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Outline

The Mobius Transform of a Boolean Func-
tion f relates the truth table to its alge-
braic normal form (ANF).

We compute the Mobius Transforms of
Boolean Functions in different methods,

We notice a special case when f is iden-
tical with its Mobius Transform. We call
such a function coincident.

We characterise coincident Boolean Func-
tions in different ways.



Brief Introduction to Boolean Functions

The vector space of n-tuples of elements
from GF(2) is denoted by (GF(2))™.

A Boolean function f is a mapping from
(GF(2))" to GF(2). We write f as f(x)
or f(x1,...,2n) Where z = (x1,...,2n).

We list all vectors in (GF(2))" as (0,...,0,0) =
ag, (0,...,0,1) = aq, ..., (1,...,1,1) =
aon_1 and call a; the binary representation

of integer <.

The truth table of a function f on (GF(2))"
isa (0, 1)-sequence defined by (f(ag), f(a1),...

flaon_1)),




Brief Introduction to Boolean Functions
(Cont’d)

e The Hamming weight of HW () is the
number of nonzero coordinates of &.

e In particular, if £ represents the truth table
of a function f, then HW (&) is called the
Hamming weight of f, denoted by HW (f).




Mobius Transforms of Boolean Functions

e The function f on (GF(2))™ can be uniquely
represented as

f(:cla"'axn): a (1)
= Dac(ar(2)n9(al,...,an)zyt -+ hr
where o« = (a1,...,an) and g is also a func-

tion on (GF(2))".

e (1) is called the algebraic normal form
(ANF) of f.

e g is called the Mobius transform of f, de-
noted by g = u(f).




Computing u(f) by Matrix

e Define 2™ x 2™ (0, 1)-matrix Ty, such that
the th row of T; is the truth table of
zql- - xdn where (ay,...,an) is the binary
representation of the integer «.
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O 1

e [ heorem 1 T satisfies: 17 = [ ] and

T, 1 T, 1

T —_ S S
’ [ Ops-1 Ts—1
the 25— 1 x 25—1 zero matrix, s =2, 3,....

], where 023_1 denotes

e Llemma 1 7,1 =1,




Computing p(f) by Matrix (Cont’d)

e Example 1 T;

e i A B e B M B M

A OO0+ 0O

.m — 14 OO0+ 0O

| © _10001000

A A A 0000

— OO 4101 0000O0

A 400 A 10 0000O0

— OO0 0 100000 0O0o
: K



Computing u(f) by Matrix (Cont’d)

e T heorem 2 The following are equivalent:

(i) g =u(f), (i) f=pulg),

(iii) (f(ag), fla1),..., flaon_1)) Trh = (g(ag), g(a
g(aon_1)),

(iv) (g(ag), gla1),..., glaon_1))Thn = (f(ag), f(o:
flaon_1)).

e Example 2 Let f(x1,20,23) = 1 @ 2o P
xoxr3 D x1 ® r1xox3. Then g = u(f) has
the truth table (10111001) and f has the
truth table: (11010011). (10111001)T3=
(11010011), (11010011)73=(10111001).




Computing u(f) by Polynomials

e Define Do(x) = (1®a1Dx1) --- (1DanDxn)
where x = (x1,...,2n), a = (a1,...,an).

e It is known that

fz)= @  fl@)Da(x) (2)

ac(GF(2))"

e Lemma 2

(i) 1(Da)(@) =21+ 28 where a = (ay, ..., an),

(i) p(2yt---2fn) = Da().

e Theorem 3 Set g = u(f). Then

pD@ = @D f@aft

ac(GF(2))"




Computing u(f) by Recursive Relations

e It is known that f(z) = z19(y)®h(y) where
x=(x1,...,zn) and y = (xo,...,zn).

e [ heorem 4

p(f)(x) = z1(u(g)(y) @ ulh)(y)) dulh)(y).

10



Properties of u(f)

Corollary 1 p=1 = p.

Let P be a permutation on {1,...,n}. De-
fine the function fp as

fp(z1,..,2n) = f(Tp1y, - Tpm))-

Theorem 5 u(fp) = gp.

