
Jean-Francis MICHON
Pierre VALARCHER
Jean-Baptiste YUNÈS (Eds.)
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PREFACE

Jean-Francis Michon1, Pierre Valarcher1 and
Jean-Baptiste Yunès2

The Meeting

The “Boolean Functions: Cryptography and Applications”
international meeting took place on March 7-8th, 2005, in Rouen,
France. It was the first of an expected series in the field of Boolean
functions. BFCA’05 was organized by the LIFAR, University of
Rouen and the LIAFA, University Denis Diderot of Paris.

The main purpose of the conference was to create contacts
between many different scientists working on Boolean functions,
and that goal was reached far beyond our expectations. More
than 40 participants came from as many as 9 different countries.
Authors submitted 20 papers all reviewed by two competent ref-
erees, who finally selected 13 of them.

L’Atelier

L’atelier international “Fonctions Booléennes: Cryptographie
et Applications” s’est tenu les 7 et 8 mars 2005, à l’Université
de Rouen (France). Il s’agissait de la première d’une future série
sur le thème des fonctions Booléennes. BFCA’05 a été organisé

1 Université de Rouen, LIFAR, 75821 Mont Saint Aignan Cedex, France.
email: {jean.francis.michon,pierre.valarcher}@univ-rouen.fr
2 LIAFA - Université Denis Diderot - Paris 7. 175 rue Chevaleret, F-75013
Paris, France. email: Jean-Baptiste.Yunes@liafa.jussieu.fr
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conjointement par le LIFAR de l’Université de Rouen et le LIAFA
de l’Université Denis Diderot de Paris.

Le but premier de cette conférence était de faire se rencontrer
de nombreux chercheurs travaillant sur les fonctions Booléennes
et nous pouvons affirmer que cela a été réussi bien au-delà de nos
espérances. Nous avons reçu plus de 40 participants venus de 9
pays différents. Les auteurs ont soumis 20 articles tous examinés
par deux juges compétents pour n’en retenir que 13.

Thanks/Remerciements

Many thanks to our sponsors:
Un grand merci à nos sponsors:

Le LIFAR
L’Université de Rouen
Le Conseil Régional de Seine-Maritime
Le Ministère délégué à la recherche - programme
”ACI - Cryptologie”
GDR-ALP

Organizing committee/Comité d’organisation

Jean-Francis Michon (Univ. de Rouen, LIFAR)
Pierre Valarcher (Univ. de Rouen, LIFAR)
Jean-Baptiste Yunès (Univ. Paris 7, LIAFA)
Secrétaire: Angélique Daniellou (LIFAR)

Program committee/Comité de programme

Claude Carlet (Univ. Paris 8, INRIA)
Hervé Chabanne (SAGEM)
Pascale Charpin (INRIA)
Jean-Charles Faugère (LIP6, CNRS)
Louis Granboulan (GRECC, ENS)
Étienne Grandjean (Univ. de Caen, GREYC)
Jean-Francis Michon (Univ. de Rouen, LIFAR)
Pierre Valarcher (Univ. de Rouen, LIFAR)
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Jean-Baptiste Yunès (Univ. Paris 7, LIAFA)

Support committee/Comité de soutien

Jean-Éric Pin (LIAFA, CNRS)

Referees/Examinateurs

Ali Akhavi Julien Bringer
Claude Carlet Hervé Chabanne
Pascale Charpin Nadia Creignou
Emmanuelle Dottax Jean-Charles Faugère
Aline Gouget Louis Grandboulan
Étienne Grandjean Jean-Marie Le Bars
Jean-Francis Michon Pierre Valarcher
Jean-Baptiste Yunès

BFCA on the WEB/BFCA sur Internet

http://www.univ-rouen.fr/LIFAR/bfca/

Special Thanks/Remerciements particuliers

The organizing committee is thankful to M. Jérôme Segal who
accepted to come from Austria and who has talked about his re-
search in the history of sciences. He gave us a good and interesting
lecture for the full satisfaction of the participants.

Le comité d’organisation souhaite remercier M. Jérôme Segal
qui a accepté de venir d’Autriche nous parler de son travail

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05
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d’historien des sciences. Sa prestation fut de qualité et riche
d’enseignements au grand contentement du public présent.

Jérôme Segal. Le zéro et le un. Histoire de la Notion Scientifique
d’Information au 20e siècle. 2003. Éditions Syllepse.
ISBN: 2-84797046-0.

May (Mai), 2005

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05
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ON THE CONSTRUCTION OF BALANCED
BOOLEAN FUNCTIONS WITH A GOOD

ALGEBRAIC IMMUNITY

C. Carlet1 and Ph. Gaborit2

Abstract. In this paper we study the algebraic immunity
of Boolean functions and consider in particular the prob-
lem of constructing Boolean functions with a good algebraic
immunity. We first give heuristic arguments to prove that
the algebraic immunity of a random Boolean function on n
variables is at least !n

2 " with a very high probability (while
the upper bound is #n

2 $, the “ceiling” of n
2 ). We give an

upper bound, under a reasonable assumption, on the alge-
braic immunity of Boolean functions constructed through
Maiorana-MacFarland construction. We give a construction
which strictly increases the algebraic immunity of a Boolean
function by adding a certain number of new variables and
deduce the first infinite family of functions with a non trivial
proven algebraic immunity. At last we give examples of bal-
anced functions with optimal algebraic immunity and a good
nonlinearity and of balanced functions with a good algebraic
immunity, a good nonlinearity and a good correlation immu-
nity, which can be used for cryptographic purposes.

1. Introduction

Boolean ({0, 1}-valued) functions on the set F2
n of binary vec-

tors of a given length n, are used in the pseudo-random generators
of stream ciphers and play a central role in their security. The

1 INRIA, Domaine de Voluceau, Rocquencourt, BP 105 - 78153, Le Ches-
nay Cedex, FRANCE. email: claude.carletinria.fr also member of the
University of Paris 8.
2 LACO, Université de Limoges; 123, av. A. Thomas, 87060 Limoges,
France. email: gaborit@unilim.fr
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2 C. CARLET, PH. GABORIT

generation of the keystream consists, in many stream ciphers, of
a linear part, producing a sequence with a large period, usually
composed of one or several LFSR’s, and a nonlinear combining
or filtering function f that produces the output, given the state
of the linear part. The main classical cryptographic criteria for
designing such function f are balancedness (f is balanced if its
Hamming weight equals 2n−1) to prevent the system from leak-
ing statistical information on the plaintext when the ciphertext is
known, a high algebraic degree (that is, a high degree of the alge-
braic normal form of the function) to counter linear synthesis by
Berlekamp-Massey algorithm, a high order of correlation immu-
nity (in fact, of resiliency, since the functions must be balanced)
to counter correlation attacks (at least in the case of combining
functions), and a high nonlinearity (that is, a large Hamming dis-
tance to affine functions) to withstand correlation attacks (again)
and linear attacks.

Since the introduction of these criteria, the problem of effi-
ciently constructing highly resilient functions with high nonlin-
earities and algebraic degrees has received much attention. Few
constructions are known, giving functions on a sufficient number
of variables, achieving or approaching the best possible crypto-
graphic characteristics.

The recent algebraic attacks have dramatically complicated this
situation. Algebraic attacks recover the secret key by solving an
overdefined system of multivariate algebraic equations. The sce-
narios found in [9], under which low degree equations can be de-
duced from the knowledge of the nonlinear combining or filtering
function, have led in [15] to a new parameter of the Boolean func-
tion: its algebraic immunity, which must be high.

No construction is known, leading to functions whose algebraic
immunity can be lower bounded. For instance, the 10-variable
Boolean function used in the LILI keystream generator (a sub-
mission to NESSIE European call for cryptographic primitives) is
built following [19] by using classical constructions. It has alge-
braic immunity 4 and is responsible for the lack of resistance of
LILI to algebraic attacks, as shown in [9].

It is shown in [15] that taking random balanced functions on
sufficiently large numbers of variables can suffice to withstand alge-
braic attacks on the stream ciphers using them. As shown in [17],
it would also permit to reach nonlinearities which would not be
too far from the optimal ones. But the result of [15] asserts that
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random n-variable functions have sufficient algebraic immunity for
values of n which make the pseudo-random generator slow.

In this paper, after recalling some background in Section 2, we
give in Section 3 heuristic arguments showing that the algebraic
immunity of a random Boolean function on n variables is almost
surely at least !n

2 " ; hence, it is almost surely equal to n
2 when n is

even and it belongs almost surely to the pair {n−1
2 , n+1

2 } when n
is odd, because of the upper bound #n

2 $, given in [9]. We study in
Section 4 the algebraic immunity of those Maiorana-MacFarland
functions. We show that, under a reasonable assumption (related
to a new notion of nonlinearity of S-boxes), it is strictly lower
than the maximum possible degree of these functions. In Sec-
tion 5, we give a construction which permits to strictly increase
the algebraic immunity of a Boolean function by adding, similarly
to Siegenthaler’s construction, a certain number (greater than 1,
however) of new variables and deduce the first infinite family of
functions with a controlled algebraic immunity. At last, in Section
6, we give examples of balanced functions with optimal algebraic
immunity and a good nonlinearity, which are therefore usable as
filtering functions in pseudo-random generators, and of balanced
functions with a good algebraic immunity, a good nonlinearity
and a good correlation immunity, which can be used as combining
functions in pseudo-random generators.

2. Notation and definitions

Any Boolean function f on n variables admits a unique alge-
braic normal form (A.N.F.):

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI

∏

i∈I

xi,

where the aI ’s are in F2. The algebraic degree of f is the degree
of its algebraic normal form. Affine functions are those Boolean
functions of degrees whose value is at most 1.

The Hamming weight wH(f) of a Boolean function f on n vari-
ables is the size of its support {x ∈ Fn

2 ; f(x) = 1}. The Hamming
distance dH(f, g) between two Boolean functions f and g is the
Hamming weight of the function f +g. The nonlinearity of f is its
minimum distance to all affine functions. Functions used in stream
or block ciphers must have high nonlinearities to resist the attacks

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05
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on these ciphers (correlation and linear attacks, see e.g. [4, 23]).
The nonlinearity of f can be expressed by means of the Walsh
transform of f , defined as Wf (a) =

∑
x∈F2

n(−1)f(x)+x·a, where
“ · ” denotes the usual inner product in Fn

2 :

Nf = 2n−1 − 1
2

max
a∈F n

2

|Wf (a)|. (1)

It is upper bounded by 2n−1 − 2n/2−1 because of the so-called
Parseval’s relation

∑
s∈F n

2
W 2

f (s) = 22n.
In the standard model of these ciphers (cf. [22]), the outputs

to n linear feedback shift registers are the input to a Boolean
function. The output to the function produces the keystream,
which is then bitwisely xored with the message to produce the
cipher. Some devide-and-conquer attacks exist on this method
of encryption (cf. [4, 23]) and lead to criteria which the combin-
ing function must satisfy. Two main criteria are the following:
the combining function must be balanced (i.e. its output must
be uniformly distributed on {0, 1}); it must also be such that the
distribution probability of its output is unaltered when any m of
its inputs are fixed [23], with m as large as possible. This prop-
erty, called m-th order correlation-immunity [22], is characterized
by the set of zero values in the Walsh spectrum [24]: f is m-th
order correlation-immune if and only if Wf (u) = 0, for all u ∈ Fn

2
such that 1 ≤ wH(u) ≤ m, where wH(u) denotes the Hamming
weight of the n-bit vector u, (the number of its nonzero com-
ponents). Balanced m-th order correlation-immune functions are
called m-resilient functions. They are characterized by the fact
that Wf (u) = 0 for all u ∈ Fn

2 such that 0 ≤ wH(u) ≤ m.
Siegenthaler’s inequality [22] states that any m-th order corre-

lation immune function on n variables has degree at most n−m,
that any m-resilient function (0 ≤ m < n−1) has algebraic degree
smaller than or equal to n−m− 1 and that any (n− 1)-resilient
function has algebraic degree 1. We shall call this property Siegen-
thaler’s bound.

Sarkar and Maitra [19] have shown that the Hamming distance
between any m-resilient function and any affine function is divisi-
ble by 2m+1. This has led to an upper bound on the nonlinearity
of m-resilient functions (also partly obtained by Tarannikov and
by Zhang and Zheng): the nonlinearity of any m-resilient func-
tion is smaller than or equal to 2n−1 − 2m+1 if n

2 − 1 < m + 1,
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to 2n−1 − 2
n
2−1 − 2m+1 if n is even and n

2 − 1 ≥ m + 1 and to
2n−1 − 2m+1

⌈
2n/2−m−2

⌉
if n is odd and n

2 − 1 ≥ m + 1. We
shall call this set of upper bounds Sarkar et al.’s bound. A simi-
lar bound exists for correlation immune functions, but we do not
refer to it since non-balanced correlation immune functions present
small cryptographic interest.

