feasible to search exhaustively for a good function when n ≥ 7.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are 2^{n+1} and 2^{c_n} respectively, where $c_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if n > 9.
- Motivation: to study some other classes inbetween these two classes.

 Motivation
 The Basic Problem That We Stud

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

- Number of *n*-variable Boolean functions: 2^{2ⁿ}.
- Not feasible to search exhaustively for a good function when n ≥ 7.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are 2^{n+1} and 2^{c_n} respectively, where $c_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if n > 9.
- Motivation: to study some other classes inbetween these two classes.

 Motivation
 The Basic Problem That We Stud

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

- Number of *n*-variable Boolean functions: 2^{2ⁿ}.
- Not feasible to search exhaustively for a good function when *n* ≥ 7.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are 2^{n+1} and 2^{c_n} respectively, where $c_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if n > 9.
- Motivation: to study some other classes inbetween these two classes.

 Motivation
 The Basic Problem That We Stur

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

- Number of *n*-variable Boolean functions: 2^{2ⁿ}.
- Not feasible to search exhaustively for a good function when n ≥ 7.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are 2^{n+1} and 2^{c_n} respectively, where $c_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if n > 9.
- Motivation: to study some other classes inbetween these two classes.

The Basic Problem That We Studied Motivation for the Work Definitions and Background

- Literature says that the class of Rotational Symmetric Boolean functions (RSBFs) contains many cryptographically good functions.
- The class of Dihedral Symmetric Boolean functions (DSBFs) is a subclass of RSBFs.
- Is the density of good functions is high in the class of DSBFs ?

The Basic Problem That We Studied Motivation for the Work Definitions and Background

- Literature says that the class of Rotational Symmetric Boolean functions (RSBFs) contains many cryptographically good functions.
- The class of Dihedral Symmetric Boolean functions (DSBFs) is a subclass of RSBFs.
- Is the density of good functions is high in the class of DSBFs ?

The Basic Problem That We Studied Motivation for the Work Definitions and Background

- Literature says that the class of Rotational Symmetric Boolean functions (RSBFs) contains many cryptographically good functions.
- The class of Dihedral Symmetric Boolean functions (DSBFs) is a subclass of RSBFs.
- Is the density of good functions is high in the class of DSBFs ?

 Motivation
 The Basic Problem That We Studie

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Outline

Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
- Our Results/Contribution
 Walsh Transform of DSBFs
 Investigation of the matrix M

ヘロト ヘ回ト ヘヨト ヘヨト

 Motivation
 The Basic Problem That We

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Boolean functions

- An *n*-variable Boolean function can be viewed as a mapping from {0, 1}ⁿ into {0, 1}.
- \mathcal{B}_n : the set of all Boolean functions of *n* variables.
- Truth Table (TT): A Boolean function *f* ∈ *B_n* can be represented by a binary string of length 2ⁿ.
 f = [*f*(0,0,...,0), *f*(1,0,...,0), *f*(0,1,...,0), ..., *f*(1,1,...,1)

• Walsh Transform of f at $a \in F_2^n$:

$$W_f(a) = \sum_{x \in F_2^n} (-1)^{f(x) \oplus x.a}$$

• Nonlinearity of $f: 2^{n-1} - \frac{1}{2} \max_{a \in F_2^n} W_f(a)$.

 Motivation
 The Basic Problem That We Studie

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Boolean functions

- An *n*-variable Boolean function can be viewed as a mapping from {0, 1}ⁿ into {0, 1}.
- \mathcal{B}_n : the set of all Boolean functions of *n* variables.
- Truth Table (TT): A Boolean function f ∈ B_n can be represented by a binary string of length 2ⁿ.
 f = [f(0,0,...,0), f(1,0,...,0), f(0,1,...,0),..., f(1,1,...,1)].

• Walsh Transform of f at $a \in F_2^n$:

$$W_f(a) = \sum_{x \in F_2^n} (-1)^{f(x) \oplus x.a}$$

• Nonlinearity of $f: 2^{n-1} - \frac{1}{2} \max_{a \in F_2^n} W_f(a)$.

