Computing Möbius Transforms of Boolean Functions and Characterising Coincident Boolean Functions
 Josef Pieprzyk and Xian-Mo Zhang
 Department of Computing Macquarie University, Australia

Outline

- The Möbius Transform of a Boolean Function f relates the truth table to its algebraic normal form (ANF).
- We compute the Möbius Transforms of Boolean Functions in different methods,
- We notice a special case when f is identical with its Möbius Transform. We call such a function coincident.
- We characterise coincident Boolean Functions in different ways.

Brief Introduction to Boolean Functions

- The vector space of n-tuples of elements from $G F(2)$ is denoted by $(G F(2))^{n}$.
- A Boolean function f is a mapping from $(G F(2))^{n}$ to $G F(2)$. We write f as $f(x)$ or $f\left(x_{1}, \ldots, x_{n}\right)$ where $x=\left(x_{1}, \ldots, x_{n}\right)$.
- We list all vectors in $(G F(2))^{n}$ as $(0, \ldots, 0,0)=$ $\alpha_{0},(0, \ldots, 0,1)=\alpha_{1}, \ldots,(1, \ldots, 1,1)=$ $\alpha_{2}{ }^{n}-1$ and call α_{i} the binary representation of integer i.
- The truth table of a function f on $(G F(2))^{n}$ is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots\right.$, $\left.f\left(\alpha_{2^{n}-1}\right)\right)$,

Brief Introduction to Boolean Functions (Cont'd)

- The Hamming weight of $H W(\xi)$ is the number of nonzero coordinates of ξ.
- In particular, if ξ represents the truth table of a function f, then $H W(\xi)$ is called the Hamming weight of f, denoted by $H W(f)$.

Möbius Transforms of Boolean Functions

- The function f on $(G F(2))^{n}$ can be uniquely represented as

$$
\begin{align*}
& f\left(x_{1}, \ldots, x_{n}\right)= \\
& =\bigoplus_{\alpha \in(G F(2))^{n}} g\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \tag{1}
\end{align*}
$$

where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ and g is also a function on $(G F(2))^{n}$.

- (1) is called the algebraic normal form (ANF) of f.
- g is called the Möbius transform of f, denoted by $g=\mu(f)$.

Computing $\mu(f)$ by Matrix

- Define $2^{n} \times 2^{n}(0,1)$-matrix T_{n}, such that the i th row of T_{n} is the truth table of $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ where $\left(a_{1}, \ldots, a_{n}\right)$ is the binary representation of the integer i.
- Theorem $1 T_{n}$ satisfies : $T_{1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $T_{s}=\left[\begin{array}{cc}T_{s-1} & T_{s-1} \\ O_{2^{s-1}} & T_{s-1}\end{array}\right]$, where $O_{2^{s-1}}$ denotes the $2^{s-1} \times 2^{s-1}$ zero matrix, $s=2,3, \ldots$.
- Lemma $1 T_{n}^{-1}=T_{n}$.

Computing $\mu(f)$ by Matrix (Cont'd)

- Example $1 T_{1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$,
$T_{2}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$ and
$T_{3}=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.

Computing $\mu(f)$ by Matrix (Cont'd)

- Theorem 2 The following are equivalent:
(i) $g=\mu(f)$, (ii) $f=\mu(g)$,
(iii) $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right) T_{n}=\left(g\left(\alpha_{0}\right), g(\alpha\right.$ $\left.g\left(\alpha_{2^{n}-1}\right)\right)$,
(iv) $\left(g\left(\alpha_{0}\right), g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{2^{n}-1}\right)\right) T_{n}=\left(f\left(\alpha_{0}\right), f(\alpha\right.$ $\left.f\left(\alpha_{2^{n}-1}\right)\right)$.
- Example 2 Let $f\left(x_{1}, x_{2}, x_{3}\right)=1 \oplus x_{2} \oplus$ $x_{2} x_{3} \oplus x_{1} \oplus x_{1} x_{2} x_{3}$. Then $g=\mu(f)$ has the truth table (10111001) and f has the truth table: (11010011). (10111001) $T_{3}=$ (11010011), (11010011) $T_{3}=(10111001)$.