Until recently, a high algebraic degree, a high resiliency order
and a high nonlinearity were the only requirements needed for the
design of the function f used in a stream cipher as a combining
function or as a filtering one. The recent algebraic attacks [9] have
changed this situation by adding a new criterion of considerable
importance to this list. Algebraic attacks recover the secret key by
solving an overdefined system of multivariate algebraic equations.
These attacks exploit multivariate relations involving key/state
bits and output bits of f . If one such relation is found and is of
low degree in the key/state bits, algebraic attacks are very effi-
cient [8]. It is suggested in [9] that low degree relations and thus
successful algebraic attacks exist for several well known construc-
tions of stream ciphers that are immune to all previously known
attacks. These low degree relations are obtained by producing low
degree polynomial multiples of f , i.e., by multiplying the Boolean
function f by a well chosen low degree function g, such that the
product function fg (that is, the function whose support equals
the intersection of the supports of f and g) is again of low degree.

The scenarios found in [9], under which low degree multiples
of a Boolean function may exist, have been simplified in [15] into
two scenarios: (1) there exists a non-zero Boolean function g of
low degree whose support is disjoint from the support of f (such a
function g is called an annihilator of f); (2) there exists a non-zero
Boolean function g of low degree whose support is included in the
support of f (i.e. such that g is an annihilator of f +1). We write
then: g ) f .

The algebraic immunity AI(f) of a Boolean function f is the
minimum value of d such that f or f + 1 admits an annihilator of
degree d. It should be high enough (at least equal to 6). Clearly,
the algebraic immunity of a Boolean function is upper bounded
by its degree. Since the degree (in the case of resilient func-
tions) is upper bounded by Siegenthaler’s bound, the best possible
situation, with respect to the degree and the algebraic immunity,
is when the algebraic degree achieves Siegenthaler’s bound and its
algebraic immunity equals its algebraic degree.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



6 C. CARLET, PH. GABORIT

But it has been proven in [9] that the algebraic immunity of
any n-variable Boolean function is upper bounded by #n

2 $. Hence,
if the degree is greater than #n

2 $, the best possible algebraic im-
munity is #n

2 $.

3. Algebraic immunity of random balanced Boolean func-
tions

In [15] the algebraic immunity of random balanced Boolean
function is considered. The authors prove by a precise statistical
analysis that for sufficiently large n the algebraic immunity of a
random balanced Boolean function is almost always at least equal
to 0.22n. They also show by empirical arguments that in fact the
algebraic immunity is probably better than 0.27n.

So a natural question arises on the exact lower bound for the
algebraic immunity of random balanced Boolean functions.

In this section we give experimental results which indicate that
that the algebraic immunity of a random balanced Boolean func-
tion is probably very close to 0.5n.

We first interpret the algebraic immunity in terms of Reed-
Muller codes. The binary representatives of all Boolean functions
of degrees less or equal to d on n variables correspond to the code-
words of the Reed-Muller code R(d, n). Denote by Gd a generator
matrix of the code R(d, n). In terms of matrix vectors, the fact
that there exists a non null Boolean function g, of degree up to
d, such that fg = 0 is equivalent to the fact that if we denote by
Gf

d the matrix of length wH(f) (the Hamming weight of f) ob-
tained by puncturing the matrix Gd, keeping the positions where
the codeword associated to f equals 1, then there exists a nonzero
vector c of length the dimension of R(d, n), such that c×Gf

d = 0
(where ’×’ denotes the multiplication between a matrix and a
vector). In this case, the word c × Gd corresponds to the binary
representative of an annilihator g of degree up to d of f .

Lemma 3.1. A Boolean function f has no non null annihilator of
degree up to d if and only if the punctured matrix Gf

d with wH(f)
columns and k rows where k =

∑d
i=0

(n
i

)
(the dimension of the

code R(d, n)) is regular (i.e. has full rank k).

Now we want to estimate the behaviour, in terms of rank, of
such a matrix.
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We recall that for large k the probability that a random binary
k × (k + e) matrix has a rank strictly inferior to k is roughly
s2−e, for s a real number of order 1/2 ( [7], [1], [25]). This result
means that adding a new column to a random matrix divides the
probability that the matrix has not full rank by 2.

In our case the matrix Gf
d is a submatrix of the generator matrix

of a Reed-Muller code. The Reed-Muller codes have been known
for a long time and no theoritical properties seem to be known at
present to estimate theoritically the behaviour (in terms of rank)
of such an extracted matrix. Meanwhile it may seem natural that
if one takes a small random submatrix of a structured big matrix
like the matrix of a Reed-Muller code, which has good statistical
properties, the small matrix behaves more or less like a random
matrix.

This idea is confirmed by simulations for n = 8, 9, 10, 11, 12, 13.
For different Reed-Muller codes R(d, n) of dimension k, we ex-
tracted k + e random columns from the 2n possible columns to
obtain a k× (k +e) matrix M . We then checked whether the rank
of M was strictly smaller than k. We repeated this operation be-
tween 10000 and 100000 times (depending on the parameters n
and d) to have statistically meaningful results (although the re-
sults are a little less meaningful for d = 11 since 10000/211 is not
large enough) that we sum up in Table 1.

These results show that for n = 8 or 9, adding another column
divides the probability by roughly 3/2, but that for n ≥ 10 (in our
simulations, for n = 10, 11, 12, 13), which is the concrete situation
in cryptography, adding a new column divides the probability of
the matrix not to be of rank k by roughly 2. These experimen-
tal results indicate therefore that in terms of rank, the extracted
matrix from a Reed-Muller code, for not too small n, seems to
behave roughly like a random matrix and that the probability of
the extracted matrix not to be of full rank is roughly s′2−e for s′

a constant of order 1/2 (what is really important here is not the
constant but the fact that each addition of a column divides the
probability by two). These simulations permit us to give heuris-
tic results on the algebraic immunity of random balanced Boolean
functions. For odd n = 2m + 1 the probability that a random
balanced Boolean function f (or its complement 1 + f) has a no
non null annihilator of degree up to m−1 (and hence an algebraic
immunity greater than or equal to m) can be approximated via
our heuristic by s′2−e, where e = 2n−1 −

∑m−1
i=0

(n
i

)
=

(n
m

)
, which

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05
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R(d,n) e=0 e=7 e=8 e=10 e=11
(3,8) 0.78 0.04 0.028 1.5 10−2 1.1 10−2

(3,9) 0.72 1.1 10−2 6.8 10−3 2.5 10−3 1.9 10−3

(3,10) 0.71 7.7 10−3 3.8 10−3 9.3 10−4 4.8 10−4

(4,10) 0.71 8.0 10−3 3.9 10−3 9.1 10−4 5.6 10−4

(4,11) 0.71 7.7 10−3 3.5 10−3 9.1 10−4 5.5 10−4

(3,12) 0.71 7.2 10−3 3.4 10−3 8.0 10−4 3.0 10−4

(5,12) 0.72 7.6 10−3 3.9 10−3 9.0 10−4 4.0 10−4

(3,13) 0.72 6.8 10−3 3.4 10−3 8.9 10−4 4.6 10−4

(5,13) 0.71 7.2 10−3 3.3 10−3 8.9 10−4 4.8 10−4

Table 1. Probability for a k×(k+e) random ex-
tracted matrix from the Reed-Muller code R(d, n)
(of dimension k) not to be of full rank k

means that the probability that a random balanced Boolean func-
tion has algebraic immunity greater or equal to m = !n/2" is of
the form 1− 2−(n

m) which tends towards 1 very quickly.
In the case where n is even, n = 2m, by the same argument, the

probability that a random balanced Boolean function has algebraic

degree greater or equal to n/2 is of order 1 − 2−
( n

m−1)
2 and hence

this heuristic seems to indicate that for even n almost all random
balanced Boolean functions have an optimal algebraic immunity
n/2.

Our experimental results therefore permit to deduce an heuris-
tic which indicates that very quickly random balanced Boolean
functions have almost always an algebraic immunity greater or
equal to !n/2".

4. Algebraic immunity and Maiorana-McFarland construc-
tions

One can found in [2] a construction of resilient functions based
on the idea of a construction of bent functions due to Maiorana
and McFarland:

let m and n = r+s be any integers such that r > m ≥ 0, s > 0,
let g be any Boolean function on F s

2 and φ any mapping from F s
2

to F r
2 such that every element φ(y) of φ(F s

2 ) has Hamming weight
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wH(φ(y)) strictly greater than m, then the function:

f(x, y) = x · φ(y) + g(y), x ∈ F r
2 , y ∈ F s

2 (2)

(where “·” denotes here the usual dot product in F r
2 ) is m-resilient,

since we have Wf (a, b) = 2r ∑
y∈φ−1(a)(−1)g(y)+b·y.

The highest possible value of the degree of f equals s + 1, and
f achieves such degree if and only if the degree of the mapping φ
equals s (i.e. if one at least of the coordinate functions of φ has odd
weight, or equivalently, if the sum

∑
y∈F s

2
φ(y) is non null). This

implies that, in order to have a high algebraic degree (hopefully,
to achieve Siegenthaler’s bound) a Maiorana-McFarland function
must be constructed, firstly with a sufficiently high value of s, and
secondly such that

∑
y∈F s

2
φ(y) += 0.

The fact that s must be large is also necessary to achieve high
nonlinearity ; indeed, a lower bound on the nonlinearity of f has
been obtained in [20] and an upper bound has been obtained in [5]:

2n−1−2r−1 max
a∈F r

2

|φ−1(a)| ≤ Nfφ,g
≤ 2n−1−2r−1

⌈√
max
a∈F r

2

|φ−1(a)|
⌉

(3)
where |φ−1(a)| denotes the size of the pre-image of a by φ and
# $ denotes the “ceiling”. Hence, the nonlinearity of f is large
enough (hopefully, it achieves Sarkar-Maitra’s bound) under the
necessary condition that r is small (i.e. that s is large) and that
the values of φ are as equally distributed as possible in the set
{x ∈ Fn

2 |wH(x) ≥ m + 1}. Note that, in the case that m =
0 (f balanced), f can have nonlinearity close to the maximum
(which is unknown, but which is supposed to be near the maximum
possible nonlinearity 2n−1 − 2n/2−1 of all Boolean functions) only
if s is greater than or equal to n/2 or is at least close to n/2.
Practically, the functions of the form (2), for n

2 − 1 < m + 1,
can have nonlinearities approaching Sarkar-Maitra’s bound for low
values of n or for low values of m; they have been widely used
as seeds in secondary constructions to obtain balanced Boolean
functions in larger numbers of variables, with high nonlinearities,
and (if necessary) with high resiliency orders (their nonlinearities
being then upper bounded by Sarkar-Maitra’s bound).

We shall see now that their algebraic immunity cannot achieve
highest possible value s + 1 unless s is small (we know that the
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degree and the nonlinearity of the function are then bad). We first
introduce a definition.

Definition 4.1. Let s and r be two positive integers and φ a
mapping from F s

2 to F r
2 . We say that φ is an ultimate nonlinear

mapping if, for every affine subspace A of F s
2 , whose dimension is

strictly positive, the sum
∑

y∈A φ(y) is non null.

In other words, φ : F s
2 → F r

2 is ultimate nonlinear if, for
every integer d such that 1 ≤ d ≤ s and every d-dimensional affine
subspace A of F s

2 , the restriction of φ to A has degree d, exactly.
This condition includes the necessary condition seen above for
f having degree s + 1 (which corresponds to d = s, that is, to
A = F s

2 ). But it is much stronger. We conjecture that, unless s is
significantly smaller than n/2 (we have seen that, in such case, f
has bad degree and bad nonlinearity) such mapping does not exist.
Indeed, this condition applied with d = 1 and d = 2 already means
that φ is injective and that it is APN (recall that an APN mapping
is a mapping such that, for every b ∈ F r

2 and every a ∈ F s
2
∗, the

equation φ(x) + φ(x + a) = b has at most two solutions ; this is
equivalent to saying that, for every a, a′ ∈ F s

2
∗ such that a += a′,

the sum φ(x) + φ(x + a) + φ(x + a′) + φ(x + a + a′) is non null).
Because of obvious combinatorial reasons, no APN mapping exists
for s > r + 1. For s = r + 1, φ is APN if and only if it is perfect
nonlinear (i.e. if, for every a += 0, the derivative φ(x) + φ(x + a) is
balanced, that is, uniformly distributed) and we know according
to [16] that such mapping does not exist either. Very few APN
mappings are known for s = r (see e.g. [3]) and none of them is
ultimate nonlinear.

Proposition 4.2. Let f be a Maiorana-McFarland function (2).
If φ is not ultimate nonlinear, then f has algebraic immunity at
most s.

