## On Dihedral Group Invariant Boolean Functions (Extended Abstract)

## Subhamoy Maitra ${ }^{1}$ Sumanta Sarkar ${ }^{1}$ Deepak Kumar Dalai ${ }^{2}$

${ }^{1}$ Applied Statistics Unit<br>Indian Statistical Institute, Kolkata.<br>${ }^{2}$ Project CODES<br>INRIA, Rocquencourt, France.

Workshop on Boolean Functions: Cryptography and Applications, 2007

## Outline

(1) Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and BackgroundOur Results/Contribution
- Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## Outline

(1) Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
(2) Our Results/Contribution
- Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## Outline

(1) Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
(2) Our Results/Contribution
- Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.


## The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.


## The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.


## The Problems We Studied

- We studied a new class of Boolean functions which are invariant under the action of Dihedral group (DSBFS).
- We studied some theoretical and experimental results in this direction.
- Efficient search for good nonlinear function in this class.
- Most interestingly, we found many 9-variable Boolean functions having nonlinearity 241 belong to this class.


## Outline

(9) Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
(2) Our Results/Contribution - Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## Motivation

- Let $A$ be a set of Boolean functions.
- A contains some functions having good cryptographic properties.
- $B \subset A$ contains good functions with more density.

Searching good functions in $B$ is easier than searching in $A$.

Studing the functions in the set
$B$ could be better idea than
studing in the set $A$.

## Motivation

- Let $A$ be a set of Boolean functions.
- A contains some functions having good cryptographic properties.
- $B \subset A$ contains good functions with more density.

. : Good Function


## Motivation

- Let $A$ be a set of Boolean functions.
- A contains some functions having good cryptographic properties.
- $B \subset A$ contains good functions with more density.


Searching good functions in $B$ is easier than searching in $A$.

Studing the functions in the set $B$ could be better idea than studing in the set $A$.
. : Good Function

## Motivation

- Number of $n$-variable Boolean functions: $2^{2^{n}}$.
- Not feasible to search exhaustively for a good function when $n \geq 7$.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are $2^{n+1}$ and $2^{c_{n}}$ respectively, where $c_{n}=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if $n>9$.
- Motivation: to study some other classes inbetween these


## Motivation

- Number of $n$-variable Boolean functions: $2^{2^{n}}$.
- Not feasible to search exhaustively for a good function when $n \geq 7$.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are $2^{n+1}$ and $2^{c_{n}}$ respectively, where $c_{n}=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$
- One may be tempted to take advantange of their small size
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if $n>9$.
- Motivation: to study some other classes inbetween these


## Motivation

- Number of $n$-variable Boolean functions: $2^{2^{n}}$.
- Not feasible to search exhaustively for a good function when $n \geq 7$.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are $2^{n+1}$ and $2^{c_{n}}$ respectively, where $c_{n}=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions;
but infiseable to search if $n>9$.
- Motivation: to study some other classes inbetween these


## Motivation

- Number of $n$-variable Boolean functions: $2^{2^{n}}$.
- Not feasible to search exhaustively for a good function when $n \geq 7$.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are $2^{n+1}$ and $2^{c_{n}}$ respectively, where $c_{n}=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if $n>9$.
- Motivation: to study some other classes inbetween these


## Motivation

- Number of $n$-variable Boolean functions: $2^{2^{n}}$.
- Not feasible to search exhaustively for a good function when $n \geq 7$.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are $2^{n+1}$ and $2^{C_{n}}$ respectively, where $c_{n}=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if $n>9$.
- Motivation: to study some other classes inbetween these


## Motivation

- Number of $n$-variable Boolean functions: $2^{2^{n}}$.
- Not feasible to search exhaustively for a good function when $n \geq 7$.
- Lots of attempts to search in a subclasses like class of Symmetric fuctions and Rotational Symmetric functions.
- Class sizes are $2^{n+1}$ and $2^{c_{n}}$ respectively, where $c_{n}=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$.
- One may be tempted to take advantange of their small size.
- Symmetric class is not exciting in terms of possession of good functions.
- Rotational symmetric class contains many good functions; but infiseable to search if $n>9$.
- Motivation: to study some other classes inbetween these two classes.