ヘロン 人間 とくほ とくほう

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Boolean functions

- An *n*-variable Boolean function can be viewed as a mapping from {0, 1}ⁿ into {0, 1}.
- \mathcal{B}_n : the set of all Boolean functions of *n* variables.
- Truth Table (TT): A Boolean function f ∈ B_n can be represented by a binary string of length 2ⁿ.
 f = [f(0,0,...,0), f(1,0,...,0), f(0,1,...,0),..., f(1,1,...,1)].
- Walsh Transform of f at $a \in F_2^n$:

$$W_f(a) = \sum_{x \in F_2^n} (-1)^{f(x) \oplus x.a}$$

• Nonlinearity of $f: 2^{n-1} - \frac{1}{2} \max_{a \in F_2^n} W_f(a)$.

ヘロン 人間 とくほ とくほう

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Boolean functions

- An *n*-variable Boolean function can be viewed as a mapping from {0, 1}ⁿ into {0, 1}.
- \mathcal{B}_n : the set of all Boolean functions of *n* variables.
- Truth Table (TT): A Boolean function f ∈ B_n can be represented by a binary string of length 2ⁿ.
 f = [f(0,0,...,0), f(1,0,...,0), f(0,1,...,0),..., f(1,1,...,1)].
- Walsh Transform of f at $a \in F_2^n$:

$$W_f(a) = \sum_{x \in F_2^n} (-1)^{f(x) \oplus x.a}$$

• Nonlinearity of $f: 2^{n-1} - \frac{1}{2} \max_{a \in F_2^n} W_f(a)$.

(日)

 Motivation
 The Basic Problem That We

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Boolean functions

Nonlinearity of
$$f: 2^{n-1} - \frac{1}{2} \max_{a \in F_2^n} W_f(a)$$
.

- *n* even: Max nonlinearity = $2^{n-1} 2^{\frac{n}{2}-1}$. Function achieving this bound is called *bent* function.
- *n* odd: Max nonlinearity is unknown. $2^{n-1} - 2^{\frac{n-1}{2}} < nl(f) \le 2^{n-1} - \lceil 2^{\frac{n}{2}-1} \rceil$.

イロト イポト イヨト イヨト 一座

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Permutation Group

- **Permutation group** is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called *Symmetric group* and denoted as S_n where *n* is the number of elements.
- Group of all cyclic shift permutations is called *rotation* (cyclic) group and denoted as C_n .
- Group of cyclic shift and reflection permutaions is called *Dihedral group* and denoted as D_n .

< 回 > < 三 > < 三

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Permutation Group

- **Permutation group** is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called *Symmetric group* and denoted as *S_n* where *n* is the number of elements.
- Group of all cyclic shift permutations is called *rotation* (cyclic) group and denoted as C_n .
- Group of cyclic shift and reflection permutaions is called *Dihedral group* and denoted as D_n .

(4回) (1日) (日)

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Permutation Group

- **Permutation group** is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called *Symmetric group* and denoted as *S_n* where *n* is the number of elements.
- Group of all cyclic shift permutations is called *rotation (cyclic) group* and denoted as *C_n*.
- Group of cyclic shift and reflection permutaions is called *Dihedral group* and denoted as D_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Permutation Group

- **Permutation group** is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called *Symmetric group* and denoted as *S_n* where *n* is the number of elements.
- Group of all cyclic shift permutations is called *rotation (cyclic) group* and denoted as *C_n*.
- Group of cyclic shift and reflection permutaions is called *Dihedral group* and denoted as D_n .

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Dihedral Group

Dihedral Group of degree $n \ge 3$

Generated by two elements σ, ω such that,

- $\sigma^n = \omega^2 = e$, where *e* is the identity element,
- $2 \omega \sigma = \sigma^{-1} \omega.$
 - We denote Dihedral group of degree *n* as *D_n*.
 - D_n = {e, σ, σ², ..., σⁿ⁻¹, ω, σω, σ²ω, ..., σⁿ⁻¹ω}.
 |D_n| = 2n.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Dihedral Group

Dihedral Group of degree $n \ge 3$

Generated by two elements σ, ω such that,

•
$$\sigma^n = \omega^2 = e$$
, where *e* is the identity element,

 $\ 2 \ \omega \sigma = \sigma^{-1} \omega.$

• We denote Dihedral group of degree *n* as *D_n*.