Proof. Let A be a d-dimensional affine subspace of F s
2 such that∑

y∈A φ(y) = 0. Then, the function g, equal to f multiplied by the
indicator of F r

2 ×A, has degree at most s, since the restriction of f
to this flat has degree at most d and since the indicator of F r

2 ×A
has degree s− d. And g is clearly an annihilator of f + 1. !
Remark: Ultimate nonlinear mappings do exist when r is suf-
ficiently larger than s. Let us take for instance r = 2s and let
us choose some total order on F s

2 . For every i = 1, ..., 2s, let us
define the ith coordinate function φi of φ as the indicator of the
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singleton containing the ith vector of F s
2 (say ai)1. For every flat

A and every index i, we have
∑

y∈A φi(y) += 0 if and only if ai ∈ A.
The mapping φ : F s

2 → F r
2 is then such that

∑
x∈A φ(x) += 0 for

every flat A.
In fact, we can prove that ultimate nonlinear mappings exist for

values of r much smaller than 2s (but still much greater than s).
Indeed, the constraint on φ given by the equation

∑
x∈A φ(x) = 0

is F r
2 -linear, and the space of solutions is then a hyperplane of the

space of all mappings φ : F s
2 → F r

2 ; hence, there are (2r)2s−1

solutions for each flat A. If (2r)2s−1 times the number

Ns =
s∑

d=1

2s−d (2s − 1)(2s − 2)...(2s − 2d−1)
(2d − 1)(2d − 2)...(2d − 2d−1)

of flats A is smaller than 2r2s , that is, if Ns < 2r, there exist
mappings φ such that

∑
x∈A φ(x) += 0 for every flat A of F s

2 . The
number (2s−1)...(2s−2d−1)

(2d−1)...(2d−2d−1)
is equivalent to 2d(s−d) times a constant

C ≈ 4 (see e.g. [21]). Hence, 2s−d (2s−1)...(2s−2d−1)
(2d−1)...(2d−2d−1)

is equivalent to

C 2(d+1)(s−d) and Ns is then equivalent to C 2
(s+1)2

4 if s is odd, and
to C 2

s
2 ( s

2+1) if s is even, since the function h(x) = (x + 1)(s− x),
defined for x an integer, has maximum value for x = s−1

2 if s is odd
and for x ∈ { s

2 − 1, s
2} if s is even. Hence, the order of magnitude

of r for which ultimate nonlinear mappings φ : F s
2 → F r

2 exist is
r ≥ (s+1)2

4 (that is, is quadratic in s).

5. An extension of Boolean functions with controlled alge-
braic immunity, and a deduced infinite class of functions
with prescribed algebraic immunity

We now give a proposition which permits to strictly increase
the algebraic immunity of a function by increasing the number of
variables.

Proposition 5.1. Let f be a Boolean function on m variables
x1, · · · , xm and with algebraic immunity a. Then the Boolean func-
tion f + xm+1xm+2..xm+a+1 has algebraic immunity a + 1.

1Taking for φi the ith monomial (a total order being chosen among the 2s

monomials over F s
2 ) also works.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05
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Proof. Let:
g(x1, · · · , xm+a+1) = f(x1, · · · , xm) + xm+1xm+2..xm+a+1.

We first remark that if a function h has degree a and is in the
annihilator of f (resp. 1 + f) then h(1 + xm+1) has degree a + 1
and is in the annihilator of g (resp. 1 + g) and hence g has an
algebraic immunity at most a + 1. Let us now prove that g has
algebraic immunity at least a + 1. We want to prove that there is
no non-null Boolean function h with degree less or equal to a such
that either gh = 0 or (1 + g)h = 0.

Suppose first there exists a non-null function h of degree less
or equal to a such that gh = 0. Let us write:

h = h1(x1, · · · , xm) + h2(x1, · · · , xm+a+1)
where h1(x1, · · · , xm) = h(x1, · · · , xm, 0, · · · , 0). Then all the
monomials of h2 have at least one variable among the variables
xm+1, · · · , xm+a+1 and (f + xm+1xm+2..xm+a+1)(h1 + h2) = 0.
We first remark that necessarily fh1 = 0; since f has algebraic
immunity a, this implies that either h1 has degree a (recall that
we suppose that the algebraic degree of h is smaller or equal to a)
or h1 = 0.

If h1 has degree a then, in the product
(f + xm+1xm+2..xm+a+1)(h1 + h2)

there is a monomial in (xm+1xm+2..xm+a+1)h1 of degree 2a + 1
which contains the product xm+1xm+2..xm+a+1. But such type of
monomial cannot exist in fh2, since h2 has degree a; it cannot
exist in xm+1xm+2..xm+a+1h2 either since this last function has
degree at most 2a, according to the definition of h2. It is clearly
a contradiction.
Suppose now that h1 = 0, then (f+xm+1xm+2..xm+a+1)h2 = 0 but
since no monomial of fh2 can contain the term xm+1xm+2..xm+a+1

since h2 has degree less or equal to a, we deduce that fh2 = 0.
This implies that any restriction of h2 obtained by fixing the values
of xm+1, xm+2, . . . , xm+a+1 is an annihilator of f , and since such
restriction has degree strictly less than a, this implies that any
such restriction must be null, a contradiction with the fact that
h2 += 0.

The case (1+g)h = 0 can be proven with similar arguments by
noticing that 1 + g = (1 + f) + xm+1xm+2..xm+a+1 and the result
follows. !

Remark 1: The Walsh transform and the nonlinearity of g
can be expressed by means of those of f . It is a simple matter to
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see that the function
ϕ(xm+1, xm+2, . . . , xm+a+1) = xm+1xm+2 . . . xm+a+1

has Walsh transform
Wϕ(um+1, um+2, . . . , um+a+1)

equal to 2a+1 − 2 if um+1 = um+2 = · · · = um+a+1 = 0 and
to −2(−1)um+1+um+2+···+um+a+1 otherwise and has nonlinearity 1.
The Walsh transform of g is the direct product of the Walsh trans-
forms of f and ϕ. Hence Ng = 2m+a− 1

2(2m−2Nf )(2a+1−2Nϕ) =
2a+1Nf + 2mNϕ − 2NfNϕ equals (2a+1 − 2)Nf + 2m.

Remark 2: In the case of Boolean functions with a large num-
ber of variables, like the function used for Toyocrypt, the previous
proposition can be used to construct functions with a lower bound
on their algebraic immunity.

Remark 3: The computations we made seem to suggest that,
to have an optimal algebraic immunity, a Boolean function has to
have many monomials.

The following corollary gives the first family of Boolean func-
tions with a proven non-trivial algebraic immunity (although not
optimal). The proof is straightforward from the previous proposi-
tion.
Corollary 5.2. The Boolean function on n = a(a+1)

2 variables
f(x1, . . . , xn) = x1 + x2x3 + x4x5x6 + · · · + xn−a+1xn−a+2 · · ·xn

has algebraic immunity a.
Note that this function has also degree a and is balanced (since

the variable x1 is isolated). According to Remark 1 above, the non-
linearity Nf of this function satisfies 2n − 2Nf = (2a − 2)(2a−1 −
2) . . . (22 − 2) (this can be checked by induction). Unfortunately
even if this function is the first construction with proven alge-
braic immunity, the nonlinearity of this function is not very good
and further work has to be done in order to construct functions
with not only a proven algebraic immunity but also with a good
nonlinearity.

6. Examples of balanced Boolean functions with a good
algebraic immunity

We now consider the problem of constructing explicit functions
for small n which have a good algebraic immunity (AI for short).
The usual criteria for Boolean functions include a good nonlinear-
ity, a high algebraic degree and a good order of resiliency. Note
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that depending of the context in which a Boolean function is used,
a Boolean function doesn’t have necessarily to meet all these cri-
teria. For instance if a function is used to combine LFSR then
a good nonlinearity, a good resiliency order and a good algebraic
degree are necessary but in a context of filtered register a good
resiliency order seems not necessary. Hence it is of interest to
find balanced functions with good AI and good nonlinearity and
also functions with good AI, good nonlinearity and good order of
resiliency.

6.1. Balanced Boolean functions with a good algebraic immu-
nity and a good nonlinearity

We consider here for n = 8, 9, 10, 11, 12, 13 and 14 functions
with good nonlinearity for which we compute their AI. These func-
tions include certain families of power functions xd which are bal-
anced and balanced functions built from bent functions.

Some of the functions we present, achieve a better algebraic
immunity, for the same nonlinearity, than the functions presented
in [11], which also ask for a good resiliency order.

In Table 2 we compute the algebraic immunity of the inverse
function for 7 ≤ n ≤ 14. This table shows that this fonction, even
if it is good, is not optimal for all n.

In Table 3 we list modified (or not) power functions with con-
structions * and ** (see below), which achieve optimal value for
the algebraic immunity and which have almost optimal nonlinear-
ity. We precise, when it is the case, the general family to which
the exponent d, is related to (cf [3]).

Note that this kind of constructions permit to construct optimal
balanced functions in terms of their AI but also with a very good
nonlinearity.

A ‘*’ in the table means we started from a codeword of weight
2n−1 − 2n/2−1 which was made balanced by replacing the first
2n/2−1 0’s by 1’s. Usually this construction leads to a function
with a higher algebraic degree than the starting function.

A ‘**’ in the table means we started from a function which was
made balanced by adding 1’s and for which we inverted a small
number of bits from 0 to 1 and reciprocally from 1 to 0. This
small modification does not affect too much the nonlinearity but
may increase the AI by 1 in the case when the dimension of the
annihilator of the Boolean function f or 1 + f is small.
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n d weight degree nonlinearity alg. immunity
6 -1 32 5 24 3
7 -1 64 6 54 4
8 -1 128 7 112 4
9 -1 256 8 234 4
10 -1 512 9 480 5
11 -1 1024 10 980 5
12 -1 2048 11 1984 5
13 -1 4096 12 4006 6
14 -1 8192 13 8064 6

Table 2. Computation of the nonlinearity and
algebraic immunity for the inverse function for 6 ≤
n ≤ 14

n d weight degree nonlin. alg. immunity
8 31 128 5 112 4
8 39 (Kasami) 128∗ 6 114 4
9 57 (Kasami) 256 4 224 4
9 59 256 5 240 5
9 115 256 5 240 5
10 241 (Kasami) 512 5 480 5
10 362 512 5 480 5
10 31 (Dillon) 512∗ 9 486 5
10 339 (Dobbertin) 512∗ 9 480 5
11 315 1024 6 992 6
12 993 (Kasami) 2048∗ 11 2000 6
12 63 (Dillon) 2048∗ 11 2000 6
12 636 2048∗ 11 2000 6
13 993 (Kasami) 4096 6 4032 6
13 939 4096∗∗ 12 4030 7
14 4033 (Kasami) 8192 7 8064 7
14 127 (Dillon) 8192∗∗ 13 8088 7

Table 3. Computation of the nonlinearity, al-
gebraic degree and algebraic immunity for certain
power functions xd
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6.2. Balanced Boolean functions with a good algebraic immu-
nity, a good order of resiliency and a good nonlinearity

In this section we compute the AI of Boolean functions built by
standard constructions derivated from the Maiorana-McFarland
construction and which guarantee a certain order of resiliency and
we also consider a function based on a variation of the Maiorana-
McFarland construction. In particular in the case of Maiorana-
McFarland constructions we compare the AI we obtain with the
upper bound that we introduce in Section 4.

The results are listed in Table 4. The usual notation is used
in the table for n, r, s and d the algebraic degree. The notation
’Const’ is for the type of construction used: the classical construc-
tion of [2] is denoted by ’a’ (when all the images by φ in F r

2 of
the elements of F s

2 have weight at least w), the double pre-image
construction of [6] is denoted by ’b’ (when exactly two elements
of F s

2 have the same image of weight at least w but with different
values for the function g). At last the notations m,nl and ai are
respectively for the order of resiliency, the nonlinearity and the
algebraic immunity.

We also considered a variation on the Maiorana-McFarland
construction which deals with three functions rather than one:
f(x, y) = [x·φ1(y)][x·φ2(y)]+[x·φ1(y)][x·φ3(y)]+[x·φ2(y)][x·φ3(y)].
We built functions with 14 variables by considering φ1,φ2,φ3 from
F 6

2 to F 8
2 such that ∀ i ∈ {1, 2, 3} and any x ∈ F 6

2 : wH(φi(x)) ≥ 6
and such that wH(φ1(x) + φ2(x) + φ3(x)) ≥ 6. After several trials
for the different images of F 6

2 we were able to construct a balanced
Boolean function with 14 variables, algebraic degree 7, nonlinear-
ity 7808, order of resiliency 5 and AI 6.