## Motivation

## RSBF

- Literature says that the class of Rotational Symmetric Boolean functions (RSBFs) contains many cryptographically good functions.
- The class of Dihedral Symmetric Boolean functions (DSBFs) is a subclass of RSBFs.
- Is the density of good functions is high in the class of


## Motivation

## RSBF

## DSBF

- Literature says that the class of Rotational Symmetric Boolean functions (RSBFs) contains many cryptographically good functions.
- The class of Dihedral Symmetric Boolean functions (DSBFs) is a subclass of RSBFs.
- Is the density of good functions is high in the class of


## Motivation

## RSBF

## DSBF

- Literature says that the class of Rotational Symmetric Boolean functions (RSBFs) contains many cryptographically good functions.
- The class of Dihedral Symmetric Boolean functions (DSBFs) is a subclass of RSBFs.
- Is the density of good functions is high in the class of DSBFs?


## Outline

(9) Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
(2) Our Results/Contribution - Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## Boolean functions

- An $n$-variable Boolean function can be viewed as a mapping from $\{0,1\}^{n}$ into $\{0,1\}$.
- $\mathcal{B}_{n}$ : the set of all Boolean functions of $n$ variables.
- Truth Table (TT): A Boolean function $f \in B_{n}$ can be represented by a binary string of length $2^{n}$.
- Walsh Transform of $f$ at $a \in F_{2}^{n}$ :
- Nonlinearity of $f: 2^{n-1}-\frac{1}{2} \max _{a \in F_{2}^{n}} W_{f}(a)$.


## Boolean functions

- An $n$-variable Boolean function can be viewed as a mapping from $\{0,1\}^{n}$ into $\{0,1\}$.
- $\mathcal{B}_{n}$ : the set of all Boolean functions of $n$ variables.
- Truth Table (TT): A Boolean function $f \in B_{n}$ can be represented by a binary string of length $2^{n}$.
$f=[f(0,0, \cdots, 0), f(1,0, \cdots, 0), f(0,1, \cdots, 0), \ldots, f(1,1, \cdots, 1)]$.
- Walsh Transform of $f$ at $a \in F_{2}^{n}$ :
- Nonlinearity of $f: 2^{n-1}-\frac{1}{2} \max _{a \in F_{2}^{n}} W_{f}(a)$.


## Boolean functions

- An $n$-variable Boolean function can be viewed as a mapping from $\{0,1\}^{n}$ into $\{0,1\}$.
- $\mathcal{B}_{n}$ : the set of all Boolean functions of $n$ variables.
- Truth Table (TT): A Boolean function $f \in B_{n}$ can be represented by a binary string of length $2^{n}$.

$$
f=[f(0,0, \cdots, 0), f(1,0, \cdots, 0), f(0,1, \cdots, 0), \ldots, f(1,1, \cdots, 1)]
$$

- Walsh Transform of $f$ at $a \in F_{2}^{n}$ :

$$
W_{f}(a)=\sum_{x \in F_{2}^{n}}(-1)^{f(x) \oplus x \cdot a}
$$

- Nonlinearity of $f: 2^{n-1}-\frac{1}{2} \max _{a \in F_{2}^{n}} W_{f}(a)$.


## Boolean functions

- An $n$-variable Boolean function can be viewed as a mapping from $\{0,1\}^{n}$ into $\{0,1\}$.
- $\mathcal{B}_{n}$ : the set of all Boolean functions of $n$ variables.
- Truth Table (TT): A Boolean function $f \in B_{n}$ can be represented by a binary string of length $2^{n}$.
$f=[f(0,0$, .
, 0), $f(1,0$
, 0), $f(0,1, \cdots, 0)$,
$0), \ldots, f(1,1, \cdots, 1)]$.
- Walsh Transform of $f$ at $a \in F_{2}^{n}$ :

$$
W_{f}(a)=\sum_{x \in F_{2}^{n}}(-1)^{f(x) \oplus x \cdot a}
$$

- Nonlinearity of $f: 2^{n-1}-\frac{1}{2} \max _{a \in F_{2}^{n}} W_{f}(a)$.


## Boolean functions

Nonlinearity of $f: 2^{n-1}-\frac{1}{2} \max _{a \in F_{2}^{n}} W_{f}(a)$.

- $n$ even: Max nonlinearity $=2^{n-1}-2^{\frac{n}{2}-1}$.

Function achieving this bound is called bent function.