•
$$D_n = \{e, \sigma, \sigma^2, \dots, \sigma^{n-1}, \omega, \sigma\omega, \sigma^2\omega, \dots, \sigma^{n-1}\omega\}.$$

• $|D_n| = 2n.$

イロン 不得 とくほ とくほう 一座

 Motivation Our Results/Contribution Summary
 The Basic Problem That We Studied Motivation for the Work Definitions and Background

Geometric Realization of Dihedral Group

 D_n can be realised as a group of permutaions on the vertices of *n*-gon P_n .

イロト イポト イヨト イヨト 一座

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Geometric Realization of Dihedral Group

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

ヘロト ヘ回ト ヘヨト ヘヨト

 Motivation
 The Basic Problem That We Studied

 Our Results/Contribution
 Motivation for the Work

 Summary
 Definitions and Background

Geometric Realization of Dihedral Group

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

Geometric Realization of Dihedral Group

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

Permutation form:
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 2 & 3 & \dots & n & 1 \end{pmatrix}$$

< 🗇 > < 🖻 > .

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 2 & 3 & \dots & n & 1 \end{pmatrix}, \sigma^i = \begin{pmatrix} 1 & 2 & \dots & n \\ i+1 & i+2 & \dots & i \end{pmatrix}.$$

・ 戸 ・ ・ 三 ・ ・

ъ

 σ is the clockwise rotation of P_n with respect to the line passing vertically through the center of P_n at an angle $\frac{2\pi}{n}$.

$$\sigma^n = e$$

▲ @ ▶ ▲ ⊇ ▶

Geometric Realization of Dihedral Group

 ω is the reflection (or, rotation of P_n by π) about a line passing through a vertex and the center of P_n .

イロン 不得 とくほ とくほ とう

Geometric Realization of Dihedral Group

 ω is the reflection (or, rotation of P_n by π) about a line passing through a vertex and the center of P_n .

イロト イポト イヨト イヨト

Group Action

Definition (Group action)

The group action of a group *G* on a set *X* is a mapping $\psi : G \times X \rightarrow X$ denoted as $g \cdot x$, which satisfies the following two actions.

(
$$gh$$
) $\cdot x = g \cdot (h \cdot x)$, for all $g, h \in G$ and for all $x \in X$.

3)
$$e \cdot x = x$$
, for every $x \in X$, e is the identity element of G .

Group action of a group *G* on a set *X* forms equivalence classes under the equivalent relation $x \sim y$ iff g.x = y for $x, y \in X$ and $g \in G$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Group Action

Definition (Group action)

The group action of a group *G* on a set *X* is a mapping $\psi : G \times X \rightarrow X$ denoted as $g \cdot x$, which satisfies the following two actions.

(
$$gh$$
) $\cdot x = g \cdot (h \cdot x)$, for all $g, h \in G$ and for all $x \in X$.

2
$$e \cdot x = x$$
, for every $x \in X$, e is the identity element of G .

Group action of a group *G* on a set *X* forms equivalence classes under the equivalent relation $x \sim y$ iff g.x = y for $x, y \in X$ and $g \in G$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Group Action

H is a subgroup of G and G, H act on a set X then

no. of equivalent classes by $G \leq$ no.of equivalent classes by H.

 $C_n \subseteq D_n \subseteq S_n$ act on the set F_2^n .

no. of equivalent classes by $S_n \leq$ no.of equivalent classes by $D_n \leq$ no.of equivalent classes by C_n .

イロト イポト イヨト イヨト

Group Action

H is a subgroup of G and G, H act on a set X then

no. of equivalent classes by $G \leq$ no.of equivalent classes by H.

 $C_n \subseteq D_n \subseteq S_n$ act on the set F_2^n .

no. of equivalent classes by $S_n \leq$ no.of equivalent classes by $D_n \leq$ no.of equivalent classes by C_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Boolean function Invariant under Group Action

Definition

- Boolean functions invariant under the action of S_n is called Symmetric Boolean function and denoted as $S(S_n)$.
- Boolean functions invariant under the action of C_n is called Rotational Symmetric Boolean function(RSBF) and denoted as $S(C_n)$.
- Boolean functions invariant under the action of D_n is called Dihedral Symmetric Boolean function(DSBF) and denoted as S(D_n).

