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The Problems We Studied

We studied a new class of Boolean functions which are
invariant under the action of Dihedral group (DSBFS).

We studied some theoretical and experimental results in
this direction.

Efficient search for good nonlinear function in this class.

Most interestingly, we found many 9-variable Boolean
functions having nonlinearity 241 belong to this class.
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Motivation

Let A be a set of Boolean functions.
A contains some functions having good cryptographic
properties.
B ⊂ A contains good functions with more density.

Searching good functions in B
is easier than searching in A.

Studing the functions in the set
B could be better idea than
studing in the set A.
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Motivation

Number of n-variable Boolean functions: 22n
.

Not feasible to search exhaustively for a good function
when n ≥ 7.
Lots of attempts to search in a subclasses like class of
Symmetric fuctions and Rotational Symmetric functions.
Class sizes are 2n+1 and 2cn respectively, where
cn = 1

n
∑

k |n φ(k)2n/k .
One may be tempted to take advantange of their small size.
Symmetric class is not exciting in terms of possession of
good functions.
Rotational symmetric class contains many good functions;
but infiseable to search if n > 9.
Motivation: to study some other classes inbetween these
two classes.
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Literature says that the class of Rotational Symmetric
Boolean functions (RSBFs) contains many
cryptographically good functions.
The class of Dihedral Symmetric Boolean functions
(DSBFs) is a subclass of RSBFs.
Is the density of good functions is high in the class of
DSBFs ?
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Boolean functions

An n-variable Boolean function can be viewed as a
mapping from {0,1}n into {0,1}.
Bn: the set of all Boolean functions of n variables.
Truth Table (TT): A Boolean function f ∈ Bn can be
represented by a binary string of length 2n.
f = [f (0,0, · · · ,0), f (1,0, · · · ,0), f (0,1, · · · ,0), . . . , f (1,1, · · · ,1)].

Walsh Transform of f at a ∈ F n
2 :

Wf (a) =
∑
x∈F n

2

(−1)f (x)⊕x .a

Nonlinearity of f : 2n−1 − 1
2 maxa∈F n

2
Wf (a).
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Boolean functions

Nonlinearity of f : 2n−1 − 1
2 maxa∈F n

2
Wf (a).

n even: Max nonlinearity = 2n−1 − 2
n
2−1.

Function achieving this bound is called bent function.

n odd: Max nonlinearity is unknown.
2n−1 − 2

n−1
2 < nl(f ) ≤ 2n−1 − d2

n
2−1e.
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Permutation Group

Permutation group is a finite group of permutations
(bijection mappings) on the elements of a given finite set
with composition as group operation.

Group of all permutations is called Symmetric group and
denoted as Sn where n is the number of elements.

Group of all cyclic shift permutations is called rotation
(cyclic) group and denoted as Cn.

Group of cyclic shift and reflection permutaions is called
Dihedral group and denoted as Dn.
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Dihedral Group

Dihedral Group of degree n ≥ 3

Generated by two elements σ, ω such that,
1 σn = ω2 = e, where e is the identity element,
2 ωσ = σ−1ω.

We denote Dihedral group of degree n as Dn.

Dn = {e, σ, σ2, . . . , σn−1, ω, σω, σ2ω, . . . , σn−1ω}.
|Dn| = 2n.
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Geometric Realization of Dihedral Group

Dn can be realised as a group of permutaions on the vertices of
n-gon Pn.
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Geometric Realization of Dihedral Group

σ is the clockwise rotation of Pn with respect to the line passing
vertically through the center of Pn at an angle 2π

n .
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Geometric Realization of Dihedral Group

σ is the clockwise rotation of Pn with respect to the line passing
vertically through the center of Pn at an angle 2π

n .

Permutation form: σ =

(
1 2 . . . n − 1 n
2 3 . . . n 1

)
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Geometric Realization of Dihedral Group

σ is the clockwise rotation of Pn with respect to the line passing
vertically through the center of Pn at an angle 2π

n .

σ =

(
1 2 . . . n − 1 n
2 3 . . . n 1

)
, σi =

(
1 2 . . . n

i + 1 i + 2 . . . i

)
.
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σ is the clockwise rotation of Pn with respect to the line passing
vertically through the center of Pn at an angle 2π

n .

σn = e.
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Geometric Realization of Dihedral Group

ω is the reflection (or, rotation of Pn by π) about a line passing
through a vertex and the center of Pn.
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Geometric Realization of Dihedral Group

ω is the reflection (or, rotation of Pn by π) about a line passing
through a vertex and the center of Pn.

ω2 = e.
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Group Action

Definition (Group action)
The group action of a group G on a set X is a mapping
ψ : G × X → X denoted as g · x , which satisfies the following
two actions.

1 (gh) · x = g · (h · x), for all g,h ∈ G and for all x ∈ X .
2 e · x = x , for every x ∈ X , e is the identity element of G.

Group action of a group G on a set X forms equivalence
classes under the equivalent relation x ∼ y iff g.x = y for
x , y ∈ X and g ∈ G.
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Group Action

H is a subgroup of G and G,H act on a set X then

no. of equivalent classes by G ≤ no.of equivalent classes by H.