The results of the table show that the bound of Section 4 is
reached for certain parameters s, in particular for n = 11, 12, 13, 14
and s = 5. If we compare these results and the special function
we obtain for 14 variables, with the results of [11] for n ≥ 10, we
see that some of their constructions are optimized in terms of non-
linearity and order of resiliency but not in terms of AI. Since an
insufficient AI makes the algebraic attacks very efficient, the con-
structions of [9] are more interesting theoretically than practically.
The constructions of Table 4 and the special function obtained by
a variation of the Maiorana-McFarland construction are not so
optimal in terms of nonlinearity and resilience but some functions
we found have a better AI (which is the important point).
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n r s d Const. w m nl ai
8 4 4 5 b 2 2 112 3
9 5 4 5 b 3 3 224 3
9 5 4 5 a 3 2 240 4
10 5 5 6 b 3 3 480 4
10 6 4 5 a 4 3 480 4
11 6 5 6 b 4 4 960 4
11 6 5 6 a 3 2 992 5
12 6 6 7 b 4 4 211 − 26 5
12 7 5 6 a 4 3 211 − 26 5
13 7 6 7 a 4 3 211 − 26 5
13 7 6 7 b 4 4 212 − 27 5
13 8 5 6 a 5 4 212 − 27 5
14 7 7 8 b 4 4 213 − 27 5
14 8 6 7 b 6 6 213 − 28 5
14 8 6 7 a 5 4 213 − 27 5
14 8 6 7 a 5 4 213 − 27 5
14 9 5 6 a 7 6 213 − 28 5

Table 4. Computation of some characteris-
tics for Boolean functions built by the Maiorana-
McFarland construction

7. Conclusion

In this paper we have studied the AI of balanced Boolean func-
tions. We have shown that it is not hard to construct functions
with an optimal AI and that there are strong reasons which indi-
cate that, as soon as n is large enough, almost all random balanced
Boolean functions are almost optimal. We have given the first con-
struction which strictly increases the AI of a Boolean function by
adding a certain number of variables and we have given an upper
bound on the AI of Boolean functions built through Maiorana-
McFarland construction; this bound which is true under a reason-
able assumption is tight for examples when s is a little smaller
than !n/2". We have then considered functions optimizing the
nonlinearity and the AI, we have showed that at least for n up to
14, functions with a very good nonlinearity and optimized for the
AI exist. At last we have exhibited Boolean functions which real-
ize some tradeoff between the nonlinearity, the resiliency order and
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the AI. Our results combined with those of [11] show that it may
be difficult for a function, at least with known constructions, to
be optimized, at the same time, in terms of nonlinearity, resiliency
order and AI. However there seems to be no reason for Boolean
functions which are good in term of nonlinearity and resiliency
order to have necessarily a bad AI.
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1. Introduction

Algebraic attacks are among the most efficient attacks for pub-
lic key cryptosystems, block ciphers and stream ciphers. They
try to recover a secret key by solving a system of algebraic equa-
tions. Algebraic attacks were first applied to Matsumoto-Imai
Public Key Scheme in [13] by Jacques Patarin. Algebraic attacks
were also applied to block ciphers in [7], where the complexity of
attacking AES and Serpent was evaluated.

For Stream Cipher, the main cryptographic criteria used for
boolean functions had previously been a high algebraic degree to
counter Berlekamp-Massey algorithm. In [6], it is demonstrated
that low degree relations exist. These relations simplify the Alge-
braic attacks. So a significant step is to find functions resistant
against these attacks. In [12], the notion of Algebraic Immunity
for boolean functions from Fn

2 to F2 is introduced.
Some relations with low degree also exist in Block Cipher, and

to construct the polynomial system defined by the Block Cipher,
we use this equation. We can also extend the algebraic Immunity
to Block Ciphers.

The first objective of this paper is to generalize the notion of
Algebraic Immunity to functions over any finite fields Fq and we
give two definitions: Algebraic Immunity for Stream Cipher and
Algebraic Immunity for Block Cipher denoted respectively AIS(f)
and AIB(f).

First, we show that these two notions are linked to Gröbner
basis for a specific order on monomials, the DRL order for AIB(f)
and the Elimination order for AIS(f). We prove that the definition
of a function over finite fields gives immediately a Gröbner basis
for a lexicographic order. Having a Gröbner basis helps us to find
properties on the ideal generated by this basis. These properties
give bounds on the notion of Algebraic Immunities. These bounds
are the power of the first coefficient of the following series, which
is negative:

AIB(f) qn

1−t −
(1−tq)n+m

(1−t)n+m+1

AIS(f) qn−m

1−t − (1−tq)n

(1−t)n+1

with f a function from Fn
q to Fm

q .
From these series, we give explicit bounds on Algebraic Im-

munities. Then we show asymptotic bound on n for AIB(f) and
m = n. We remark that the influence of the field Fq on AIB(f)
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and m = n depends only on the √q, whereas, the dependence is
on q for AIS(f) and m = 1.

The second part is to extend these notions to functions with
memories. We notice that Algebraic Immunities can be extended
to these functions but depend on the number of consecutive out-
puts we look at. We show that all the results obtained for mem-
oryless functions give similarly results on memory functions by a
change of variables. And then, we prove that, for a memory func-
tion f with memory size ! and only one output, if there is no re-
lation which doesn’t depend on memory for ! consecutive output,
then we can construct a polynomial that generates all relations
without memories. We can apply the theorem to the summation
generator and we compute explicitly AIS(f) for some value of n,
it corresponds to n for n ≤ 9.

Section 2 presents the definition of Algebraic immunities for
memoryless functions and some properties. Section 3 is devoted
to the computation of explicit and asymptotic bounds of Algebraic
Immunities. And section 4 generalizes these notions to function
with memory.

2. Definitions of Algebraic Immunities

2.1. Basic Notations and Definitions

Let Fq[X,Z] = Fq[x1, . . . , xn, z1, . . . , zm] be a polynomial ring
with variables x1, . . . , xn, z1, . . . , zm over a finite field Fq with car-
dinal q. For a monomial XαZβ = xα1

1 · · ·xαn
n zβ1

1 · · · zβm
m , |(α, β)| :=∑n

i=1 αi +
∑m

j=1 βj is called the total degree of this monomial, de-
noted deg(XαZβ) and |α| :=

∑n
i=1 αi+

∑m
j=1 βj is called the partial

degree of this monomial, denoted deg(XαZβ,X). In the following,
the set of all monomials in variables x1, . . . , xn, z1, . . . , zm is de-
noted by M(X,Z), or simply by M . In the theory of Gröbner
bases, we need to consider a monomial ordering (cf. [8]).

Two of such ordering is the degree reverse lexicographical order
(DRL) and the elimination order defined as follows:

Definition 2.1. For (α, β) = (α1, . . . ,αn,β1, . . . ,βm) and
(α′,β′) ∈ Nn+m, We say

• XαZβ %DRL Xα′Zβ′ if |(α, β)| > |(α′,β′)|, or |(α, β)| =
|(α′,β′)| and the right-most nonzero entry of the vector
(α, β)− (α′,β′) ∈ Zn+m is negative.
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%DRL defined the DRL order of variable [X,Z].
• XαZβ %Elim Xα′Zβ′ if Xα %DRL Xα′ , or Xα =DRL Xα′

and Zβ %DRL Zβ′ .
%Elim defined the Elimination order of variable [X], [Z].

There are many other monomial orderings.
A nonzero polynomial g in k[X] is written as

g =
∑

α,β cα,βXαZβ , cα,β &= 0. We use the following notations:
T (g) = {cα,βXαZβ | cα,β &= 0} : the set of terms of g and

M(g) = XαZβ | cα,β &= 0} : the set of monomials of g
We denote the leading term, the leading coefficient and the lead-
ing term which respect an order ≺, by LM(g), LC(g) and LT(g)
respectively. (For each definition, see [8].)

The ideal in Fq[X,Z] generated by a subset F is denoted by
〈F 〉.

Under the above notation, a Gröbner basis is defined as follows.

Definition 2.2. Let M be the set of all monomial of Fq[X,Z]
with a fixed ordering. A finite subset G = {g1, . . . , gm} of an ideal
I is called a Gröbner basis if

〈LT(g1), . . . ,LT(gm)〉 = 〈LT(I)〉.

For a given ideal I, its Gröbner basis is not unique. But the
reduced Gröbner basis, which is defined as follows, is uniquely de-
termined.

Definition 2.3. A Gröbner basis G = {f1, . . . fm} of an ideal I
is called reduced Gröbner basis if for all i, LC(fi) = 1 and any
monomial of fi is not divisible by any element of LM(G\{fi}).

Proposition 2.4. Let I be an ideal of Fq[x1, . . . , xn] and
k ∈ {1, . . . , n}. Assume G a Gröbner basis of I for the Elimination
order [x1, . . . , xk], [xk+1, . . . , xn] (or the Lexicographical order).
Then G ∩ Fq[xk+1, . . . , xn] is a Gröbner basis of
I ∩ Fq[xk+1, . . . , xn].

So if we want to find a polynomial depending on severals vari-
ables xk+1, . . . , xn, we just need to compute a Gröbner basis with
one of these orders.
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2.2. Algebraic Immunities

Let us consider a function f :
{
Fn

q → Fm
q

X ,→ Z , denoted as

z1 = f1(X), . . . , zm = fm(X).
Our objective is to study algebraic equations induced by the

graph of f which gives solutions on the field Fq and not on Fq,
the algebraic closure of Fq. To restrict the study of equation to
Fq, we add field equations xq

i −xi, denoted as the set Xq −X and
consider elements of the ideal

I = 〈z1 − f1(X), . . . , zm − fm(X),Xq −X〉.

In symmetric cryptography, there is two important applica-
tions: Stream Cipher and Block Cipher.

x  ,...,x1 n x  ,...,x1 n

1z  ,...,zm 1z  ,...,zm

M

M

C C

Stream Cipher Block Cipher

. . . 

. . . . . . 

f

On Stream Cipher, we use functions to filter elements (x1, . . . , xn).
So when we do an attack on this structure, we suppose known
elements (z1, . . . , zm) and try to find relations on (x1, . . . , xn).
Whereas, in Block Cipher, non-linear functions are used inside
the process to create the coded message. A possible way to write
algebraic equations is to introduce intermediate variables as N.
Courtois has done it in [7].

Now we will present a definition of Algebraic Immunities for
both cases.

Definition 2.5. Let us consider a function f : Fn
q → Fm

q and
I = 〈z1 − f1(X), . . . , zm − fm(X),Xq −X〉.

We define:
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• Algebraic Immunity of Block Cipher,

AIB(f) = min{deg(P ), P ∈ I}.

• Algebraic Immunity of Stream Cipher,

AIS(f) = min{deg(P,X), P ∈ I}.

As an ideal with field equations is radical, there is an equiva-
lence between I and the set of solution of I which is the graph of
f . So AI(f) is a generalization of Algebraic Immunity defined in
article [12] and first introduced in article [6].

2.3. Properties of Algebraic Immunities

This definition doesn’t give us a way to have Algebraic Immu-
nities, we can find them with Gröbner basis according to some
orders on monomials. This is resumed in the next theorem.

Theorem 2.6. Let us consider a function f : Fn
q → Fm

q .
• A reduced Gröbner basis of I for a DRL order [X,Z] con-

tains a linear basis of polynomials P of I such that
AIB(f) = deg(P ).

• A reduced Gröbner basis of I for a elimination order on
[X], [Z] contains a linear basis of polynomials P of I such
that AIS(f) = deg(P,X).

Proof. First we have noticed that for a DRL order [X,Z] and any
polynomial g, deg(g) = deg(LM(g)) and for an Elimination order
[X,Z] and any polynomial h, deg(h,X) = deg(LM(h),X).

Furthermore to reduce a polynomial g by another one h, we
need that LT (g) % LT (h).

As all polynomials of I are reduced to zero by a Gröbner basis,
these both remarks prove the theorem. If P is a polynomial of
I such that deg(P ) = AIB(f), resp. deg(P,X) = AIS(f), then
P is reduced by the Gröbner basis G for a DRL order, resp. the
Elimination order, so there is g ∈ G, such that LT (g) ≺ LT (P ).
From the first remark, we prove that G contains a linear generated
family satisfying the condition of the theorem.

Then the definition of reduced Gröbner basis implies that the
linear generated family is a linearly independent family. !

This theorem gives us a way to compute the Algebraic Immu-
nities. To find a Gröbner basis of this ideal I has a bad theoretical
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complexity but is very efficient in practice. There is other methods
to find AIS(f) presented in [1, 6, 12].

Moreover, we have several properties like the comparison be-
tween this two notions.

Proposition 2.7. Let us consider f : Fn
q ,→ Fm

q .
Then AIS(f) ≤ AIB(f).

Proof. Let us consider P a polynomial of I so that deg(P ) =
AIB(f).