Computing $\mu(f)$ by Polynomials

- Define $D_{\alpha}(x)=\left(1 \oplus a_{1} \oplus x_{1}\right) \cdots\left(1 \oplus a_{n} \oplus x_{n}\right)$ where $x=\left(x_{1}, \ldots, x_{n}\right), \alpha=\left(a_{1}, \ldots, a_{n}\right)$.
- It is known that

$$
f(x)=\bigoplus_{\alpha \in(G F(2))^{n}} f(\alpha) D_{\alpha}(x)
$$

- Lemma 2
(i) $\mu\left(D_{\alpha}\right)(x)=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$,
(ii) $\mu\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)=D_{\alpha}(x)$.
- Theorem 3 Set $g=\mu(f)$. Then

$$
\mu(f)(x)=\bigoplus_{\alpha \in(G F(2))^{n}} f(\alpha) x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}
$$

Computing $\mu(f)$ by Recursive Relations

- It is known that $f(x)=x_{1} g(y) \oplus h(y)$ where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(x_{2}, \ldots, x_{n}\right)$.
- Theorem 4

$$
\mu(f)(x)=x_{1}(\mu(g)(y) \oplus \mu(h)(y)) \oplus \mu(h)(y)
$$

Properties of $\mu(f)$

- Corollary $1 \mu^{-1}=\mu$.
- Let P be a permutation on $\{1, \ldots, n\}$. Define the function f_{P} as $f_{P}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{P(1)}, \ldots, x_{P(n)}\right)$.
- Theorem $5 \mu\left(f_{P}\right)=g_{P}$.
- Note: P in Theorem 5 is a permutation on $\{1, \ldots, n\}$ but P cannot be extended to be a permutation on $(G F(2))^{n}$.

Properties of $\mu(f)$ (Cont'd)

- Theorem $6 \operatorname{deg}(f)+\operatorname{deg}(\mu(f)) \geq n$.
- Note: the lower bound in Theorem 6 can be reached.
- Example $3 f(x)=\left(1 \oplus x_{1}\right) \cdots\left(1 \oplus x_{n}\right)$. By Lemma 2, $\mu(f)$ is the constant one. Then $\operatorname{deg}(f)+\operatorname{deg}(\mu(f))=n+0=n$.

Concept of Coincident Boolean Functions

- If f and $g=\mu(f)$ are identical, i.e., $f=$ $\mu(f)$, Then f is called a coincident function on $(G F(2))^{n}$.
- Example 4 Set $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} x_{4} \oplus x_{2} x_{3} \oplus$ $x_{1} x_{2} \oplus x_{1} x_{3} x_{4} \oplus x_{1} x_{2} x_{4} \oplus x_{1} x_{2} x_{3}$. Then the truth table of $\mu(f)$ is (0000011000011110). By computing, the truth table of f is also (0000011000011110). Then f is coincident and $\mu(f)=f$.
- Theorem 7 Let ξ and η be the truth tables of f and $g=\mu(f)$. Then the following are equivalent: (i) f is coincident, (ii) g is coincident, (iii) $\xi T_{n}=\xi$, (iv) $\eta T_{n}=\eta$, (v) f and g are identical, (vi) ξ and η identical.

Characterisations and Constructions of Coincident Functions (by Matrix)

- Set $T_{n}^{*}=T_{n} \oplus I_{2^{n}}, n=1,2, \ldots$
- Theorem 8 Let ξ and η be the truth tables of f and $g=\mu(f)$ respectively. Then the following are equivalent: (i) f is coincident, (ii) g is coincident, (iii) $\xi T_{n}^{*}=0$, (iv) $\eta T_{n}^{*}=0$.
- Theorem $9 f$ is coincident \Longleftrightarrow its truth table satisfies $\left(\zeta T_{n-1}^{*}, \zeta\right)$.

Characterisations and Constructions of Coincident Functions (by Matrix)-Cont'd

- Theorem $10 f$ is coincident \Longleftrightarrow its truth table ξ can be expressed as $\xi=\eta T_{n}^{*}$.
- Theorem $11 f$ is coincident \Longleftrightarrow its truth table is a linear combination of rows of T_{n}^{*}.