- $n$ odd: Max nonlinearity is unknown.

$$
2^{n-1}-2^{\frac{n-1}{2}}<n l(f) \leq 2^{n-1}-\left\lceil 2^{\frac{n}{2}-1}\right\rceil
$$

## Permutation Group

- Permutation group is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called Symmetric group and denoted as $S_{n}$ where $n$ is the number of elements.
- Group of all cyclic shift permutations is called rotation (cyclic) group and denoted as $C_{n}$.
- Group of cyclic shift and reflection permutaions is called



## Permutation Group

- Permutation group is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called Symmetric group and denoted as $S_{n}$ where $n$ is the number of elements.
- Group of all cyclic shift permutations is called rotation (cyclic) group and denoted as $C_{n}$.
- Group of cyclic shift and reflection permutaions is called


## Permutation Group

- Permutation group is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called Symmetric group and denoted as $S_{n}$ where $n$ is the number of elements.
- Group of all cyclic shift permutations is called rotation (cyclic) group and denoted as $C_{n}$.
- Group of cyclic shift and reflection permutaions is called


## Permutation Group

- Permutation group is a finite group of permutations (bijection mappings) on the elements of a given finite set with composition as group operation.
- Group of all permutations is called Symmetric group and denoted as $S_{n}$ where $n$ is the number of elements.
- Group of all cyclic shift permutations is called rotation (cyclic) group and denoted as $C_{n}$.
- Group of cyclic shift and reflection permutaions is called Dihedral group and denoted as $D_{n}$.


## Dihedral Group

## Dihedral Group of degree $n \geq 3$

Generated by two elements $\sigma, \omega$ such that,
(1) $\sigma^{n}=\omega^{2}=e$, where $e$ is the identity element,
(2) $\omega \sigma=\sigma^{-1} \omega$.

- We denote Dihedral group of degree $n$ as $D_{n}$.
- $D_{n}=\left\{e, \sigma, \sigma^{2}\right.$,
- $\left|D_{n}\right|=2 n$.


## Dihedral Group

## Dihedral Group of degree $n \geq 3$

Generated by two elements $\sigma, \omega$ such that,
(1) $\sigma^{n}=\omega^{2}=e$, where $e$ is the identity element,
(2) $\omega \sigma=\sigma^{-1} \omega$.

- We denote Dihedral group of degree $n$ as $D_{n}$.
- $D_{n}=\left\{e, \sigma, \sigma^{2}, \ldots, \sigma^{n-1}, \omega, \sigma \omega, \sigma^{2} \omega, \ldots, \sigma^{n-1} \omega\right\}$.
- $\left|D_{n}\right|=2 n$.


## Geometric Realization of Dihedral Group

$D_{n}$ can be realised as a group of permutaions on the vertices of $n$-gon $P_{n}$.

## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.

## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.

## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.


## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.


## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.


Permutation form: $\sigma=\left(\begin{array}{ccccc}1 & 2 & \ldots & n-1 & n \\ 2 & 3 & \ldots & n & 1\end{array}\right)$

## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.


$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
2 & 3 & \ldots & n & 1
\end{array}\right), \sigma^{i}=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
i+1 & i+2 & \ldots & i
\end{array}\right) .
$$

## Geometric Realization of Dihedral Group

$\sigma$ is the clockwise rotation of $P_{n}$ with respect to the line passing vertically through the center of $P_{n}$ at an angle $\frac{2 \pi}{n}$.

$\sigma^{n}=e$.

## Geometric Realization of Dihedral Group

$\omega$ is the reflection (or, rotation of $P_{n}$ by $\pi$ ) about a line passing through a vertex and the center of $P_{n}$.

## Geometric Realization of Dihedral Group

$\omega$ is the reflection (or, rotation of $P_{n}$ by $\pi$ ) about a line passing through a vertex and the center of $P_{n}$.


## Geometric Realization of Dihedral Group

$\omega$ is the reflection (or, rotation of $P_{n}$ by $\pi$ ) about a line passing through a vertex and the center of $P_{n}$.


## Geometric Realization of Dihedral Group

$\omega$ is the reflection (or, rotation of $P_{n}$ by $\pi$ ) about a line passing through a vertex and the center of $P_{n}$.


## Geometric Realization of Dihedral Group

$\omega$ is the reflection (or, rotation of $P_{n}$ by $\pi$ ) about a line passing through a vertex and the center of $P_{n}$.