 Motivation
 The Basic F

 Our Results/Contribution
 Motivation for Motivation for Definitions and Def

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Boolean function Invariant under Group Action

Definition

- Boolean functions invariant under the action of S_n is called Symmetric Boolean function and denoted as S(S_n).
- Boolean functions invariant under the action of C_n is called Rotational Symmetric Boolean function(RSBF) and denoted as $S(C_n)$.
- Boolean functions invariant under the action of *D_n* is called Dihedral Symmetric Boolean function(DSBF) and denoted as *S*(*D_n*).

Boolean function Invariant under Group Action

Definition

- Boolean functions invariant under the action of S_n is called Symmetric Boolean function and denoted as $S(S_n)$.
- Boolean functions invariant under the action of *C_n* is called Rotational Symmetric Boolean function(RSBF) and denoted as *S*(*C_n*).
- Boolean functions invariant under the action of *D_n* is called Dihedral Symmetric Boolean function(DSBF) and denoted as *S*(*D_n*).

Boolean function Invariant under Group Action

Definition

- Boolean functions invariant under the action of S_n is called Symmetric Boolean function and denoted as $S(S_n)$.
- Boolean functions invariant under the action of C_n is called Rotational Symmetric Boolean function(RSBF) and denoted as $S(C_n)$.
- Boolean functions invariant under the action of D_n is called Dihedral Symmetric Boolean function(DSBF) and denoted as $S(D_n)$.

Boolean function Invariant under Group Action

- # of equiv. classes by $S_n(s_n) = n + 1$. $|S(S_n)| = 2^{n+1}$.
- # of equiv. classes by $C_n(c_n) = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$. $|S(C_n)| = 2^{c_n}$.
- # of equiv. classes by $D_n(d_n) = \frac{c_n}{2} + l$, $l = \begin{cases} \frac{3}{4}2^{\frac{n}{2}} & \text{if n is even} \\ 2^{\frac{n-1}{2}} & \text{if n is odd} \end{cases}$ $|S(D_n)| = 2^{d_n}$.

Hierarchy of the subclasses of $B_n =>$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Boolean function Invariant under Group Action

- # of equiv. classes by $S_n(s_n) = n + 1$. $|S(S_n)| = 2^{n+1}$.
- # of equiv. classes by $C_n(c_n) = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$. $|S(C_n)| = 2^{c_n}$.
- # of equiv. classes by $D_n(d_n) = \frac{c_n}{2} + l$, $l = \begin{cases} \frac{3}{4}2^{\frac{n}{2}} & \text{if n is even} \\ 2^{\frac{n-1}{2}} & \text{if n is odd} \end{cases}$ $|S(D_n)| = 2^{d_n}$.

Hierarchy of the subclasses of $B_n =>$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Boolean function Invariant under Group Action

- # of equiv. classes by $S_n(s_n) = n + 1$. $|S(S_n)| = 2^{n+1}$.
- # of equiv. classes by $C_n(c_n) = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$. $|S(C_n)| = 2^{c_n}$.
- # of equiv. classes by D_n $(d_n) = \frac{c_n}{2} + l$, $l = \begin{cases} \frac{3}{4}2^{\frac{n}{2}} & \text{if n is even} \\ 2^{\frac{n-1}{2}} & \text{if n is odd} \end{cases}$ $|S(D_n)| = 2^{d_n}$.