We have deg(P,X) ≤ deg(P ). Thus AIS(f) ≤ deg(P,X) ≤
deg(P ) = AIB(f). !

In the article [4], we want to find algebraic relation g on the
graph of f satisfying deg(g,X) = AIS(f) so that g can be writ-
ten as g(X,Z) = g1(X) + g2(X,Z) with deg(g1,X) = deg(g1) >
deg(g2,X). In fact, we can give with this two Algebraic Immuni-
ties a condition of existence of these relations.

Proposition 2.8. Let us consider f : Fn
q ,→ Fm

q .
There exists g ∈ I satisfying deg(g,X) = AIS(f) so that g

can be written as g(X,Z) = g1(X) + g2(X,Z) with deg(g1,X) =
deg(g1) > deg(g2,X).

If AIS(f) = AIB(f).
Moreover if f : Fn

2 ,→ F2, then this condition is a necessary and
sufficient condition.

Proof. If AIS(f) = AIB(f), let g be a polynomial so that deg(g) =
AIB(f), g can be written as g1(X) + g2(X,Z) so that g2 has no
monomial which depends only of X. This means that deg(g2) >
deg(g2,X).

We have deg(g) = max(deg(g1),deg(g2)) = deg(g,X) then
deg(g1) = deg(g,X) ≥ deg(g2) > deg(g2,X).

Thus g satisfies the condition of the proposition.
For the case of f : Fn

2 ,→ F2, a polynomial g ∈ I satisfying
deg(g,X) = AIS(f) can be written as g(X, z1) = g1(X)+z1g2(X).
As deg(g2,X) < deg(g1), deg(g) = deg(g1) ≤ deg(g,X). !

As we have found different properties of these algebraic immu-
nities, we can give bounds of their value.

3. Bound on the value of Algebraic Immunities

In this section, we give bounds on these Algebraic Immunities.
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3.1. Properties of the ideal I
Let us consider f a function of Fn

q on Fm
q . We want to find

polynomials with degree AIB(f), respect AIS(f) according X, in
the ideal I generated by z1− f1(X), . . . , zm− fm(X),Xq −X and
especially, we consider the Fq[X1, . . . , Xn, Z1, . . . , Zm]/I, denoted
by A.

As I is a zero dimensional ideal, we know that the ring A is
a linear vector space with finite dimension. This subsection gives
this dimension.

G is a Gröbner basis of I for a lexicographic order z1 % · · · %
zm % x1 % · · · % xn] of I.

Thus A is a linear vector space with Xα | α ∈ Fn
q } as a linear

basis.
Then A is a vector space of dimension qn.
We deduce that the image of qn+1 monomials in A is a linearly

dependent family, then there is a linear relation in this family and
this relation corresponds to a polynomial of I.

Thus considering the qn + 1 first monomials for the DRL order
for AIB(f) and the Elimination order for AIS(f) is a sufficient
condition to have a relation and find the degree. As the algebraic
Immunity corresponds to a degree, we need to count the monomi-
als there are in Fq[X,Z]/〈Xq−X,Zq−Z〉 for the degree d. Let us
denote Md

p the number of monomial in Fq[y1, . . . , yp]/〈yq
i −yi with

degree d. Then the number of monomial m# satisfying deg(m#) = d
in Fq[X,Z]/〈Xq −X,Zq − Z〉 is Md

n+m and the number of mono-
mial m′

# satisfying deg(m′
#,X) = d in Fq[X,Z]/〈Xq −X,Zq − Z〉

is qmMd
n.

We can translate this condition as a series, a bound of the
Algebraic Immunity will be the first degree of the series with a
negative or zero coefficient. These series are:

AIB(f) qn

1−t −
(1−tq)n+m

(1−t)n+m+1

AIS(f) qn−m

1−t − (1−tq)n

(1−t)n+1

We notice that the difference between the both Algebraic Im-
munities is solely the following change of variables:

AIB(f) AIS(f)
n ←→ n−m

n + m ←→ n
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3.2. Explicit bounds

In this section, we give explicit bounds on the Algebraic Immu-
nities which are only bounds on the first degree of the series with
a negative or zero coefficient. Then we compare these bound to
the computed degree of the series for given value of n, m and q. A
first bound is given by minoring m by 1:

Proposition 3.1. Let us consider f : Fn
q → Fm

q .
We have

• AIB(f) ≤
{
/ (n+1)(q−1)

2 0 if q > 2
1n+1

2 2 if q = 2
.

• AIS(f) ≤
{
/n(q−1)

2 0 if q > 2
1n

2 2 if q = 2
.

Proof. We can prove it for AIB(f), the change of variable will give
an equivalent bound to AIS(f).

As Md
n+m denotes the number of monomials with degree d. We

have qn+m =
∑(q−1)(n+m)

i=0 M i
n+m.

Furthermore Md
n+m = M (q−1)(n+m)−d

n+m .

Thus for m = 1, qn+1 ≤ 2
∑# (q−1)(n+1)

2 $
i=0 M i

n+1.

As Md
n+m ≥ Md

n+1, then
∑# (q−1)(n+1)

2 $
i=0 M i

n+m ≥ 1
2qn+1.

• If q > 2, then
∑# (q−1)(n+1)

2 $
i=0 M i

n+m > qn.
Thus there is a polynomial in I with a degree lower or

equal to / (q−1)(n+1)
2 0.

• If q = 2, we do not have a strict inequality as 2n+1 =
2

∑#n+1
2 $

i=0 M i
n+1 for n + 1 odd.

But we are sure that 2
∑%n+1

2 &
i=0 M i

n+1 > 2n+1.
Then AIB(f) ≤ 1n+1

2 2.
!

In the case of q = 2, the bound on AIS(f) is the bound given
in the articles [6, 9].

This proposition does not take into account the number of out-
puts of f . It is optimal for only one output for f . But in Block
Cipher, we use in general inversible function, so m = n. We need
to give other bounds only for AIB(f). The next bounds can be ex-
tended to AIS(f) by the change of variables given in the previous
section.
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Proposition 3.2. Let us consider f : Fn
q → Fm

q .
Then
If

(m+n+q−1
q−1

)
≥ qn,

AIB(f) ≤

√
(m + n− 1)2 + 4 ((m + n)!qn)

2
m+n − (m + n + 1)

2

And if
(m+n+q−1

q−1

)
< qn, then

AIB(f) ≤
√

m′2 − 4(m + n− ΩΓ2)(1− Ω)−m′

2(1− Ω)

where Γ = (−q + m+n−1
2 ) + ((m + n− 1)!)

1
m+n q

n
m+n ) and

Ω = 1
42

2
m+n (m + n)

2
m+n and m′ = m + n + 1− 2ΩΓ

Proof. This proof is technical and quite long, we only explain in
this article how to find it and refer to [2] for complete proof.

First we lower the bound of the number of monomials with
degree lower than d by

(n+m+d
n+m

)
−(n+m)

(n+m+d−q
n+m

)
. And we find

two cases, d < q, this means
(m+n+q−1

q−1

)
≥ qn, and d > q.

With bounds on this binomials, we can found a lower bound
as a polynomial in d with degree n + m. A sufficient condition to
find the degree d is to have this lower bound higher than qn.

Using the Hölder inequality, it give us that a quadratic poly-
nomial in d must be positive and then the result of the proposi-
tion. !

This bound is not useful in this form. But it can give us an
asymptotic estimation in n of AIB(f), for m = n.

Corollary 3.3. Let us consider f : Fn
q → Fn

q .

1
n

AIB(f) ≤
{

5
6 + o(1) if q ≤ 7

2
3

(
4
√

q
e − 11

4

)
+ o(1) if q ≥ 8

As we can see, this bound is bad for lower value of q, it is worth
than the bound given by proposition 3.1. Then we give a better
bound for q = 2.

We can compare these explicit bounds for Algebraic Immunity
for Bloc Cipher, for exemple. For fixed values of q, n and m, we
determinate a bound directely from the series. We have compared
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this bound with bounds of propositions 3.2 and 3.1 for q = 16 and
n = m.

Figure 1. Comparison of first bounds
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Figure 1 gives us the difference according the value of n, with
m = n. We see the linear behavior but the asymptotic constant
1
nAIB(f) found is not good.

These bounds depend on the value of q, figure 1 shows that the
bound of proposition 3.2 is bad for small field.

Now, we give a better bound on F2.

Proposition 3.4. Let us consider f : Fn
2 ,→ Fm

2 .

AIB(f) ≤ 1−
√

1− 4Γ
2

m′.

where m’=m+n and
Γ = 1

8(m′+1) ln 2

(√
( 1
12m′+1 −

1
2 ln 2πm′ − n ln 2)2 + 4(m′+1) ln 2

3m′

−( 1
12m′+1 −

1
2 ln 2π − 1

2 lnm′ − n ln 2)
)
.

Proof. As for proposition 3.2, we only explain how we found it and
refer to [2] for a complete proof.

First, we bound the number of monomial with degree lower
than d by

(n+m
d

)
and using the double inequality of H. Robbins

on n!, we have :

ln
(

k

d

)
> −1

2
ln 2πk−

(
(kλ +

1
2
) ln λ + (k(1− λ) +

1
2
) ln(1− λ)

)

+
1

12k + 1
− 1

12
1

λ(1− λ)
with d = λk.

By studying the variation of the right term as a function in
λ ∈ [ 1k ; 1

2 ], we find a lower bound of ln(
(k
d

)
). A sufficient condition

to find a bound of d is that this lower bound is higher than qn.
This gives us a quadratic polynomial in λ(1 − λ), where d =

λ(n + m), which must be positive. And then we find a minimum
value for λ and thus the result of the proposition. !
Corollary 3.5. Let us consider f : Fn

2 ,→ Fn
2 .

1
n

AIB(f) ≤ 1
8

+ o(1).

We compare all the bounds together.
The bound on F2 is close to the bound defined by the serie.
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Figure 2. Comparison of bounds according the
nb of variables

4. Functions with memory

For Stream Cipher, using functions with memories gives good
cryptographic criteria. This idea is used in several stream cipher
as E0, we find it in Bluetooth.

A function with memory is a function where the output depends
on the input and a memory defined by previous inputs of size !.

F. Armknecht and M. Krause have proved in article [10] that
for a boolean function from Fn

2 to F2 and considering several con-
secutive outputs, there is a relation between the inputs and the
outputs which does not depend on the memories. The articles [5,9]
have developed this study for functions from Fn

2 to Fm
2 .

In this section, we look at the Algebraic Immunity for Stream
Cipher of a function f , this algebraic immunity is defined accord-
ing the number of consecutive outputs studied.

4.1. Definition

Let us consider a function f with a memory of size ! at mo-
ment t. For this moment t, the memory is denoted by C(t) =
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(c(t)
1 , . . . , c(t)

# ), the input by X(t) = (x(t)
1 . . . x(t)

n ) and the output by
Z(t) = (z(t)

1 . . . z(t)
m .

The function f can be written at moment t as :

f :






z(t)
1 = f1(X(t),C(t))

...
z(t)
m = fm(X(t),C(t))

c(t+1)
1 = P1(X(t),C(t))

...
c(t+1)
# = P#(X(t),C(t))

Let IM be the ideal generated by

{
z(t+k)
j − fj(X(t+k),C(t+k))

c(t+k+1)
i − Pi(X(t+k),C(t+k))

for j ∈ {1, . . . ,m}, i ∈ {1, . . . , !} and k ∈ {0, . . . ,M − 1} and field
equations

(
X(t+k)

)q−X(t+k), k ∈ {0, . . . ,M−1} and
(
C(t)

)q−C(t).

Theorem 4.1. Let us consider f a function from Fn
q to Fm

q with
a memory of size ! and M consecutive outputs of f .

If M ≥ 1 #+1
m 2,

Then there exists P ∈ Fq[X
(t)
1 , . . . , X(t+M)

n , Z(t)
1 , . . . , Z(t+M)

m ],
P &= 0 such that P ∈ IM .

Proof. We consider the family that generates the ideal IM .
This family is a Gröbner basis of IM according the lexico-

graphic order mathbfZ(t+M) % · · · % Z(t) % C(t+M) % · · · %
C(t+1) % C(t) % X(t+M) % · · · % X(t+M). And the ideal IM is a
zero dimensional ideal.

Thus Am = Fq[X(t), . . . ,C(t+M)
# ]/IM defined a vector space of

dimension qn M+#.
We have q(n+m)M distinct monomials in

Fq[X(t), . . . ,X(t+M),Z(t), . . . ,Z(t+M)] /
〈
(
X(t+k)

)q −X(t+k),
(
Z(t+k)

)q − Z(t+k), k ∈ {0, . . . ,M − 1}〉.
We deduced that if q(n+m)M ≥ qn M+#, then the set of the im-

age of q(n+m)M distinct monomials in AM is a linearly dependent
family.