Characterisations and Constructions of Coincident Functions (by Matrix)-Cont'd

$$
\text { - Example } 5 T_{3}^{*}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

- Consider $f\left(x_{1}, x_{2}, x_{3}\right)=x_{2} x_{3} \oplus x_{1} x_{3} \oplus x_{1} x_{2} x_{3}$.
- By definition, f is coincident because f and $\mu(f)$ have the same truth table (00000111).
- (00000111) $T_{3}^{*}=(00000000)$. By Theorem $8, f$ is coincident.
- $(00000111)=(01110000) T_{3}^{*}$. By Theorem 11, f is coincident.

Enumeration of Coincident Functions

- Theorem 12
(1) T_{n}^{*} has a rank 2^{n-1}, (ii) all the top 2^{n-1} rows of T_{n}^{*} form a basis of rows of T_{n}^{*}.
- Theorem $13 f$ is coincident \Longleftrightarrow its truth table of f is a linear combination of top 2^{n-1} rows of T_{n}^{*}.
- Theorem 14
(i) There precisely exist $2^{2^{n-1}}$ coincident functions of n variables, (ii) they form $2^{n-1} 1_{-}$ dimensional linear space.

Enumeration of Coincident Functions (Cont'd)

- Example 6 The top 4 rows of T_{3}^{*} :
 All $\left(2^{2-1}=16\right)$ linear combinatios: (01111111),
$(00010101),(00010011),(00000001),(0000011$
$(00000110),(01101010),(00010100),(011011$
$(01101011),(01111110),(01101100),(0111100$
$(01111001),(00010010),(00000000)$.
- They have the ANFs: $x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{2} x_{3} \oplus$ $x_{1} x_{3} \oplus x_{1} x_{2} \oplus x_{1} x_{2} x_{3}, x_{2} x_{3} \oplus x_{1} x_{3} \oplus x_{1} x_{2} x_{3}$, $x_{2} x_{3} \oplus x_{1} x_{2} \oplus x_{1} x_{2} x_{3}, x_{1} x_{2} x_{3}, x_{1} x_{3} \oplus x_{1} x_{2} \oplus$ $x_{1} x_{2} x_{3}, x_{1} x_{3} \oplus x_{1} x_{2}, x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{1} x_{2}$, $x_{2} x_{3} \oplus x_{1} x_{3}, x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{1} x_{3} \oplus x_{1} x_{2} x_{3}$, $x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{1} x_{2} \oplus x_{1} x_{2} x_{3}, x_{3} \oplus x_{2} \oplus x_{1} \oplus$ $x_{2} x_{3} \oplus x_{1} x_{3} \oplus x_{1} x_{2}, x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{1} x_{3}, x_{3} \oplus$ $x_{2} \oplus x_{1} \oplus x_{2} x_{3}, x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{2} x_{3} \oplus x_{1} x_{2} x_{3}$, $x_{2} x_{3} \oplus x_{1} x_{2}, 0$

Characterisations and Constructions of Coincident Functions (by Polynomial)

- Define a mapping Ψ as $\Psi(f)=h \Longleftrightarrow$ $f \oplus \mu(f)=h$.
- Theorem 15 The following are equivalent:
(i) h is coincident, (ii) $h=\Psi(f)$ or $h=$ $f \oplus \mu(f)$ for some f, (iii) $\Psi(h)=0$.
- Lemma $3 D_{\alpha}(x) \oplus x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ is coincident.
- Theorem $16 h$ is coincident \Longleftrightarrow if and only if h is a linear combination of all $D_{\alpha}(x) \oplus x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$

Characterisations and Constructions of Coincident Functions (by Recursive Formula)

- Theorem $17 f$ is coincident $\Longleftrightarrow f(x)=$ $x_{1} g(y) \oplus \Psi(g)(y)$ for some g. Furthermore, if f is nonzero then g is nonzero.
- Theorem $18 f$ is coincident $\Longleftrightarrow f\left(x_{1}, \ldots, x_{n}\right)=$

$$
\begin{aligned}
& x_{1} f_{1}\left(x_{2}, \ldots, x_{n}\right) \oplus x_{2} f_{2}\left(x_{3}, \ldots, x_{n}\right) \oplus \cdots \oplus \\
& x_{n-1} f_{n-1}\left(x_{n}\right) \oplus f_{n}\left(x_{n}\right) \text { where } \\
& x_{i} f_{i}\left(x_{i+1}, \ldots, x_{n}\right) \oplus \cdots \oplus x_{n-1} f_{n-1}\left(x_{n}\right) \oplus f\left(x_{n}\right) \\
& =\Psi\left(x_{i-1} f_{i-1}\left(x_{i}, \ldots, x_{n}\right) \oplus \cdots \oplus x_{n-1} f_{n-1}\left(x_{n}\right) \oplus\right. \\
& \left.f_{n}\left(x_{n}\right)\right), i=2, \ldots, n
\end{aligned}
$$