Permutation form: $\omega=\left(\begin{array}{cccccc}1 & 2 & 3 & \ldots & n-1 & n \\ 1 & n & n-1 & \ldots & 3 & 2\end{array}\right)$

## Geometric Realization of Dihedral Group

$\omega$ is the reflection (or, rotation of $P_{n}$ by $\pi$ ) about a line passing through a vertex and the center of $P_{n}$.


$$
\omega^{2}=e
$$

## Group Action

## Definition (Group action)

The group action of a group $G$ on a set $X$ is a mapping $\psi: G \times X \rightarrow X$ denoted as $g \cdot x$, which satisfies the following two actions.
(1) (gh) $x=g \cdot(h \cdot x)$, for all $g, h \in G$ and for all $x \in X$.
(2) $e \cdot x=x$, for every $x \in X, e$ is the identity element of $G$.

Group action of a group $G$ on a set $X$ forms equivalence classes under the equivalent relation $x \sim y$ iff $g . x=y$ for $x, y \in X$ and $g \in G$.

## Group Action

## Definition (Group action)

The group action of a group $G$ on a set $X$ is a mapping $\psi: G \times X \rightarrow X$ denoted as $g \cdot x$, which satisfies the following two actions.
(1) (gh) $x=g \cdot(h \cdot x)$, for all $g, h \in G$ and for all $x \in X$.
(2) $e \cdot x=x$, for every $x \in X, e$ is the identity element of $G$.

Group action of a group $G$ on a set $X$ forms equivalence classes under the equivalent relation $x \sim y$ iff $g . x=y$ for $x, y \in X$ and $g \in G$.

## Group Action

$H$ is a subgroup of $G$ and $G, H$ act on a set $X$ then
no. of equivalent classes by $G \leq$ no. of equivalent classes by $H$.
$C_{n} \subseteq D_{n} \subseteq S_{n}$ act on the set $F_{2}^{n}$.
no. of equivalent classes by $S_{n} \leq$ no. of equivalent classes by
$D_{n} \leq$ no.of equivalent classes by $C_{n}$.

## Group Action

$H$ is a subgroup of $G$ and $G, H$ act on a set $X$ then
no. of equivalent classes by $G \leq$ no. of equivalent classes by $H$.
$C_{n} \subseteq D_{n} \subseteq S_{n}$ act on the set $F_{2}^{n}$.
no. of equivalent classes by $S_{n} \leq$ no.of equivalent classes by $D_{n} \leq$ no.of equivalent classes by $C_{n}$.

## Boolean function Invariant under Group Action

## Definition

Let $G$ acts on $X$.
A Boolean function $f$ is said to be invariant under the action of $G$ if $f(g \cdot x)=f(x)$, for all $g \in G$ and for all $x \in X$. That is, $f(x)$ is same for all $x$ in each class.

- Boolean functions invariant under the action of $S_{n}$ is called Symmetric Boolean function and denoted as $S\left(S_{n}\right)$.
- Boolean functions invariant under the action of $C_{n}$ is called

Rotational Symmetric Boolean function(RSBF) and
denoted as $S\left(C_{n}\right)$.

- Boolean functions invariant under the action of $D_{n}$ is called Dihedral Symmetric Boolean function(DSBF) and denoted


## Boolean function Invariant under Group Action

## Definition

Let $G$ acts on $X$.
A Boolean function $f$ is said to be invariant under the action of $G$ if $f(g \cdot x)=f(x)$, for all $g \in G$ and for all $x \in X$.
That is, $f(x)$ is same for all $x$ in each class.

- Boolean functions invariant under the action of $S_{n}$ is called Symmetric Boolean function and denoted as $S\left(S_{n}\right)$.
- Boolean functions invariant under the action of $C_{n}$ is called Rotational Symmetric Boolean function(RSBF) and denoted as $S\left(C_{n}\right)$.
- Boolean functions invariant under the action of $D_{n}$ is called Dihedral Symmetric Boolean function(DSBF) and denoted


## Boolean function Invariant under Group Action

## Definition

Let $G$ acts on $X$.
A Boolean function $f$ is said to be invariant under the action of $G$ if $f(g \cdot x)=f(x)$, for all $g \in G$ and for all $x \in X$.
That is, $f(x)$ is same for all $x$ in each class.