Thus for M > #
m , there exists P ∈ IM , P &= 0. The first integer

higher than #
m is 1 #+1

m 2. !
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With this theorem, we can adapt the definition of Algebraic
Immunity to functions with memories.

Definition 4.2. Let us consider f a function from Fn
q to Fm

q with
a memory of size ! and M consecutive outputs of f and let us
denote JM := IM ∩ Fq[X(t), . . . ,X(t+M),Z(t), . . . ,Z(t+M)].

We defined the Algebraic Immunities according M outputs:

AIS(f,M) := min
P∈JM ,P )=0

(deg(P,X)),

AIB(f,M) := min
P∈JM ,P )=0

(deg(P )).

4.2. Properties

We have simple properties on the Algebraic Immunity.

Proposition 4.3. Let us consider f a function from Fn
q to Fm

q
with memory of size ! and M consecutive outputs of f .

For all k ∈ N,
AIS(f,M + k) ≤ AIS(f,M) and AIB(f,M + k) ≤ AIB(f,M).

Proof. Let be k ∈ N. If P ∈ JM then P ∈ JM+k. !
As we prove in theorem 4.1, AM is a vector space with dimen-

sion qn M+#. So we can deduce bounds as in the previous section.
A bound of the Algebraic Immunity will be the first degree of

the series with a negative or zero coefficient. These series are :

AIB(f,M) qn M+!

1−t − (1−tq)(n+m)M

(1−t)(n+m)M+1

AIS(f) q(n−m)M+!

1−t − (1−tq)n M

(1−t)n M+1

We notice that there are very few differences with Algebraic
Immunity for a function without memories. Furthermore, the re-
sults of Algebraic Immunity for a function without memories give
results for AIS(f,M) and AIB(f,M) by the simple change of vari-
able :

AIB(f) AIB(f,M) AIS(f) AIS(f,M)
n ←→ n M + ! n−m ←→ (n−m)M + !

n + m ←→ (n + m)M n ←→ n M

All the bounds given in subsection 3.2 give bounds for AIB(f,M)
and AIS(f,M) by using the change of variable.

With a large number of variables, the computation of a Gröbner
basis can be difficult. Knowing generators of JM introduced in
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definition 4.2 simplifies the computation. The following theorem
answers partly to this question.

Theorem 4.4. Let us consider f a function from Fn
q to Fq with

memory of size ! and M consecutive outputs of f .
Let us consider JM introduced in definition 4.2.
If J# = {0} in

Fq[X(t), . . . ,X(t+#−1), z(t)
1 , . . . , z(t+#−1)

1 ] /
〈
(
X(t+k)

)q −X(t+k),
(
z(t+k)
1

)q
− z(t+k)

1 , k ∈ {0, . . . ,M!− 1}〉

then ∃P ∈ Fq[X
(t)
1 , . . . , X(t+#)

n , Z(t)
1 , . . . , Z(t+#−1)

1 ] so that

z(t+#)
1 = P (X(t), . . . ,X(t+#), z(t)

1 , . . . , z(t+#−1)
1 )

And for M ≥ !, JM is generated by

z(t+i)
1 − P (X(t+i−#−1), . . . ,X(t+i), z(t+i−#−1)

1 , . . . , z(t+i−1)
1 )

for all i ∈ {!, . . . , M − 1} and field equations on variables.

Proof. With notations of the proof of theorem 4.1, we know that
A# is a vector space of dimension q#(n+1).

As Fq[X(t), . . . ,X(t+#−1), z(t)
1 , . . . , z(t+#−1)

1 ] /
〈
(
X(t+k)

)q − X(t+k),
(
z(t+k)
1

)q
− z(t+k)

1 , k ∈ {0, . . . , ! − 1}〉 have

q#(n+1) distinct monomials and J# = {O}, the image of this mono-
mials in A# is a linear basis of A#.

So we can express all the memories c(t+i)
j as a polynomial in

X(t+k) and z(t+k)
1 , k ∈ {0, . . . , ! − 1}, for all i ∈ {0, dots, ! − 1}

and j{1, dots, !}.
Then z(t+#)

1 can be expressed as a polynomial in X(t+k) and
z(t+k′)
1 , k ∈ {0, . . . , !}, k′ ∈ {0, . . . , ! − 1}. As well as memory

Ct+#.
With iteration to M , we construct polynomials that are a

Gröbner basis for the lexicographic order:
X(t) ≺ · · · ≺ X(t+M) ≺ z(t)

1 ≺ . . . z(t+M)
1 ≺ C(t) ≺ · · · ≺ X(t+M+1).

Then, from proposition 2.4, the polynomial not depending on
memories is a Gröbner basis of JM for the deduced lexicographic
order. !

An application of this theorem is the summation generator. In
this Stream Cipher, the filtering function f has n inputs X =
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(x(t)
1 , . . . , x(t)

n ) in F2, a memory C(t) ∈ Z/2#Z with ! = 1log2 n2
the size of the memory and one output z ∈ F2 for a moment t.
The definition is given by this relation :

z(t) = x(t)
1 ⊕· · ·⊕x(t)

n ⊕C(t) C(t+1) =

⌊
x(t)

1 + · · · + x(t)
n ⊕ C(t)

2

⌋

with ⊕, the sum on F2 and + the sum in the ring Z/2#Z.
In [11], they construct a polynomial P so that:

z(t+#) = P (X(t), . . . ,X(t+#), z(t), . . . , z(t+#−1)). In fact in this ar-
ticle, they have proved the hypothesis of theorem 4.4. So, we
can compute with this relation the exact value of AIS(f, !) and
compares with the bound given by article [11]:

n 2 3 4 5 6 7 8 9
Bound of [11] 2 3 4 6 6 7 8 12

AIS(f, !) 2 3 4 5 6 7 8 9
As we can notice, it seems that the AIS(f, !) is equal to n.

5. conclusion

This article generalizes the Algebraic Immunity to all finite
fields and also for Block Cipher. All these notions are linked to
Gröbner basis with a specific order : the DRL order for Algebraic
Immunity in Block Cipher and the Elimination order for Algebraic
Immunity in Stream Cipher.

As the definition of a function f directly gives us a Gröbner
basis for a lexicographic order, we prove properties of the ideal.
Furthermore we give explicit and asymptotic bounds on the Alge-
braic Immunity.

We extend this notion to function with memories over any finite
fields and we give a theorem that helps computing the relations
implied by these Algebraic Immunity.
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A STATISTICAL APPROACH ON THE NUMBER OF
FUNCTIONS SATISFYING STRICT AVALANCHE

CRITERIA

E. YILDIRIM SAYGI1, Z. SAYGI1, M. SÖNMEZ TURAN1 and
A. DOĞANAKSOY2

Abstract. Boolean functions play an important role in the
design of both block and stream ciphers. One of the impor-
tant criteria that a Boolean function should satisfy is the
Strict Avalanche Criteria (SAC). In this study, we concen-
trated on the number of functions satisfying SAC. A special
formula, to find the number of functions with particular dif-
ference distribution vector is presented. For n = 5, 6, 7 and
8, the number of functions satisfying SAC is estimated us-
ing a statistical approach and 99.9% confidence intervals are
given. Also, another confidence interval for the number of
balanced Boolean functions satisfying SAC is presented.
Keywords: SAC, Difference Distribution Vector, Boolean
Functions, Number of functions satisfying SAC.

1. Introduction

Boolean functions, as basic elements of most building blocks
used in cryptography, play an important role in the design of both
block and stream ciphers. For security issues, they are required to
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satisfy various conflicting criteria such as balancedness, high non-
linearity and strict avalanche criteria (SAC). Balancedness is one
of the primary cryptographic criteria. Nonlinearity of a Boolean
function is its minimum Hamming distance to the set of affine
functions. High nonlinearity is necessary to prevent the attacks
that may use affine approximations of the function. It is also nat-
ural to expect each input bit to have an effect on the output bits.
A function with this property is said to be complete. The con-
cept of avalanche effect, which means an average of one half of
the output bits should be changed whenever a single input bit is
complemented, was first introduced by Feistel [2]. Webster and
Tavares [7] combined avalanche and completeness and introduced
the concept of SAC. A cryptographic function is said to satisfy the
SAC if whenever a single input bit is complemented, each output
bit changes with a probability of one half.

All of these properties are vital for resisting different kind of at-
tacks. Due to the trade-off between these criteria, it is not possible
to obtain the best achievable values for each of them separately.
Also, it is known that strict fulfillment of some criterion prevents
the optimal fulfillment of others.

There are various studies on construction methods for Boolean
functions satisfying some of the mentioned properties. Millan et
al. [3] concentrated on construction of balanced Boolean functions
with high nonlinearity by hill climbing and genetic algorithms.
Pasalic et al. [5] proposed algorithms for construction of resilient
and correlation immune Boolean functions with high nonlinear-
ity. It is very important to have an idea about the size of the
set of functions that satisfy desired properties, before focusing on
construction methods. It may happen that a randomly chosen
Boolean function satisfies the property with a high probability.

In this study, we give our attention to the number of Boolean
functions satisfying SAC. Also, the number of functions with par-
ticular difference distribution vectors is studied. The exact for-
mula for a special case is given. Results of some statistical obser-
vations are compared to the exact values.

For small values of n, it is easy to calculate the number of
functions satisfying SAC by enumeration. But when n gets larger
(n > 5), enumeration becomes infeasible. In [1], a filtering pro-
cedure that identifies the functions that do not satisfy SAC is
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proposed. However, even considering this procedure it is still in-
feasible to determine the exact numbers. Rather than using ineffi-
cient exact methods, we used a statistical approach which results
in a very short time with 99.9% confidence interval for the num-
ber of functions satisfying SAC for n = 6, 7 and 8. Also, another
confidence interval for the number of balanced Boolean functions
satisfying SAC is given.

Our paper is organized as follows. The preliminaries and some
background knowledge are represented in Section 2. In Section 3,
a formula for the number of functions with particular difference
distribution vectors is given and some properties are observed. In
Section 4, our statistical approach to find the number of functions
satisfying SAC is described in detail and the results are tabulated.
Finally, we recommend some future studies.

2. Preliminaries

Let Vn be the vector space of all n-tuples of elements from
GF (2). A Boolean function is a GF (2) valued map defined on Vn

and the set of all Boolean functions on Vn is denoted by Fn.
The Hamming weight of a function is defined as the number

of nonzero entries in the truth table (Tf ) of f and is denoted by
w(f).

A function is called balanced if the number of 1’s is equal to the
number of 0’s in its truth table. Clearly, the number of balanced
functions in Fn is

( 2n

2n−1

)
.

For a given f ∈ Fn, Si(f) is defined by

Si(f) =
∑

x

f(x)⊕ f(x⊕ ei) i = 1, . . . , n

where ei is the vector having only one nonzero entry in the i-th
position.

By S(f), we denote the vector (S1(f), S2(f), · · · , Sn(f)) which
is called the difference distribution vector of f .

It follows that f ∈ Fn satisfies SAC if and only if Si(f) = 2n−1

for all i ∈ {1, 2, . . . , n}. For any fixed a ∈ {1, . . . , 2n} the number
of functions satisfying Si(f) = a does not depend on the choice of
i ∈ {1, . . . , n}. That is ,

|{f ∈ Fn|Si(f) = a}| = |{f ∈ Fn|Sj(f) = a}|
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for any pair of i, j ∈ {1, . . . , n}. For a = 2n−1, this number is
denoted by S(n, 1).

This idea can be generalized to define S(n, k) as follows. The
number of functions satisfying the condition Si1(f) = a1, Si2(f) =
a2, . . . , Sik(f) = ak, does not depend on the choice of the subset
{i1, . . . , ik} ⊂ {1, . . . , n}. Thus, S(n, k) is given as the number of
functions satisfying Si1(f) = Si2(f) = · · · = Sik(f) = 2n−1, where
{i1, . . . , ik} is any subset of {1, . . . , n} with cardinality k.

3. Number of functions with a Particular Difference Dis-
tribution Vector

In this section, we deal with the number of functions having
some particular types of difference distribution vector. In [4], a
computation of S(n, 2) is given by

S(n, 2) =
∑2n−3

i=0

(2n−2

2i

)
82n−2−2i22i ∑i

j=0

(2i
2j

)(2j
j

)(2i−2j
i−j

)
. (1)

We give a more general, but yet more simple formula which com-
putes the number of functions f ∈ Fn for which S1(f) = λ1,
S2(f) = λ2 for arbitrarily chosen nonnegative even integers λ1,λ2.

