Computing Möbius Transforms of Boolean Functions and Characterising Coincident Boolean Functions

+

+

Josef Pieprzyk and Xian-Mo Zhang

Department of Computing Macquarie University, Australia

1

Outline

- The Möbius Transform of a Boolean Function *f* relates the truth table to its algebraic normal form (ANF).
- We compute the Möbius Transforms of Boolean Functions in different methods,
- We notice a special case when *f* is identical with its Möbius Transform. We call such a function coincident.
- We characterise coincident Boolean Functions in different ways.

+

Brief Introduction to Boolean Functions

+

+

- The vector space of *n*-tuples of elements from GF(2) is denoted by $(GF(2))^n$.
- A <u>Boolean function</u> f is a mapping from $(GF(2))^n$ to GF(2). We write f as f(x) or $f(x_1, \ldots, x_n)$ where $x = (x_1, \ldots, x_n)$.
- We list all vectors in $(GF(2))^n$ as $(0, \ldots, 0, 0) = \alpha_0$, $(0, \ldots, 0, 1) = \alpha_1$, ..., $(1, \ldots, 1, 1) = \alpha_{2^n-1}$ and call α_i the binary representation of integer *i*.
- The <u>truth table</u> of a function f on (GF(2))ⁿ is a (0,1)-sequence defined by (f(α₀), f(α₁),..., f(α_{2ⁿ-1})),

Brief Introduction to Boolean Functions (Cont'd)

+

+

- The <u>Hamming</u> weight of $HW(\xi)$ is the number of nonzero coordinates of ξ .
- In particular, if ξ represents the truth table of a function f, then HW(ξ) is called the <u>Hamming weight</u> of f, denoted by HW(f).

Möbius Transforms of Boolean Functions

• The function f on $(GF(2))^n$ can be uniquely represented as

 $f(x_1, \ldots, x_n) = \bigoplus_{\alpha \in (GF(2))^n} g(a_1, \ldots, a_n) x_1^{a_1} \cdots x_n^{a_n}$ (1) where $\alpha = (a_1, \ldots, a_n)$ and g is also a function on $(GF(2))^n$.

- (1) is called the <u>algebraic</u> <u>normal</u> form (ANF) of f.
- g is called the <u>Möbius transform</u> of f, denoted by $\underline{g = \mu(f)}$.

+

Computing $\mu(f)$ by Matrix

- Define $2^n \times 2^n$ (0, 1)-matrix T_n , such that the *i*th row of T_n is the truth table of $x_1^{a_1} \cdots x_n^{a_n}$ where (a_1, \ldots, a_n) is the binary representation of the integer *i*.
- <u>Theorem 1</u> T_n satisfies : $T_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $T_s = \begin{bmatrix} T_{s-1} & T_{s-1} \\ O_{2^{s-1}} & T_{s-1} \end{bmatrix}$, where $O_{2^{s-1}}$ denotes the $2^{s-1} \times 2^{s-1}$ zero matrix, $s = 2, 3, \ldots$
- Lemma 1 $T_n^{-1} = T_n$.

+

+

Computing $\mu(f)$ by Matrix (Cont'd)

7

+

+

Computing $\mu(f)$ by Matrix (Cont'd)

- <u>Theorem 2</u> The following are equivalent:
 - (i) $g = \mu(f)$, (ii) $f = \mu(g)$,

+

+

- (iii) $(f(\alpha_0), f(\alpha_1), \dots, f(\alpha_{2^n-1})) T_n = (g(\alpha_0), g(\alpha_{2^n-1})),$
- (iv) $(g(\alpha_0), g(\alpha_1), \dots, g(\alpha_{2^n-1}))T_n = (f(\alpha_0), f(\alpha_1), f(\alpha_{2^n-1}))$.
- Example 2 Let $f(x_1, x_2, x_3) = 1 \oplus x_2 \oplus x_2 x_3 \oplus x_1 \oplus x_1 x_2 x_3$. Then $g = \mu(f)$ has the truth table (10111001) and f has the truth table: (11010011). (10111001) $T_3 = (11010011)$, (11010011) $T_3 = (10111001)$.