Cn ⊆ Dn ⊆ Sn act on the set F n
2 .

no. of equivalent classes by Sn ≤ no.of equivalent classes by
Dn ≤ no.of equivalent classes by Cn.
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Boolean function Invariant under Group Action

Definition
Let G acts on X .
A Boolean function f is said to be invariant under the action of
G if f (g · x) = f (x), for all g ∈ G and for all x ∈ X .
That is, f (x) is same for all x in each class.

Boolean functions invariant under the action of Sn is called
Symmetric Boolean function and denoted as S(Sn).

Boolean functions invariant under the action of Cn is called
Rotational Symmetric Boolean function(RSBF) and
denoted as S(Cn).

Boolean functions invariant under the action of Dn is called
Dihedral Symmetric Boolean function(DSBF) and denoted
as S(Dn).
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Boolean functions invariant under the action of Cn is called
Rotational Symmetric Boolean function(RSBF) and
denoted as S(Cn).

Boolean functions invariant under the action of Dn is called
Dihedral Symmetric Boolean function(DSBF) and denoted
as S(Dn).
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Boolean function Invariant under Group Action

# of equiv. classes by Sn (sn) = n + 1. |S(Sn)| = 2n+1.
# of equiv. classes by Cn (cn) = 1

n
∑

k |n φ(k)2n/k .
|S(Cn)| = 2cn .
# of equiv. classes by Dn (dn) = cn

2 + l ,

l =

{
3
42

n
2 if n is even

2
n−1

2 if n is odd
.

|S(Dn)| = 2dn .

Hierarchy of the
subclasses of Bn =>
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Comparision of sizes of S(Cn) and S(Dn)

n 3 4 5 6 7 8 9 10 11 12 13 14
cn 4 6 8 14 20 36 60 108 188 352 632 1182
dn 4 6 8 13 18 30 46 78 126 224 380 687

Table: Comparison between cn and dn
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Representation of DSBFs

There are dn many equivalence classes in F n
2 .

Each class can be represented by an element of that class.
Let assign the lexicographically least element of each class
to be leader of the class.
Rename the leaders as Λ0,Λ1, . . .Λdn−1.
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Representation of DSBFs

There are dn many equivalence classes in F n
2 .

Each class can be represented by an element of that class.
Let assign the lexicographically least element of each class
to be leader of the class.
Rename the leaders as Λ0,Λ1, . . .Λdn−1.

A DSBF can be represented by
a dn bit string
[f (Λ0), f (Λ1), . . . , f (Λdn−1)].
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Walsh Transform of DSBFs

Wf (w) =
∑

x∈{0,1}n(−1)f (x)⊕x ·w .
If f is a DSBF , then

Wf (w) =
dn−1∑
i=0

(−1)f (Λi )
∑

x∈cls(Λi )

(−1)x ·w .

Let w , z are in same class and f be a DSBF , then
Wf (w) = Wf (z).

Walsh spectra of a DSBF can be described by dn many
values.
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Computing Walsh spectra of DSBFs

∑
x∈cls(Λi )

(−1)x ·Λn,j

Walsh spectra of f can be determined by a matrix product as

[(−1)f (Λ0), (−1)f (Λ1), . . . , (−1)f (Λdn−1)] M.
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Computing cryptographic numericals of DSBFs

Let f be an n-variable DSBF.
f is balanced iff

∑dn−1
i=0 (−1)f (Λi ) Mi,0 = 0.

Nonlinearity of f is

nl(f ) = 2n−1 − 1
2

maxΛj ,0≤j<dn |
dn−1∑
i=0

(−1)f (Λi ) Mi,j |.

f is bent iff
∑dn−1

i=0 (−1)f (Λi ) Mi,j = ±2
n
2 for 0 ≤ j ≤ dn − 1.

f is m-order Correlation Immune (respectively m-resilient)
iff
dn−1∑
i=0

(−1)f (Λi ) Mi,j = 0, for 1 (respectively 0) ≤ wt(Λj) ≤ m.
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the matrix M for odd n

Let n be odd and x ∈ F n
2 .

wt(x) is odd iff wt(x) is even.

cls(x) 6= cls(x).

Order the leaders Λi as
Λ0, . . . ,Λdn/2−1 are having odd weight
and Λdn/2+i = Λi ,0 ≤ i < dn/2.
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the matrix M for odd n

The matrix after
reordering:

Computing dn
2 × dn

2 matrix Sn is suffice to compute dn × dn
matrix M\.

4 times advantage to compute the matrix M\.

This advantage carries to compute Walsh spectra,
nonlinearity, resiliencey etc.
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Highly nonlinear Boolean functions

Recently[Indocrypt 2006], shown that there are Boolean
functions of odd number variables having nonlinearity
greater than 2n−1 − 2

n−1
2 ,n > 7.

They showed existence of 9-variable Boolean function of
nonlinearity 241 > 28 − 24 = 240.

They found 8× 189 many RSBFs having nonlinearity 241
out of 260 functions.

We found 8× 21 DSBFs having nonlinearity 241 out of 246.

Density : 241-nonlinearity functions are 214

9 times more
dense in the class of DSBFs than the class of RSBFs.

Hope it will be happen for higher number of variables too.
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Summary

We introduced a new class Boolean functions inbetween
symmetric class and RSBFs.

We studied some theoretical and experimental results on
this class.

Expectation that high nonlinear functions are more dense
in DSBFs than RSBFs.
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End

Thanks :)
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