Theorem 3.1. Given nonnegative integers λ1,λ2 ≤ 2n, the num-
ber of functions in Fn such that S1 = λ1, S2 = λ2 is

22n−2 ∑N1
t=0

(2n−2

2t

)(2n−2−2t
λ1
4 −t

)(2n−2−2t
λ2
4 −t

)
24t , if λi ≡ 0 (mod 4),

22n−2 ∑N2
t=0

(2n−2

2t+1

)(2n−2−2t−1
λ1−2

4 −t

)(2n−2−2t−1
λ2−2

4 −t

)
24t, if λi ≡ 2 (mod 4),

0 , otherwise,

where i = 1, 2, N1 = min(2n−3, λ1
4 , λ2

4 ) and
N2 = min(2n−3 − 1, λ1−2

4 , λ2−2
4 ).

Proof. We here give just an outline of the proof, for a complete
proof one may refer to [9]. Given f ∈ Fn there exists a unique
quadruple g1, g2, g3, g4 of functions in Fn−2 so that the truth table
of f is

Tg4 ||(Tg2 ⊕ Tg4)||(Tg1 ⊕ Tg4)||(Tg1 ⊕ Tg2 ⊕ Tg3 ⊕ Tg4)

where || stands for the concatenation of the truth tables. Then,

λ1 = 4w(g1) + 2w(g3)− 4w(g1g3),



A STAT. APP. ON THE NUM. OF FUNCTIONS SATISFYING SAC 43

λ2 = 4w(g2) + 2w(g3)− 4w(g2g3).
After fixing g3 and considering the possibilities of g1 and g2 we
obtain the result. !

An immediate consequence of this theorem is

Corollary 3.2.

S(n, 2) = 22n−2
2n−3∑

t=0

(
2n−2

2t

)(
2n−2 − 2t

2n−3 − t

)2

24t.

Note that, considering the observation in [8] which states that

i∑

j=0

(
2i
2j

) (
2j
j

) (
2i− 2j
i− j

)
=

(
2i
i

)2

,

the result in (1) directly reduces to the expression given in the
corollary.
Computed Values vs. Statistical Values

In this study our main aim is to find the number of functions
satisfying SAC. Since there is no explicit formula of S(n, k) for
k > 2, we decided to use a statistical approach. For n = 8, the
total number of functions is 2256, it is even impossible to choose
5% of the population size as a sample size. However, to verify
that a sample size of N = 100, 000, 000 is enough for deriving
some conclusions, we perform the following experiment.

For n = 8, using the formula given in Theorem 1, we calcu-
late the number of functions having S1 = λ1 and S2 = λ2, and
divide them to the total number of functions to obtain the exact
proportions given in Table 1. These vectors are chosen such that
100 ≤ λ1,λ2 ≤ 128.

Using a sample size of 100, 000, 000, we also count the number
of functions having S1 = λ1 and S2 = λ2, for n = 8. In Table
1, a list of observed proportions and normalized errors are given.
Normalized errors are calculated by |(ei − oi)|/ei where ei and oi

are expected and observed values, respectively. In this table, the
maximum, minimum and average absolute errors are 0.019018828,
0.0000042664 and 0.002904854, respectively. Obtaining such small
error rates encouraged us to extend the statistical method for
finding the number of functions satisfying SAC for n = 6, 7, 8.
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For λ1 = 128 and λ2 = 128 case, the normalized error rate is
0.0016786893.

λ1 λ2 Exact Observed Normalized Error
Proportion Proportion Proportion

102 110 0.0002061909 0.0002061900 0.0000042664
118 118 0.0045613921 0.0045614600 0.0000148814
116 128 0.0056626272 0.0056622700 0.0000630780
120 124 0.0072781823 0.0072773900 0.0001088541
102 126 0.0006860166 0.0006861500 0.0001945281
100 120 0.0003576980 0.0003546100 0.0086328875
106 110 0.0004340272 0.0004301900 0.0088410131
102 106 0.0001126250 0.0001108000 0.0162041468
100 100 0.0000239131 0.0000234700 0.0185276455
100 104 0.0000525211 0.0000535200 0.0190188280

Table 1. The best and worst five proportions of
the exact and observed proportion of functions hav-
ing λ1 and λ2 in their difference distribution table.

4. Number of Boolean Functions Satisfying SAC

The number of Boolean functions satisfying SAC, S(n, n), is
our main concern. For small values of n, it is possible to count
the number by enumeration. By using statistics, we mainly tried
to estimate two proportions:

P1: the proportion of SAC satisfying Boolean functions to the
number of Boolean functions,

P2: the proportion of SAC satisfying balanced Boolean func-
tions to the number of balanced Boolean functions.

Exact P1 and P2 values for n ≤ 5 are listed in Table 2.

n P1 P2

2 0.5 0
3 0.25 0.457142857
4 0.062988 0.106293706
5 0.006408 0.011507546

Table 2. Exact P1 and P2 values for n ≤ 5.
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n number of sets number of functions in each set
5 40 106

6 40 107

7 40 108

8 30 109

Table 3. Number of sets and number of functions
in each set.

We use a statistical approach to estimate P1 and P2, that is
to say the number of functions satisfying SAC for n = 6, 7 and 8.
Although, the desired number is available for n = 5, the same sta-
tistical calculations are used as a control group. For each value of
n, sets containing random functions are generated allowing repeti-
tions. The number of sets and the number of Boolean functions in
each set are given in Table 3. These sample sizes are statistically
enough to make estimates with small error probabilities. Our ap-
proach is as follows: To calculate P1 and P2 for a given n ≥ 5, from
each data set, the number of functions satisfying SAC is calculated
and is divided to the cardinality of the set. Using the obtained
proportion values from each set, a confidence interval is generated
for the exact proportion and therefore, the confidence interval for
exact the number of functions satisfying SAC is obtained.

To estimate a confidence interval for the proportion values, an
experiment is performed to estimate the distribution of propor-
tions for n = 6. The total of 100 proportions are distributed
over equally length intervals and a statistical goodness-of-fit test
is applied to the proportions to test whether they come from a
normal distribution. The number of functions satisfying SAC is
transformed to standard normal distribution by the transforma-
tion, z = (x− µ)/σ where x is the number of functions satisfying
SAC from the sets and µ is the average value and σ is the standard
deviation obtained from the sample. The z-values are distributed
over 8 categories. Expected and observed frequencies for each cat-
egory are given in Table 4.

Using the chi-square goodness-of-fit test and the values in Table
4, the test statistics is calculated by the formula

∑
(ei − oi)2/ei

where ei and oi are expected and observed values, respectively and
obtained as 4.64. The tabulated chi-square value with 5(= 8−2−1)
degrees of freedom is χ(0.99, 5) = 15.09 with α = 0.01. Since
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Expected Expected Observed
Category Boundaries Probability number of number of

z-values z-values
1 x < −1.15 0.125 12.5 13
2 −1.15 < x < −0.67 0.125 12.5 18
3 −0.67 < x < −0.32 0.125 12.5 12
4 −0.32 < x < 0.00 0.125 12.5 9
5 0.00 < x < 0.32 0.125 12.5 12
6 0.32 < x < 0.67 0.125 12.5 9
7 0.67 < x < 1.15 0.125 12.5 13
8 1.15 < x 0.125 12.5 14

Table 4. Goodness-of-fit statistical test calculations.

4.64 < 15.09, there is no statistical evidence that the data do not
come from normal distribution.

By the knowledge that the proportions come from normal dis-
tributions, the estimates for the number of Boolean functions sat-
isfying SAC for values n = 5, 6, 7 and 8 are tabulated in Table
5. The exact proportion of functions satisfying SAC for n = 5
is given in Table 2 as 0.006408, and this proportion lies in the
proposed interval.

n Average % 99.9 Confidence Estimate for number
proportion Interval functions satisfying SAC

5 0.006421 0.006403 - 0.006438 27577985,01
6 0.000301 0.000299 - 0.000302 5,55247E+15
7 7.10E-06 7.03E-06 - 7.17E-06 2,416E+33
8 8.47E-08 8.22E-08 - 8.72E-08 9,80759E+69

Table 5. Estimate Proportion of Boolean func-
tions satisfying SAC and corresponding confidence
intervals.

Also, to estimate the number of balanced Boolean functions
satisfying SAC, the same procedure is applied and the results are
given in Table 6.
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n Average % 99.9 Confidence Estimate for number
proportion Interval functions satisfying SAC

5 0.011545 0.011518-0.011571 6939473,103
6 0.000555 0.000552-0.000557 1,01711E+15
7 1.38E-05 1.37E-05-1.38E-05 3,31E+32
8 1.67E-07 1.63E-07-1.70E-07 9,63E+68

Table 6. Estimate Proportion of balanced
Boolean functions satisfying SAC and correspond-
ing confidence intervals.

5. Conclusion

In this study, our interest is to find the number of functions
satisfying SAC. First, we presented a formula to find the num-
ber of functions with particular difference distribution vector and
compared the exact numbers to statistics. We used a statistical
approach and obtained 99.9% confidence interval for the number
of functions satisfying SAC for n = 6, 7 and 8. Also, another
confidence interval for the number of balanced Boolean functions
satisfying SAC is given. For future work, an explicit formula of
S(n, k) for k ≥ 3 will be studied. Also, statistical estimations will
be done for larger values of n.
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ASYMPTOTIC DISTRIBUTION FOR THE
NONLINEARITY OF BOOLEAN FUNCTIONS

F. Rodier1

Abstract. I recall some properties of the distribution for the
nonlinearity of Boolean functions, and I introduce new ones
which are related to large deviation theorems in probability.

Keywords: Boolean function, nonlinearity, sum-of-square in-
dicator, large deviation.

1. Introduction

The nonlinearity of a Boolean function f : Fm
2 −→ F2 is the

distance from f to the set of affine functions with m variables
(see § 2.2). It is an important concept. We use it in cryptography
(cf. [2,3,5]) to construct strong cryptosystems (symmetric ciphers),
and in coding theory with the old problem of the covering radius
of the first order Reed-Muller codes (cf. [4, 10]).

The nonlinearity is bounded above by 2m−1 − 2m/2−1. This
bound is reached by bent functions [8] which exist only if the
number of variables m of the Boolean functions is even. For secu-
rity reasons in cryptography, and also because Boolean functions
also need to have other properties such as balancedness or high al-
gebraic degree, it is important to have the possibility of choosing
among many Boolean functions, not only bent functions, but also
functions which are almost bent and hence to study the distribu-
tion of nonlinearity.

Except for the paper by Chuan-Kun Wu [16] who studies the
distribution of Boolean functions with nonlinearity ≤ 2m−2, the

1 Institut de Mathématiques de Luminy – C.N.R.S.– Marseille – France
email: rodier@iml.univ-mrs.fr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



50 F. RODIER

distribution of nonlinearity was not known until it appeared on
papers by Carlet [2,3] and independently by Olejár and Stanek [9]
who proved that most of the Boolean functions have a nonlin-
earity greater than 2m−1 − 2m/2−1

√
2m log 2. Then I got more

precise results in [12, 13], proving that most of them have indeed
a nonlinearity close to 2m−1 − 2m/2−1

√
2m log 2.

It is very hard to find results on this distribution. We therefore
study the simpler criterion of the “sum of square”, linked to the
propagation criterion for Boolean functions. This criterion has
been studied by Xian-Mo Zhang and Yuliang Zheng [17], or by
P. Stănică [15]. His relationship with non-linearity was studied by
A. Canteaut et al. [1].

We explore what can be done in this respect, and what kind of
result we should obtain by considering large deviation theorems
in probabilities.

2. Preliminaries

2.1. Boolean functions

Let m be a positive integer and q = 2m.

Definition 2.1. A Boolean function with m variables is a map
from the space Vm = Fm

2 into F2.

A Boolean function is linear if it is a linear form on the vector
space Fm

2 . It is affine if it is equal to a linear function up to
addition of a constant.

2.2. Nonlinearity

Definition 2.2. We call nonlinearity of a Boolean function f :
Vm −→ F2 the distance from f to the set of affine functions with
m variables:

nl(f) = min
h affine

d(f, h)

where d is the Hamming distance.

One can show that the nonlinearity is equal to

nl(f) = 2m−1 − 1
2
S(f)
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where
S(f) = max

v∈Vm

∣∣∣
∑

x∈Vm

χ(f(x) + v · x)
∣∣∣

and v · x denote the usual scalar product in Vm and χ denotes the
non trivial character of F2 with values in the complex numbers:
χ(x) = (−1)x. We call S(f) the spectral amplitude of the Boolean
function f .

We have by Parseval identity, for f ∈ Bm:
√

q ≤ S(f) ≤ q.

2.3. The sum-of-square indicator

Let f be a Boolean function on Vm. Zhang and Zheng intro-
duced the sum-of-square indicator [17]:

σf =
1
q

∑

x∈Vm

f̂(x)4 = ‖f̂‖44

where f̂ is defined by f̂(u) =
∑

x∈Vm
χ(f(x) + u · x). We remark

that S(f) = ‖f̂‖∞, hence 22m = ‖f̂‖42 ≤ σf ≤ S(f)4.