Computing $\mu(f)$ by Polynomials

- Define $D_{\alpha}(x) = (1 \oplus a_1 \oplus x_1) \cdots (1 \oplus a_n \oplus x_n)$ where $x = (x_1, \dots, x_n)$, $\alpha = (a_1, \dots, a_n)$.
- It is known that

$$f(x) = \bigoplus_{\alpha \in (GF(2))^n} f(\alpha) D_\alpha(x)$$
(2)

• <u>Lemma 2</u>

+

+

(i) $\mu(D_{\alpha})(x) = x_1^{a_1} \cdots x_n^{a_n}$ where $\alpha = (a_1, \dots, a_n)$, (ii) $\mu(x_1^{a_1} \cdots x_n^{a_n}) = D_{\alpha}(x)$.

• <u>Theorem 3</u> Set $g = \mu(f)$. Then $\mu(f)(x) = \bigoplus_{\alpha \in (GF(2))^n} f(\alpha) x_1^{a_1} \cdots x_n^{a_n}$

9

Computing $\mu(f)$ by Recursive Relations

+

+

- It is known that $f(x) = x_1 g(y) \oplus h(y)$ where $x = (x_1, \dots, x_n)$ and $y = (x_2, \dots, x_n)$.
- Theorem 4 $\mu(f)(x) = x_1(\mu(g)(y) \oplus \mu(h)(y)) \oplus \mu(h)(y).$

Properties of $\mu(f)$

• Corollary 1 $\mu^{-1} = \mu$.

+

+

- Let P be a permutation on $\{1, \ldots, n\}$. Define the function f_P as $f_P(x_1, \ldots, x_n) = f(x_{P(1)}, \ldots, x_{P(n)}).$
- Theorem 5 $\mu(f_P) = g_P$.
- Note: P in Theorem 5 is a permutation on {1,...,n} but P cannot be extended to be a permutation on (GF(2))ⁿ.

Properties of $\mu(f)$ (Cont'd)

• Theorem 6 $deg(f) + deg(\mu(f)) \ge n$.

+

+

- Note: the lower bound in Theorem 6 can be reached.
- Example 3 $f(x) = (1 \oplus x_1) \cdots (1 \oplus x_n)$. By Lemma 2, $\mu(f)$ is the constant one. Then $deg(f) + deg(\mu(f)) = n + 0 = n$.

Concept of Coincident Boolean Functions

+

+

- If f and $g = \mu(f)$ are identical, i.e., $f = \mu(f)$, Then f is called a <u>coincident function</u> on $(GF(2))^n$.
- Example 4 Set $f(x_1, x_2, x_3, x_4) = x_2x_4 \oplus x_2x_3 \oplus x_1x_2 \oplus x_1x_3x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_3$. Then the truth table of $\mu(f)$ is (0000011000011110). By computing, the truth table of f is also (0000011000011110). Then f is coincident and $\mu(f) = f$.
- <u>Theorem 7</u> Let ξ and η be the truth tables of f and $g = \mu(f)$. Then the following are equivalent: (i) f is coincident, (ii) g is coincident, (iii) $\xi T_n = \xi$, (iv) $\eta T_n = \eta$, (v) f and g are identical, (vi) ξ and η identical.

Characterisations and Constructions of Coincident Functions (by Matrix)

• Set $T_n^* = T_n \oplus I_{2^n}$, n = 1, 2, ...

+

+

- <u>Theorem 8</u> Let ξ and η be the truth tables of f and $g = \mu(f)$ respectively. Then the following are equivalent: (i) f is coincident, (ii) g is coincident, (iii) $\xi T_n^* = 0$, (iv) $\eta T_n^* = 0$.
- <u>Theorem 9</u> f is coincident \iff its truth table satisfies $(\zeta T_{n-1}^*, \zeta)$.