- Boolean functions invariant under the action of $S_{n}$ is called Symmetric Boolean function and denoted as $S\left(S_{n}\right)$.
- Boolean functions invariant under the action of $C_{n}$ is called Rotational Symmetric Boolean function(RSBF) and denoted as $S\left(C_{n}\right)$.
- Boolean functions invariant under the action of $D_{n}$ is called Dihedral Symmetric Boolean function(DSBF) and denoted


## Boolean function Invariant under Group Action

## Definition

Let $G$ acts on $X$.
A Boolean function $f$ is said to be invariant under the action of $G$ if $f(g \cdot x)=f(x)$, for all $g \in G$ and for all $x \in X$.
That is, $f(x)$ is same for all $x$ in each class.

- Boolean functions invariant under the action of $S_{n}$ is called Symmetric Boolean function and denoted as $S\left(S_{n}\right)$.
- Boolean functions invariant under the action of $C_{n}$ is called Rotational Symmetric Boolean function(RSBF) and denoted as $S\left(C_{n}\right)$.
- Boolean functions invariant under the action of $D_{n}$ is called Dihedral Symmetric Boolean function(DSBF) and denoted as $S\left(D_{n}\right)$.


## Boolean function Invariant under Group Action

- \# of equiv. classes by $S_{n}\left(s_{n}\right)=n+1 .\left|S\left(S_{n}\right)\right|=2^{n+1}$.


## Boolean function Invariant under Group Action

- \# of equiv. classes by $S_{n}\left(s_{n}\right)=n+1 .\left|S\left(S_{n}\right)\right|=2^{n+1}$.
- \# of equiv. classes by $C_{n}\left(c_{n}\right)=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$. $\left|S\left(C_{n}\right)\right|=2^{C_{n}}$.


## Boolean function Invariant under Group Action

- \# of equiv. classes by $S_{n}\left(s_{n}\right)=n+1 .\left|S\left(S_{n}\right)\right|=2^{n+1}$.
- \# of equiv. classes by $C_{n}\left(c_{n}\right)=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$. $\left|S\left(C_{n}\right)\right|=2^{C_{n}}$.
- \# of equiv. classes by $D_{n}\left(d_{n}\right)=\frac{c_{n}}{2}+I$,
$I=\left\{\begin{array}{l}\frac{3}{4} 2^{\frac{n}{2}} \text { if } n \text { is even } \\ 2^{\frac{n-1}{2}} \text { if } n \text { is odd }\end{array}\right.$
$\left|S\left(D_{n}\right)\right|=2^{d_{n}}$.
Hierarchy of the
subclasses of $B_{n}=>$


## Boolean function Invariant under Group Action

- \# of equiv. classes by $S_{n}\left(s_{n}\right)=n+1 .\left|S\left(S_{n}\right)\right|=2^{n+1}$.
- \# of equiv. classes by $C_{n}\left(c_{n}\right)=\frac{1}{n} \sum_{k \mid n} \phi(k) 2^{n / k}$. $\left|S\left(C_{n}\right)\right|=2^{C_{n}}$.
- \# of equiv. classes by $D_{n}\left(d_{n}\right)=\frac{c_{n}}{2}+l$,
$I=\left\{\begin{array}{l}\frac{3}{4} 2^{\frac{n}{2}} \text { if } \mathrm{n} \text { is even } \\ 2^{\frac{n-1}{2}} \text { if } \mathrm{n} \text { is odd }\end{array}\right.$.
$\left|S\left(D_{n}\right)\right|=2^{d_{n}}$.

Hierarchy of the
subclasses of $B_{n}=>$


## Comparision of sizes of $S\left(C_{n}\right)$ and $S\left(D_{n}\right)$

| $n$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{n}$ | 4 | 6 | 8 | 14 | 20 | 36 | 60 | 108 | 188 | 352 | 632 | 1182 |
| $d_{n}$ | 4 | 6 | 8 | 13 | 18 | 30 | 46 | 78 | 126 | 224 | 380 | 687 |

Table: Comparison between $c_{n}$ and $d_{n}$

## Representation of DSBFs

- There are $d_{n}$ many equivalence classes in $F_{2}^{n}$.
- Each class can be represented by an element of that class.
- Let assign the lexicographically least element of each class to be leader of the class.
- Rename the leaders as $\Lambda_{0}, \Lambda_{1}, \ldots \wedge_{d_{n-1}}$



## Representation of DSBFs

- There are $d_{n}$ many equivalence classes in $F_{2}^{n}$.
- Each class can be represented by an element of that class.
- Let assign the lexicographically least element of each class to be leader of the class.
- Rename the leaders as $\Lambda_{0}, \Lambda_{1}, \ldots \Lambda_{d_{n}-1}$.