Properties of Coincident Functions

- Theorem $19 f$ is coincident $\Longleftrightarrow f_{P}$ is coincident, where f_{P} is defined before, i.e., $f_{P}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{P(1)}, \ldots, x_{P(n)}\right)$.
- Theorem 20 If f is a nonzero coincident function then each variable x_{j} appears in a monomial of the ANF of f.
- Theorem 21 If f be a coincident function on $(G F(2))^{n}$ then either the ANF of f has every linear term x_{j}, or, the ANF does not have any linear term.
- Example $7 x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{1} x_{2} \oplus x_{1} x_{2} x_{3}$ and $x_{2} x_{3} \oplus x_{1} x_{2}$ are both coincident.

Properties of Coincident Functions (Cont'd)

- Corollary 2 If f is a coincident function
- Theorem 22 If f is coincident then for any integer r with $1 \leq r \leq n-1$ and any r subset $\left\{j_{1}, \ldots, j_{r}\right\}$ of $\{1, \ldots, n\}$, $\left.f\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{j_{1}}=0, \ldots, x_{j r}=0}$ is a coincident function of $(n-r)$ variables.

A Lower Bound on Degree of Coincident Functions

- Theorem 23 If f be a coincident function on $(G F(2))^{n}$ then $\operatorname{deg}(f) \geq\left\lceil\frac{1}{2} n\right\rceil$. More precisely,
(i) $\operatorname{deg}(f) \geq \frac{1}{2} n$ (n is even)
(ii) $\operatorname{deg}(f) \geq \frac{1}{2}(n+1)(n$ is odd).
- The lower bound in Theorem 23 is tight. For example, $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} x_{4} \oplus x_{2} x_{3} \oplus$ $x_{1} x_{4} \oplus x_{1} x_{3}$ is a coincident function on $(G F(2))^{4}$ having a degree two.

Coincident Functions with High Nonlinearity and High Degree

- The nonlinearity N_{f} of a function f is defined as $N_{f}=\min _{i=1,2, \ldots, 2^{n+1}} d\left(f, \psi_{i}\right)$ where $\psi_{1}, \psi_{2}, \ldots, \psi_{2^{n+1}}$ are all the affine functions on $(G F(2))^{n}$.
- It is known that $N_{f} \leq 2^{n-1}-2^{\frac{1}{2} n-1}$.
- Construction 1 (Even Variables):
- Let $f\left(x_{1}, \ldots, x_{2 k}\right)=x_{1} x_{2} \oplus \cdots \oplus x_{2 k-1} x_{2 k}$. Set $h=f \oplus \mu(f)$.
- Theorem 24 In Construction 1
(i) h is coincident function,
(ii) $N_{h} \geq 2^{2 k-1}-2^{k-1}-k$,
(iii) $\operatorname{deg}(h) \geq 2 k-2$.

Coincident Functions with High Nonlinearity and High Degree (Cont'd)

- Construction 2 (Odd Variables):
- Let $f\left(x_{1}, x_{2}, \ldots, x_{2 k+1}\right)=x_{2} x_{3} \oplus x_{4} x_{5} \cdots \oplus$ $x_{2 k} x_{2 k+1}$. Set $h=f \oplus \mu(f)$.
- Theorem 25 In Construction 2
(i) h is coincident function,
(ii) $N_{h} \geq 2^{2 k}-2^{k}-k$,
(iii) $\operatorname{deg}(h) \geq 2 k-1$.

Conclusion

- We presented different methods to compute $\mu(f)$ and studied properties of $\mu(f)$.
- We proposed the concept of coincident functions and characterised such functions.