Note: P in Theorem 5 is a permutation
on {1,...,n} but P cannot be extended to
be a permutation on (GF(2))".
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Properties of u(f) (Cont’d)

e Theorem 6 deg(f) + deg(u(f)) > n.

e Note: the lower bound in Theorem 6 can
be reached.

e Example 3 f(z) = (1®x1)---(1Dzpn). By
Lemma 2, u(f) is the constant one. Then
deg(f) + deg(u(f)) =n+0=n.
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Concept of Coincident Boolean
Functions

o If f and g = u(f) are identical, i.e., f =
w(f), Then fis called a coincident function
on (GF(2))™.

e Example 4 Set f(x1, 22, x3,24)= ToxaDxoT3P
1ToPTr1x3T4 PrixToT4 Pr1x023. T hen the
truth table of u(f) is (0000011000011110).
By computing, the truth table of f is also
(0000011000011110). Then f is coinci-
dent and u(f) = f.

e [T heorem 7 Let £ and n be the truth tables
of f and g = u(f). Then the following are
equivalent: (i) f is coincident, (ii) g is
coincident, (iii) &1, =&, (iv) nTn, = n, (v)
f and g are identical, (vi) £ and n identical.
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Characterisations and Constructions of
Coincident Functions (by Matrix)

e Set T =T, & Ion, n=1,2,....

e Theorem 8 Let & and nn be the truth ta-
bles of f and g = u(f) respectively. Then
the following are equivalent: (i) f is coin-
cident, (ii) g is coincident, (iii) &7 = O,
(iv) nT;r = 0.

e Theorem 9 f is coincident <— its truth
table satisfies (¢Tr_¢,().
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Characterisations and Constructions of
Coincident Functions (by Matrix)-Cont'd

e Theorem 10 f is coincident < its truth
table &€ can be expressed as & =0T .

e [heorem 11 f is coincident <— its truth
table is a linear combination of rows of T;F.

+ 15
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Characterisations and Constructions of
Coincident Functions (by Matrix)-Cont'd

e Example 5 T§ =

OO OO0 0O0O0oOo

eoloNoNeoleReoNGN
eoloNoNeoleRONGN
oo oorrkrHr
eoloNoNoleReNGN
oNoNoN JNGNGN N
oNoNoN JNGN NG
OoO—rHHFHHFFF -

e Consider f(x1,x2,23) = Tox3Pr1Tr3BT1TOT3.

e By definition, f is coincident because f
and u(f) have the same truth table (00000111).

e (00000111)7T5 = (00000000). By Theo-
rem 8, f is coincident.

e (00000111) = (01110000)T§. By Theo-
rem 11, f is coincident.



Enumeration of Coincident Functions

e [ heorem 12

(1) T has a rank 271 (ii) all the top
2n—1 rows of T form a basis of rows of
T>|<

(’/L .

e Theorem 13 f is coincident < its truth
table of f is a linear combination of top
2n—1 rows of T}

e [ heorem 14

(i) There precisely exist 22" coincident
functions of n variables, (ii) they form 27—1-
dimensional linear space.
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Enumeration of Coincident Functions
(Cont’d)

e Example 6 The top 4 rows of T§:

o O oo
©oOor

oCoomr
(I i
oCoomr

0

All (22°7" = 16) linear combinatios: (01111111),
(00010101), (00010011), (00000001), (0000011
(00000110), (01101010), (00010100), (011011¢
(01101011), (01111110), (01101100), (011110¢
(01111001), (00010010), (00000000).