## Representation of DSBFs

- There are $d_{n}$ many equivalence classes in $F_{2}^{n}$.
- Each class can be represented by an element of that class.
- Let assign the lexicographically least element of each class to be leader of the class.
- Rename the leaders as $\Lambda_{0}, \Lambda_{1}, \ldots \Lambda_{d_{n-1}}$.


A DSBF can be represented by a $d_{n}$ bit string
$\left[f\left(\Lambda_{0}\right), f\left(\Lambda_{1}\right), \ldots, f\left(\Lambda_{d_{n}-1}\right)\right]$.

## Outline

(1) Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
(2) Our Results/Contribution
- Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## Walsh Transform of DSBFs



- If $f$ is a $D S B F$, then

$$
W_{f}(w)=\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \sum_{x \in \operatorname{cls}\left(\Lambda_{i}\right)}(-1)^{x \cdot w}
$$

## Let $w, z$ are in same class and $f$ be a DSBF, then

 $W_{f}(w)=W_{f}(z)$.
## - Walsh spectra of a DSBF can be described by $d_{n}$ many values.

## Walsh Transform of DSBFs

- $W_{f}(w)=\sum_{x \in\{0,1\}^{n}}(-1)^{f(x) \oplus x \cdot w}$.
- If $f$ is a $D S B F$, then

$$
W_{f}(w)=\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \sum_{x \in \operatorname{cls}\left(\Lambda_{i}\right)}(-1)^{x \cdot w} .
$$

Let $w, z$ are in same class and $f$ be a DSBF, then $W_{f}(w)=W_{f}(z)$.

- Walsh spectra of a DSBF can be described by $d_{n}$ many values.


## Walsh Transform of DSBFs

- $W_{f}(w)=\sum_{x \in\{0,1\}^{n}}(-1)^{f(x) \oplus x \cdot w}$.
- If $f$ is a $D S B F$, then

$$
W_{f}(w)=\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \sum_{x \in \operatorname{cls}\left(\Lambda_{i}\right)}(-1)^{x \cdot w}
$$

Let $w, z$ are in same class and $f$ be a DSBF, then $W_{f}(w)=W_{f}(z)$.

- Walsh spectra of a DSBF can be described by $d_{n}$ many values.


## Computing Walsh spectra of DSBFs



Walsh spectra of $f$ can be determined by a matrix product as

$$
\left[(-1)^{f\left(\Lambda_{0}\right)},(-1)^{f\left(\Lambda_{1}\right)}, \ldots,(-1)^{f\left(\Lambda_{d_{n}-1}\right)}\right] \mathcal{M}
$$

## Computing cryptographic numericals of DSBFs

Let $f$ be an $n$-variable DSBF.

- $f$ is balanced iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, 0}=0$.
- Nonlinearity of $f$ is

- $f$ is bent iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, j}= \pm 2^{\frac{n}{2}}$ for $0 \leq j \leq d_{n}-1$.
- $f$ is $m$-order Correlation Immune (respectively $m$-resilient) iff

$$
\left.M_{i, j}=0, \text { for } 1 \text { (respectively } 0\right) \leq w t\left(\Lambda_{j}\right) \leq m .
$$

## Computing cryptographic numericals of DSBFs

## Let $f$ be an $n$-variable DSBF.

- $f$ is balanced iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, 0}=0$.
- Nonlinearity of $f$ is

$$
\left.n l(f)=2^{n-1}-\left.\frac{1}{2} \max _{\Lambda_{j}, 0 \leq j<d_{n}}\right|_{i=0} ^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} M_{i, j} \right\rvert\, .
$$

- $f$ is bent iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, j}= \pm 2^{\frac{n}{2}}$ for $0 \leq j \leq d_{n}-1$
- $f$ is $m$-order Correlation Immune (respectively m-resilient) iff

$$
M_{i, j}=0, \text { for } 1(\text { respectively } 0) \leq w t\left(\Lambda_{j}\right) \leq m
$$

## Computing cryptographic numericals of DSBFs

Let $f$ be an $n$-variable DSBF.