14

Characterisations and Constructions of Coincident Functions (by Matrix)-Cont'd

+

+

- <u>Theorem 10</u> f is coincident \iff its truth table ξ can be expressed as $\xi = \eta T_n^*$.
- <u>Theorem 11</u> f is coincident \iff its truth table is a linear combination of rows of T_n^* .

Characterisations and Constructions of Coincident Functions (by Matrix)-Cont'd

+

+

• Example 5
$$T_3^* = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Consider $f(x_1, x_2, x_3) = x_2 x_3 \oplus x_1 x_3 \oplus x_1 x_2 x_3$.
- By definition, f is coincident because fand $\mu(f)$ have the same truth table (00000111).
- $(00000111)T_3^* = (00000000)$. By Theorem 8, f is coincident.
- $(00000111) = (01110000)T_3^*$. By Theorem 11, f is coincident.

Enumeration of Coincident Functions

• Theorem 12

+

(1) T_n^* has a rank 2^{n-1} , (ii) all the top 2^{n-1} rows of T_n^* form a basis of rows of T_n^* .

- <u>Theorem 13</u> f is coincident \iff its truth table of f is a linear combination of top 2^{n-1} rows of T_n^* .
- Theorem 14

+

(i) There precisely exist $2^{2^{n-1}}$ coincident functions of n variables, (ii) they form 2^{n-1} -dimensional linear space.

Enumeration of Coincident Functions (Cont'd)

+

+

• Example 6 The top 4 rows of T_3^* : 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

All $(2^{2^{3-1}} = 16)$ linear combinatios: (01111111), (00010101), (00010011), (00000001), (0000011) (00000110), (01101010), (00010100), (0110110) (01101011), (01111110), (01101100), (0111100), (01111001), (00010010), (0000000).

• They have the ANFs: $x_3 \oplus x_2 \oplus x_1 \oplus x_2x_3 \oplus x_1x_3 \oplus x_1x_2 \oplus x_1x_2x_3$, $x_2x_3 \oplus x_1x_3 \oplus x_1x_2x_3$, $x_2x_3 \oplus x_1x_2 \oplus x_1x_2x_3$, $x_1x_2x_3$, $x_1x_2 \oplus x_1x_2x_3$, $x_1x_3 \oplus x_1x_2$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_2$, $x_2x_3 \oplus x_1x_3$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_3 \oplus x_1x_2x_3$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_2 \oplus x_1 \oplus x_1x_3 \oplus x_2 \oplus x_1 \oplus x_1x_3$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_2 \oplus x_1x_2x_3$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_2$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_3$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_2$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_2$, $x_3 \oplus x_2 \oplus x_1 \oplus x_1x_3$, $x_3 \oplus x_2 \oplus x_1 \oplus x_2x_3$, x_1x_2 , 0

Characterisations and Constructions of Coincident Functions (by Polynomial)

+

+

- Define a mapping Ψ as $\Psi(f) = h \iff f \oplus \mu(f) = h$.
- <u>Theorem 15</u> The following are equivalent:
 (i) h is coincident, (ii) h = Ψ(f) or h = f ⊕ μ(f) for some f, (iii) Ψ(h) = 0.
- Lemma 3 $D_{\alpha}(x) \oplus x_1^{a_1} \cdots x_n^{a_n}$ is coincident.
- <u>Theorem 16</u> h is coincident \iff if and only if h is a linear combination of all $D_{\alpha}(x) \oplus x_1^{a_1} \cdots x_n^{a_n}$

Characterisations and Constructions of Coincident Functions (by Recursive Formula)