e T hey have the ANFs: 23PxoPx1 Proxr3z®
r1r3bxr1x0DPIr1r23, TOX3HTr1Tr3HXT1r2x3,
To2Tr3PBr1x2DTr1Tr2T3, T1T2x3, L1x3DT1T2D
r1Tror3, 13 D 1T, r3 D T2 D xr1 D Tr1T9,
Tox3 D r1r3, T3 T2 DT D13 D r1Tr2T3,
r3ProDbDr1Br1roDITr1r2T3, x3DTO>D X1 D
Toxr3Pr1r3DIr1T2, rT3BT>DTr1DBTr1°r3, T3ID
ToDxr1Droxr3, T3BET>DTr1 DrorzdDr1TroT3,
rox3 D x120, O
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Characterisations and Constructions of
Coincident Functions (by Polynomial)

e Define a mapping W as V(f) = h <—
f@ulf) =nh

e T heorem 15 The following are equivalent:
(i) h is coincident, (ii) h = W(f) or h =
f@® u(f) for some f, (iii) W(h) = 0.

e Lemma 3 D,(z)®z7 - xdn is coincident.

e [ heorem 16 h is coincident «<— if and
only if h is a linear combination of all
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Characterisations and Constructions of
Coincident Functions (by Recursive
Formula)

e Theorem 17 f is coincident «<— f(x) =
x19(y)DWV(g)(y) for some g. Furthermore,
if f is nonzero then g is nonzero.

e Theorem 18 fis coincident <= f(z1,...,2zn) =
r1f1(x2,...,2n) ® xofo(3,...,2n) O -+ @
Tp—1fn—1(Tn) ® fn(xn) where
rifi(ig1,- - 2n)D - Bxp_1fn—1(xn)Df(2n)
= W(x;—1fi—1(xi .-, 2n) D - - Bxp—1 fr—1(Tn)®
fn(xzn)), 1=2,...,n.
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Properties of Coincident Functions

e Theorem 19 f is coincident <= fp is co-
incident, where fp is defined before, i.e.,

fp(z1, .. zn)=Ff(xp1y, - Tpm))-

e T heorem 20 If f is a nonzero coincident
function then each variable x; appears in
a monomial of the ANF of f.

e T heorem 21 If f be a coincident function
on (GF(2))™ then either the ANF of f has
every linear term T, Of, the ANF does not
have any linear term.

e Example 7 z3®xoPx1 Pr1roP 1023 and
xox3z G r1xo are both coincident.

21



Properties of Coincident Functions
(Cont’d)

e Corollary 2 If f is a coincident function
then f(0) = 0.

e Theorem 22 If f is coincident then for any
integer r with 1 < r < n—1 and any r-
subset {j1,...,4r} Of {1,...,n},
f(flfla---,flfn)|:cj1:o,...,a;j7,:o is a coincident
function of (n — r) variables.
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A Lower Bound on Degree of Coincident
Functions

e T heorem 23 If f be a coincident function
on (GF(2))" then deg(f) > [4n]. More
precisely,

(i) deg(f) > 3n (n is even)

(i) deg(f) > 5(n+ 1) (n is odd).

e [ he lower bound in Theorem 23 is tight.
For example, f(x1,z2,23,74) = ToxaProT3P
x1T4 B x1x3 IS a coincident function on
(GF(2))% having a degree two.



Coincident Functions with High
Nonlinearity and High Degree

The nonlinearity Ny of a function f is de-
fined as Ny = mini:LQ’._.,QnH d(f, ;) where
Y1, Y2, ..., Yont1 are all the affine func-
tions on (GF(2))".

1
It is known that Ny < 2n—1 23771,

Construction 1 (Even Variables):

Let f(z1,...,20k) = 2122® - - D Tp_1T2k-
Set h = f @ u(f).

Theorem 24 In Construction 1

(i) h is coincident function,
(i) Nj, > 22k—1 _2k=1_f
(i) deg(h) > 2k — 2.
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Coincident Functions with High
Nonlinearity and High Degree (Cont’d)

e Construction 2 (Odd Variables):

o Let f(z1,22,...,T241) = 72230 T475 - D
TopTopt1- Set h = f @ u(f).

e [ heorem 25 In Construction 2

(i) h is coincident function,
(ii) Ny, > 22k 2k _ k.

(iii) deg(h) > 2k — 1.
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Conclusion

e \We presented different methods to com-
pute u(f) and studied properties of u(f).

e We proposed the concept of coincident
functions and characterised such functions.
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