- $f$ is balanced iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, 0}=0$.
- Nonlinearity of $f$ is

$$
n l(f)=2^{n-1}-\frac{1}{2} \max _{\Lambda_{j}, 0 \leq j<d_{n}}\left|\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, j}\right| .
$$

- $f$ is bent iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, j}= \pm 2^{\frac{n}{2}}$ for $0 \leq j \leq d_{n}-1$.
- $f$ is $m$-order Correlation Immune (respectively m-resilient) iff


## $M_{i, j}=0$, for $1($ respectively 0$) \leq w t\left(\Lambda_{j}\right) \leq m$.

## Computing cryptographic numericals of DSBFs

Let $f$ be an $n$-variable DSBF.

- $f$ is balanced iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, 0}=0$.
- Nonlinearity of $f$ is

$$
n l(f)=2^{n-1}-\frac{1}{2} \max _{\Lambda_{j}, 0 \leq j<d_{n}}\left|\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} M_{i, j}\right| .
$$

- $f$ is bent iff $\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} \quad M_{i, j}= \pm 2^{\frac{n}{2}}$ for $0 \leq j \leq d_{n}-1$.
- $f$ is $m$-order Correlation Immune (respectively $m$-resilient) iff

$$
\left.\sum_{i=0}^{d_{n}-1}(-1)^{f\left(\Lambda_{i}\right)} M_{i, j}=0, \text { for } 1 \text { (respectively } 0\right) \leq w t\left(\Lambda_{j}\right) \leq m .
$$

## Outline



## Motivation

- The Basic Problem That We Studied
- Motivation for the Work
- Definitions and Background
(2) Our Results/Contribution
- Walsh Transform of DSBFs
- Investigation of the matrix $\mathcal{M}$


## the matrix $\mathcal{M}$ for odd $n$

Let $n$ be odd and $x \in F_{2}^{n}$.

- $w t(x)$ is odd iff $w t(\bar{x})$ is even.
- $\operatorname{cls}(x) \neq \operatorname{cls}(\bar{x})$.
- Order the leaders $\Lambda_{i}$ as $\Lambda_{0}, \ldots, \Lambda_{d_{n} / 2-1}$ are having odd weight and $\Lambda_{d_{n} / 2+i}=\overline{\Lambda_{i}}, 0 \leq i<d_{n} / 2$.


## the matrix $\mathcal{M}$ for odd $n$

Let $n$ be odd and $x \in F_{2}^{n}$.

- $w t(x)$ is odd iff $w t(\bar{x})$ is even.
- $\operatorname{cls}(x) \neq \operatorname{cls}(\bar{x})$.
- Order the leaders $\wedge_{i}$ as
$\Lambda_{0}, \ldots, \Lambda_{d_{n} / 2-1}$ are having odd weight
and $\Lambda_{d_{n} / 2+i}=\overline{\Lambda_{i}}, 0 \leq i<d_{n} / 2$.


## the matrix $\mathcal{M}$ for odd $n$

Let $n$ be odd and $x \in F_{2}^{n}$.

- $w t(x)$ is odd iff $w t(\bar{x})$ is even.
- $\operatorname{cls}(x) \neq \operatorname{cls}(\bar{x})$.
- Order the leaders $\Lambda_{i}$ as
$\Lambda_{0}, \ldots, \Lambda_{d_{n} / 2-1}$ are having odd weight and $\Lambda_{d_{n} / 2+i}=\overline{\Lambda_{i}}, 0 \leq i<d_{n} / 2$.


## the matrix $\mathcal{M}$ for odd $n$

Let $n$ be odd and $x \in F_{2}^{n}$.

- $w t(x)$ is odd iff $w t(\bar{x})$ is even.
- $\operatorname{cls}(x) \neq \operatorname{cls}(\bar{x})$.
- Order the leaders $\Lambda_{i}$ as
$\Lambda_{0}, \ldots, \Lambda_{d_{n} / 2-1}$ are having odd weight and $\Lambda_{d_{n} / 2+i}=\overline{\Lambda_{i}}, 0 \leq i<d_{n} / 2$.