+

+

- <u>Theorem 17</u> f is coincident $\iff f(x) = x_1g(y) \oplus \Psi(g)(y)$ for some g. Furthermore, if f is nonzero then g is nonzero.
- Theorem 18 f is coincident $\iff f(x_1, \dots, x_n) = x_1 f_1(x_2, \dots, x_n) \oplus x_2 f_2(x_3, \dots, x_n) \oplus \dots \oplus x_{n-1} f_{n-1}(x_n) \oplus f_n(x_n)$ where $x_i f_i(x_{i+1}, \dots, x_n) \oplus \dots \oplus x_{n-1} f_{n-1}(x_n) \oplus f(x_n)$ $= \Psi(x_{i-1} f_{i-1}(x_i, \dots, x_n) \oplus \dots \oplus x_{n-1} f_{n-1}(x_n) \oplus f_n(x_n)), i = 2, \dots, n.$

Properties of Coincident Functions

+

+

- Theorem 19 f is coincident $\iff f_P$ is coincident, where f_P is defined before, i.e., $f_P(x_1, \ldots, x_n) = f(x_{P(1)}, \ldots, x_{P(n)}).$
- <u>Theorem 20</u> If f is a nonzero coincident function then each variable x_j appears in a monomial of the ANF of f.
- Theorem 21 If f be a coincident function on $(GF(2))^n$ then either the ANF of f has every linear term x_j , or, the ANF does not have any linear term.
- Example 7 $x_3 \oplus x_2 \oplus x_1 \oplus x_1 x_2 \oplus x_1 x_2 x_3$ and $x_2x_3 \oplus x_1x_2$ are both coincident.

Properties of Coincident Functions (Cont'd)

+

+

- Corollary 2 If f is a coincident function then f(0) = 0.
- Theorem 22 If f is coincident then for any integer r with $1 \le r \le n-1$ and any r-subset $\{j_1, \ldots, j_r\}$ of $\{1, \ldots, n\}$, $f(x_1, \ldots, x_n)|_{x_{j_1}=0, \ldots, x_{j_r}=0}$ is a coincident function of (n-r) variables.

A Lower Bound on Degree of Coincident Functions

• Theorem 23 If f be a coincident function on $(GF(2))^n$ then $deg(f) \ge \lceil \frac{1}{2}n \rceil$. More precisely,

(i) $deg(f) \ge \frac{1}{2}n$ (*n* is even)

+

+

(ii) $deg(f) \ge \frac{1}{2}(n+1)$ (*n* is odd).

 The lower bound in Theorem 23 is tight.
 For example, f(x₁, x₂, x₃, x₄) = x₂x₄⊕x₂x₃⊕ x₁x₄ ⊕ x₁x₃ is a coincident function on (GF(2))⁴ having a degree two.

Coincident Functions with High Nonlinearity and High Degree

+

+

- The nonlinearity N_f of a function f is defined as $N_f = \min_{i=1,2,...,2^{n+1}} d(f,\psi_i)$ where $\psi_1, \psi_2, \ldots, \psi_{2^{n+1}}$ are all the affine functions on $(GF(2))^n$.
- It is known that $N_f \leq 2^{n-1} 2^{\frac{1}{2}n-1}$.
- Construction 1 (Even Variables):
- Let $f(x_1, \ldots, x_{2k}) = x_1 x_2 \oplus \cdots \oplus x_{2k-1} x_{2k}$. Set $h = f \oplus \mu(f)$.
- Theorem 24 In Construction 1 (i) h is coincident function, (ii) $N_h \ge 2^{2k-1} - 2^{k-1} - k$, (iii) $deg(h) \ge 2k - 2$.

Coincident Functions with High Nonlinearity and High Degree (Cont'd)

• Construction 2 (Odd Variables):

+

+

- Let $f(x_1, x_2, ..., x_{2k+1}) = x_2 x_3 \oplus x_4 x_5 \cdots \oplus x_{2k} x_{2k+1}$. Set $h = f \oplus \mu(f)$.
- Theorem 25 In Construction 2 (i) h is coincident function, (ii) $N_h \ge 2^{2k} - 2^k - k$, (iii) $deg(h) \ge 2k - 1$.

Conclusion

+

+

- We presented different methods to compute $\mu(f)$ and studied properties of $\mu(f)$.
- We proposed the concept of coincident functions and characterised such functions.