Hierarchy of the subclasses of $B_n =>$

イロト イポト イヨト イヨト 三日

Boolean function Invariant under Group Action

- # of equiv. classes by $S_n(s_n) = n + 1$. $|S(S_n)| = 2^{n+1}$.
- # of equiv. classes by $C_n(c_n) = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$. $|S(C_n)| = 2^{c_n}$.
- # of equiv. classes by $D_n(d_n) = \frac{c_n}{2} + I$,

$$I = \begin{cases} \frac{3}{4}2^{\frac{n}{2}} & \text{if n is even} \\ 2^{\frac{n-1}{2}} & \text{if n is odd} \end{cases}$$
$$|S(D_n)| = 2^{d_n}.$$

Hierarchy of the subclasses of $B_n = >$

The Basic Problem That We Studied Motivation for the Work Definitions and Background

Comparision of sizes of $S(C_n)$ and $S(D_n)$

n	3	4	5	6	7	8	9	10	11	12	13	14
Cn	4	6	8	14	20	36	60	108	188	352	632	1182
d _n	4	6	8	13	18	30	46	78	126	224	380	687

Table: Comparison between c_n and d_n

ヘロト ヘ回ト ヘヨト ヘヨト

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

Representation of DSBFs

- There are *d_n* many equivalence classes in *F*^{*n*}₂.
- Each class can be represented by an element of that class.
- Let assign the lexicographically least element of each class to be leader of the class.
- Rename the leaders as $\Lambda_0, \Lambda_1, \ldots, \Lambda_{d_n-1}$.

イロト イポト イヨト イヨト 三日

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

Representation of DSBFs

- There are d_n many equivalence classes in F_2^n .
- Each class can be represented by an element of that class.
- Let assign the lexicographically least element of each class to be leader of the class.
- Rename the leaders as $\Lambda_0, \Lambda_1, \ldots \Lambda_{d_n-1}$.

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

Representation of DSBFs

- There are d_n many equivalence classes in F_2^n .
- Each class can be represented by an element of that class.
- Let assign the lexicographically least element of each class to be leader of the class.
- Rename the leaders as $\Lambda_0, \Lambda_1, \ldots \Lambda_{d_n-1}$.

A DSBF can be represented by a d_n bit string $[f(\Lambda_0), f(\Lambda_1), \dots, f(\Lambda_{d_n-1})].$

イロト イポト イヨト 一旦

Walsh Transform of DSBFs

Outline

- **Motivation**
 - The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
- **Our Results/Contribution** 2
 - Walsh Transform of DSBFs
 - Investigation of the matrix M

イロト イポト イヨト イヨト 一座

Walsh Transform of DSBFs Investigation of the matrix $\ensuremath{\mathcal{M}}$

Walsh Transform of DSBFs

$$W_f(w) = \sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \sum_{x \in cls(\Lambda_i)} (-1)^{x \cdot w}.$$

Let w, z are in same class and f be a *DSBF*, then $W_f(w) = W_f(z)$.

• Walsh spectra of a DSBF can be described by *d_n* many values.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Walsh Transform of DSBFs Investigation of the matrix $\ensuremath{\mathcal{M}}$

Walsh Transform of DSBFs

•
$$W_f(w) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus x \cdot w}$$

• If *f* is a *DSBF*, then

$$W_f(w) = \sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \sum_{x \in cls(\Lambda_i)} (-1)^{x \cdot w}.$$

Let w, z are in same class and f be a *DSBF*, then $W_f(w) = W_f(z)$.

• Walsh spectra of a DSBF can be described by *d_n* many values.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Walsh Transform of DSBFs Investigation of the matrix $\ensuremath{\mathcal{M}}$

Walsh Transform of DSBFs

•
$$W_f(w) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus x \cdot w}$$
.
• If *f* is a *DSBF*, then

$$W_f(w) = \sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \sum_{x \in cls(\Lambda_i)} (-1)^{x \cdot w}.$$

Let w, z are in same class and f be a *DSBF*, then $W_f(w) = W_f(z)$.

• Walsh spectra of a DSBF can be described by *d_n* many values.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Walsh Transform of DSBFs Investigation of the matrix $\ensuremath{\mathcal{M}}$

Computing Walsh spectra of DSBFs

Walsh spectra of f can be determined by a matrix product as

$$[(-1)^{f(\Lambda_0)}, (-1)^{f(\Lambda_1)}, \dots, (-1)^{f(\Lambda_{d_n-1})}] \ \mathcal{M}.$$

ヘロト ヘ回ト ヘヨト ヘヨト

3

Walsh Transform of DSBFs Investigation of the matrix $\ensuremath{\mathcal{M}}$

Computing cryptographic numericals of DSBFs

Let f be an n-variable DSBF.

• *f* is balanced iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,0} = 0$.