The matrix after reordering:


## the matrix $\mathcal{M}$ for odd $n$

The matrix after reordering:

$$
\left.M_{n}=\begin{array}{l|l|} 
& \Lambda_{0} \cdots \Lambda_{d_{n} / 2-1} \\
\Lambda_{0} \cdots \overline{\Lambda_{0}} \cdots / 2 \\
\Lambda_{d_{0} / 2-1} \\
\overline{\Lambda_{0}}\left[\begin{array}{l}
\Lambda_{0} \\
S_{n}
\end{array}\right. \\
\hline S_{n} & -S_{n}
\end{array}\right]
$$

- Computing $\frac{d_{n}}{2} \times \frac{d_{n}}{2}$ matrix $S_{n}$ is suffice to compute $d_{n} \times d_{n}$ matrix $\mathcal{M}_{\backslash}$.
- 4 times advantage to compute the matrix $\mathcal{M}$
- This advantage carries to compute Walsh spectra, nonlinearity, resiliencey etc.


## the matrix $\mathcal{M}$ for odd $n$

The matrix after reordering:

- Computing $\frac{d_{n}}{2} \times \frac{d_{n}}{2}$ matrix $S_{n}$ is suffice to compute $d_{n} \times d_{n}$ matrix $\mathcal{M}_{\backslash}$.
- 4 times advantage to compute the matrix $\mathcal{M}_{\backslash}$.
- This advantage carries to compute Walsh spectra, nonlinearity, resiliencey etc.


## the matrix $\mathcal{M}$ for odd $n$

The matrix after reordering:

- Computing $\frac{d_{n}}{2} \times \frac{d_{n}}{2}$ matrix $S_{n}$ is suffice to compute $d_{n} \times d_{n}$ matrix $\mathcal{M}_{\backslash}$.
- 4 times advantage to compute the matrix $\mathcal{M}_{\backslash}$.
- This advantage carries to compute Walsh spectra, nonlinearity, resiliencey etc.


## Highly nonlinear Boolean functions

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1}-2^{\frac{n-1}{2}}, n>7$.
- They showed existence of 9-variable Boolean function of nonlinearity $241>2^{8}-2^{4}=240$.
- They found $8 \times 189$ many RSBFs having nonlinearity 241 out of $2^{60}$ functions.
- We found $8 \times 21$ DSBFs having nonlinearity 241 out of $2^{46}$
- Density : 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.


## Highly nonlinear Boolean functions

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1}-2^{\frac{n-1}{2}}, n>7$.
- They showed existence of 9-variable Boolean function of nonlinearity $241>2^{8}-2^{4}=240$.
- They found $8 \times 189$ many RSBFs having nonlinearity 241 out of $2^{60}$ functions.
- We found $8 \times 21$ DSBFs having nonlinearity 241 out of $2^{46}$
- Density : 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.


## Highly nonlinear Boolean functions

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1}-2^{\frac{n-1}{2}}, n>7$.
- They showed existence of 9-variable Boolean function of nonlinearity $241>2^{8}-2^{4}=240$.
- They found $8 \times 189$ many RSBFs having nonlinearity 241 out of $2^{60}$ functions.
- We found $8 \times 21$ DSBFs having nonlinearity 241 out of $2^{46}$.
- Density : 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.


## Highly nonlinear Boolean functions

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1}-2^{\frac{n-1}{2}}, n>7$.
- They showed existence of 9-variable Boolean function of nonlinearity $241>2^{8}-2^{4}=240$.
- They found $8 \times 189$ many RSBFs having nonlinearity 241 out of $2^{60}$ functions.
- We found $8 \times 21$ DSBFs having nonlinearity 241 out of $2^{46}$.
- Density : 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.


## Highly nonlinear Boolean functions

- Recently[Indocrypt 2006], shown that there are Boolean functions of odd number variables having nonlinearity greater than $2^{n-1}-2^{\frac{n-1}{2}}, n>7$.
- They showed existence of 9-variable Boolean function of nonlinearity $241>2^{8}-2^{4}=240$.
- They found $8 \times 189$ many RSBFs having nonlinearity 241 out of $2^{60}$ functions.
- We found $8 \times 21$ DSBFs having nonlinearity 241 out of $2^{46}$.
- Density : 241-nonlinearity functions are $\frac{2^{14}}{9}$ times more dense in the class of DSBFs than the class of RSBFs.
- Hope it will be happen for higher number of variables too.


## Summary

- We introduced a new class Boolean functions inbetween symmetric class and RSBFs.
- We studied some theoretical and experimental results on this class.
- Expectation that high nonlinear functions are more dense in DSBFs than RSBFs.


# Our Results/Contribution 

Summary

## End

## Thanks :)