Nonlinearity of f is

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{\Lambda_j, 0 \le j < d_n} |\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j}|.$$

- *f* is bent iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j} = \pm 2^{\frac{n}{2}}$ for $0 \le j \le d_n 1$.
- *f* is *m*-order Correlation Immune (respectively *m*-resilient) iff

$$\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \quad M_{i,j} = 0, \text{ for 1 (respectively 0)} \le wt(\Lambda_j) \le m.$$

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

Computing cryptographic numericals of DSBFs

Let f be an n-variable DSBF.

- *f* is balanced iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,0} = 0$.
- Nonlinearity of f is

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{\Lambda_j, 0 \le j < d_n} |\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j}|.$$

- *f* is bent iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j} = \pm 2^{\frac{n}{2}}$ for $0 \le j \le d_n 1$.
- *f* is *m*-order Correlation Immune (respectively *m*-resilient) iff

$$\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \quad M_{i,j} = 0, \text{ for 1 (respectively 0)} \le wt(\Lambda_j) \le m.$$

Walsh Transform of DSBFs Investigation of the matrix $\ensuremath{\mathcal{M}}$

Computing cryptographic numericals of DSBFs

Let f be an n-variable DSBF.

- *f* is balanced iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,0} = 0$.
- Nonlinearity of f is

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{\Lambda_j, 0 \le j < d_n} |\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j}|.$$

- *f* is bent iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j} = \pm 2^{\frac{n}{2}}$ for $0 \le j \le d_n 1$.
- *f* is *m*-order Correlation Immune (respectively *m*-resilient) iff

$$\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \quad M_{i,j} = 0, \text{ for 1 (respectively 0)} \le wt(\Lambda_j) \le m.$$

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

Computing cryptographic numericals of DSBFs

Let f be an n-variable DSBF.

- *f* is balanced iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,0} = 0$.
- Nonlinearity of f is

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{\Lambda_j, 0 \le j < d_n} |\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j}|.$$

- *f* is bent iff $\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} M_{i,j} = \pm 2^{\frac{n}{2}}$ for $0 \le j \le d_n 1$.
- *f* is *m*-order Correlation Immune (respectively *m*-resilient) iff

$$\sum_{i=0}^{d_n-1} (-1)^{f(\Lambda_i)} \quad M_{i,j} = 0, \text{ for 1 (respectively 0)} \le wt(\Lambda_j) \le m.$$

Investigation of the matrix \mathcal{M}

Outline

- **Motivation**
 - The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
- **Our Results/Contribution** 2 Walsh Transform of DSBFs
 - Investigation of the matrix M

イロト イポト イヨト イヨト 一座

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

the matrix \mathcal{M} for odd n

Let *n* be odd and $x \in F_2^n$.

- wt(x) is odd iff $wt(\overline{x})$ is even.
- $cls(x) \neq cls(\overline{x})$.

 Order the leaders ∧_i as ∧₀,...,∧_{d_n/2-1} are having odd weight and ∧_{d_n/2+i} = √_i, 0 ≤ i < d_n/2.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Walsh Transform of DSBFs Investigation of the matrix ${\boldsymbol{\mathcal{M}}}$

the matrix \mathcal{M} for odd n

Let *n* be odd and $x \in F_2^n$.

- wt(x) is odd iff $wt(\overline{x})$ is even.
- $cls(x) \neq cls(\overline{x})$.

 Order the leaders ∧_i as ∧₀,...,∧_{d_n/2-1} are having odd weight and ∧_{d_n/2+i} = √_i, 0 ≤ i < d_n/2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Walsh Transform of DSBFs Investigation of the matrix ${\boldsymbol{\mathcal{M}}}$

the matrix \mathcal{M} for odd n

Let *n* be odd and $x \in F_2^n$.

- wt(x) is odd iff $wt(\overline{x})$ is even.
- $cls(x) \neq cls(\overline{x})$.
- Order the leaders Λ_i as $\Lambda_0, \ldots, \Lambda_{d_n/2-1}$ are having odd weight and $\Lambda_{d_n/2+i} = \overline{\Lambda_i}, 0 \le i < d_n/2.$

<ロト (四) (日) (日) (日) (日) (日) (日)

Walsh Transform of DSBFs Investigation of the matrix $\boldsymbol{\mathcal{M}}$

the matrix \mathcal{M} for odd n

Let *n* be odd and $x \in F_2^n$.

- wt(x) is odd iff $wt(\overline{x})$ is even.
- $cls(x) \neq cls(\overline{x})$.
- Order the leaders Λ_i as Λ₀,..., Λ_{d_n/2−1} are having odd weight and Λ_{d_n/2+i} = Λ_i, 0 ≤ i < d_n/2.

The matrix after reordering:

$$M_n =$$

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

the matrix \mathcal{M} for odd n

- Computing d_n/2 × d_n/2 matrix S_n is suffice to compute d_n × d_n matrix M_\.
- 4 times advantage to compute the matrix \mathcal{M}_{\backslash} .
- This advantage carries to compute Walsh spectra, nonlinearity, resiliencey etc.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

the matrix \mathcal{M} for odd n

- Computing d_n/2 × d_n/2 matrix S_n is suffice to compute d_n × d_n matrix M_\.
- 4 times advantage to compute the matrix \mathcal{M}_{\backslash} .
- This advantage carries to compute Walsh spectra, nonlinearity, resiliencey etc.

・ロン ・ 一 と ・ 日 と ・ 日 と

Walsh Transform of DSBFs Investigation of the matrix ${\cal M}$

the matrix \mathcal{M} for odd n

- Computing d_n/2 × d_n/2 matrix S_n is suffice to compute d_n × d_n matrix M_\.
- 4 times advantage to compute the matrix \mathcal{M}_{\backslash} .
- This advantage carries to compute Walsh spectra, nonlinearity, resiliencey etc.

<ロト <回 > < 注 > < 注 > 、

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1} 2^{\frac{n-1}{2}}$, n > 7.
- They showed existence of 9-variable Boolean function of nonlinearity $241 > 2^8 2^4 = 240$.
- They found 8 \times 189 many RSBFs having nonlinearity 241 out of 2⁶⁰ functions.
- We found 8 \times 21 DSBFs having nonlinearity 241 out of 2⁴⁶.
- **Density :** 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1} 2^{\frac{n-1}{2}}$, n > 7.
- They showed existence of 9-variable Boolean function of nonlinearity $241 > 2^8 2^4 = 240$.
- They found 8 \times 189 many RSBFs having nonlinearity 241 out of 2⁶⁰ functions.
- We found 8 × 21 DSBFs having nonlinearity 241 out of 2⁴⁶.
- **Density :** 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1} 2^{\frac{n-1}{2}}$, n > 7.
- They showed existence of 9-variable Boolean function of nonlinearity $241 > 2^8 2^4 = 240$.
- They found 8 \times 189 many RSBFs having nonlinearity 241 out of 2⁶⁰ functions.
- We found 8 × 21 DSBFs having nonlinearity 241 out of 2⁴⁶.
- **Density :** 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.

Highly nonlinear Boolean functions

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1} 2^{\frac{n-1}{2}}$, n > 7.
- They showed existence of 9-variable Boolean function of nonlinearity $241 > 2^8 2^4 = 240$.
- They found 8 \times 189 many RSBFs having nonlinearity 241 out of 2⁶⁰ functions.
- We found 8 × 21 DSBFs having nonlinearity 241 out of 2⁴⁶.
- **Density :** 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.

프 🖌 🔺 프 🛌

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1} 2^{\frac{n-1}{2}}$, n > 7.
- They showed existence of 9-variable Boolean function of nonlinearity $241 > 2^8 2^4 = 240$.
- They found 8 \times 189 many RSBFs having nonlinearity 241 out of 2⁶⁰ functions.
- We found 8 × 21 DSBFs having nonlinearity 241 out of 2⁴⁶.
- **Density :** 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.

Summary

- We introduced a new class Boolean functions inbetween symmetric class and RSBFs.
- We studied some theoretical and experimental results on this class.
- Expectation that high nonlinear functions are more dense in DSBFs than RSBFs.

Thanks :)

Maitra, Sarkar, Dalai Dihedral Invariant Functions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@