2.4. The spaces of Boolean functions with m variables

We define Bm as the algebra of Boolean functions on Vm.
To study asymptotically Boolean functions, we will need the

notion of Boolean functions with an infinity of variables and we
will introduce a probability measure on them to be able to state
almost sure results.

We define V∞ as the space of infinite sequences of elements of
F2 which are almost all equal to zero, and B = B∞ as the algebra
of Boolean functions on V∞. We have the restriction mappings

πm : B∞ −→ Bm : f '−→ fm = f |Vm .

We will consider the equiprobability on Bm and we will endow B
with a probability which will be the Haar measure on it with total
mass 1. In other words, for each f ∈ Bm, the probability of the
event π−1

m f = {g ∈ B | g|Vm = f} is given by

P(π−1
m f) =

1
2q

where q = |Vm| = 2m.
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3. Known results

3.1. Limit of S(f)
The next result shows that in fact S(f) is rather close to √q.

It is proved in [12–14].

Theorem 3.1. If f is a boolean function in B∞, then almost
surely:

lim
m→∞

S(fm)√
2q log q

= 1,

3.2. Limit of σf

We have [12]: q2 ≤ σf ≤ q3. Then there is the following
results [12,13].

Proposition 3.2. If f is a Boolean function on Vm, and t a
positive real number,

P

(∣∣∣∣
σf

q2
− 3

∣∣∣∣ ≥ t

)
≤ 40

t2q
,

In [12,13] we get a slightly better inequality, but we have:

P

(∣∣∣∣
σf

q2
− 3

∣∣∣∣ ≥ t

)

≤ P

(∣∣∣∣
σf

q2
− 3 +

2
q

∣∣∣∣ ≥ t +
2
q

)
≤ 40

(t + 2
q )2q

≤ 40
t2q

. (1)

Corollary 3.3. If f ∈ B, one has almost surely

lim
m

σfm

22m
= 3.

3.3. An old conjecture

Bent functions are such that S(f) = √
q = 2m/2. In 1983,

Patterson and Wiedemann [10] conjectured that

min
f

S(f) ∼ 2m/2 for f ∈ Bm.



NONLINEARITY OF BOOLEAN FUNCTIONS 53

We can also make a weaker conjecture:

if f ∈ Bm, one has lim
m

min
f∈Vm

σf

22m
= 1. (2)

4. Some new conjectures

We define the random variables with values in R and depending
of a in V ×m = Vm − {0}:

Ya =
1
q

(
∑

x1+x2=a

χ
(
f(x1) + f(x2)

))2

.

as in [12,13]. We can write

σf

q2
− 1 =

1
q

∑

a∈V ×m

Ya.

As the Ya have the same distribution, and as their limit is the
distribution of density

1
2
√

πx
e−x/41(x>0)

we can expect that a large deviation theorem may be applied, to
give an estimation of the probability that σf = q2 (cf. [6]).

As an ingredient of Gärdner-Ellis theorem, let us define

φq(u) =
1
q

log E
(

exp
(
u

∑

a∈V ×m

Ya
))

where E denotes the expectation of a random variable on Bm or
B∞. We will see that the behaviour of this function have conse-
quences on the distribution of the sum-of-square indicator.

4.1. General properties of the function φq

Proposition 4.1. We have:
• φq(u) < 0 for u < 0; φq(0) = 0; φq(u) > 0 for u > 0.
• φq is convex in u.
• φ′q(0) = 2(1− 1

q ).
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• As φq is convex, we have φq(u) ≥ φ′q(0)u.
• φq is increasing in u.

Proof. These are well known properties of this function (cf. [6]).
!

Proposition 4.2. For m even, one has − log 2 ≤ φq(u).

Proof. Let ai be the different values of the random variable σf

q2 −1
each occurring with probability p

i
. Suppose that a0 = 0. We have:

φq(u) =
1
q

log

(
∑

i

p
i
exp(uai)

)

=
1
q

log

(
∑

i

p
i

p
0

exp(u(ai − a0))

)
+

1
q

log
(
p

0

)
.

As m is even there exist bent functions, hence the probability
that σf = q2 (that is ∀a += 0, Ya = 0) is larger than 1/2q, hence
p

0
≥ 1/2q. Therefore

φq(u) =
1
q

log
(
p

0

)
+ o(u) ≥ − log 2 + o(u)

when u → −∞. We conclude, as φq(u) is convex. !

4.2. The function φ

We conjecture that the functions φq have a pointwise limit φ
in R ∪ {+∞}. From the properties of the function φq, we get:

Proposition 4.3.
• The function φ(u) is convex in u,
• φ(0) = 0,
• The function φ(u) is increasing
• For every u, φ(u) ≥ − log 2.

4.3. Legendre transform of φ

The Legendre transform of φ is defined by

I(x) = sup
u

(ux− ρ(u)).

From the preceding properties of φ(u), we get the following results.
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Proposition 4.4.
• I(x) is a convex nonnegative function on R.
• I(2) = 0
• the derivative at 2 is I ′(2) = 0
• I(0) ≤ log 2

4.4. Conjecture on the distribution of σf for σf small

We suppose again that φ exists and moreover that it is differ-
entiable on ]−∞, 0[.

Then we expect to have by Gärtner-Ellis theorem:

Conjecture 4.5. For a < b ≤ 2, we have

lim
q→∞

1
q

log P
(

σf

q2
− 1 ∈ [a, b]

)
= −I(b).

In particular, as f is bent if and only if σf = q2, we have:

lim
q→∞

1
q

log P (f is bent) = −I(0).

We would deduce from the previous proposition and proposition
4.4 that for given ε, for every large q, there exists f such that

1
q2
‖f̂‖44 − 1 < ε

and hence it proves the conjecture (2).

5. Bounds for σf

5.1. The distribution of σf for σf large

We can compute the function I for s > 2, but unfortunately
this gives a trivial result on probabilities.

Proposition 5.1. There is a subfamily of the functions φq which
tend pointwise to infinity when q →∞ for u > 0.

Proof. For a given s ≥ 2 we have, for q large (q ≥ s− 2)

P
(

σf

q2
− 1 > s

)
≥ 1/2q,
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as there is a function such that σf = q3. Hence

1
q

log P
(

σf

q2
− 1 > s

)
≥ − log 2.

If the functions φq tend pointwise to infinity when q → ∞ for
u > 0, there is nothing to prove.

If not, as the φq are increasing functions, there is u0 > 0 (possi-
bly infinite) such that φq(u) do not tend to infinity for 0 ≤ u < u0

and φq(u) →∞ for u > u0. So for any u1 < u0 there is an infinite
family of the functions φq which are bounded for 0 ≤ u ≤ u1. Con-
sequently, we can choose a subfamily which converges uniformly
to a limit φ on [0, u2] for any u2 < u1 (cf [11]). Choosing u1 and
u2 tending to u0, and taking subfamilies, we can conclude that
there is a family of φq’s which tend pointwise to a function φ, for
u ≥ 0, and that φ(u) = +∞ for u > u0. Let I be the Legendre
transform of φ.

By Gärtner-Ellis theorem (cf. [6])

−I(s) ≥ lim sup
q→∞

1
q

log P
(

σf

q2
− 1 > s

)
≥ − log 2.

Hence I(s) ≤ log 2 for any s ≥ 2. As I is a convex function, we
have

I(s) = 0
for s > 2 and the properties of Legendre transform implies that
the functions φq tend to infinity for u > 0. !
Corollary 5.2. If the function φ exists as in section 4.2, then
I(x) = 0 for x ≥ 2.
Remark 5.1. As a consequence of this proposition, we cannot
expect such an inequality as:

P
(

σf

q2
− 1 > s

)
≤ A−q,

for fixed s ≥ 2 and A > 1.

5.2. Bounds on the moments of σf

A main ingredient of large deviation theorem is the higher mo-
ments. Using them, we get bounds on E

(
exp

(
u
∑

a∈V ×m
Ya

))
or on

E
(∑

a∈V ×m
Ya

)s
.
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Proposition 5.3. Let s be an integer such that 2s < q. Bounds
on E(

∑
Ya)s are given by

(2(q − 1))s ≤ E(
∑

Ya)s

≤ 2sqs exp
8s3 − 3.2s + 3

3q
+ (q − 1)s−1 (2s + s− 3)

(2s)!
(s)!

.

Proof. A lower bound is given by Jensen’s inequality:

E(
∑

a∈V ×m

Ya)s ≥ (E
∑

a∈V ×m

Ya)s = (
∑

a∈V ×m

EYa)s = (2(q − 1))s.

The proof of the upper bound is given in section 6. !

5.3. Pearson’s bound

With these bounds, we can prove better bounds than in propo-
sition 3.2.

Proposition 5.4. If f is a Boolean function on Vm, t a positive
real number, s an integer and q > 4s, we have

P

(∣∣∣∣
σf

q2
− 3

∣∣∣∣ ≥ t

)
≤ α2s

qt2s

with α2s =
22s+1(4s)!

(2s)!
for q large enough.

Proof. Pearson’s inequality (cf. [7]) states that if X is a random
variable whose mean is µ and E|X − µ|r = βr then

P(|X − µ|r ≥ βrλ
r) ≤ 1

λr
.

We can evaluate the bounds on E
∣∣∣∣
σf

q2 −3+ 2
q

∣∣∣∣
r

by evaluating bounds

on E(
∑

a∈V ×m
Ya)r. This is done in section 7. Finally we use the

relations (1). !
Corollary 5.5. If moreover 8s log(2) + 2s log s ≤ log q, one has

1
s

log P

(∣∣∣∣
σf

q2
− 3

∣∣∣∣ ≥ t

)
≤ −2 log t + o(

1
s
).
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Proof. We use Stirling’s formula. !

Remark 5.2. Pearson’s bound only works for large t. For in-
stance, the bound for s = 2 is better than the one for s = 1 if
t ≥ 25 roughly.

5.4. Bound for σf large

The following proposition limits the probability that σf

q2 − 1 is
too large.

Proposition 5.6. One has, for every t ≥ 2:

P
(

σf

q2
− 1 ≥ t

)
≤
√

t√
2

exp((2− t)/4)

Proof. We have, by the exponential overbound (cf. [6]), for every
u ≥ 0:

P
(

σf

q2
− 1 ≥ t

)
≤ E



exp(
u

q

∑

a∈V ×m

Ya)



 exp(−ut)

≤
∑

n



 un

qnn!
E




∑

a∈V ×m

Ya




n

 exp(−ut)

≤
∑

n

(
un

n!
E (Y n

a )
)

exp(−ut)

by Holder’s inequality

≤
∑

n

(
un (2n)!

n!2

)
exp(−ut)

≤
√

1
1− 4t

e−ut

By choosing the u conveniently (u = t−2
4t ), we find the result. !

Remark 5.3. This rough bound is very inaccurate for small values
of t, but is more precise for large values.
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6. Proof of the upper bound on E(
∑

a∈V ×m

Ya)
s

The upper bound is obtained by expanding E(
∑

Ya)s:

E(
∑

a∈V ×m

Ya)s =
∑

E(Ya1 . . . Yas)

where the sum in the right hand side is on the s-uples (a1, . . . , as)
in V ×m × · · ·× V ×m .

6.1. Case where (a1, . . . , as) is a family of linearly independent
elements of Vm

Proposition 6.1. When the (a1, . . . , as) is a family of linearly
independent elements of Vm one has

E(Ya1 . . . Yas) ≤ 2s exp
8s3

3q
.

There are at most qs exp(−2s−1
q ) of such families.

Proof. Let us define

E(b1, b2, . . . , bs) =
∑

x1,x2,...,xs

E
(
χ
(
f(x1) + f(x1 + b1)+

+f(x2) + f(x2 + b2) + · · · + f(xs) + f(xs + bs)
))

for bi ∈ V ×m and

E(s) = supE(b1, . . . , bs)

where bi =
∑

j∈Bi
aj and the Bi are distinct subsets of the set

{1, 2, . . . , 2s} such that bi += 0 and as+j = aj .
We first note that three of the bi cannot be equal. Indeed

suppose that b1 = b2 = b3. Then, for at least one of the i (1 ≤ i ≤
s), then i ∈ B1 and s+ i is not in B2 or not in B3. Let us suppose
that s + i /∈ B2, then, the aj being linearly independent, we have
b1 += b2.
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If two bi are equal, suppose that they are b2s−1 and b2s. Then,
by the induction relations given in [12], section 5:

E(b1, b2, . . . , b2s−1, b2s) ≤ 2qE(b1, b2, . . . , b2s−3, b2s−2)+

+2
2s−2∑

i=1

E(b1, b2, . . . , bi + b2s, . . . b2s−1)

and

E(b1, b2, . . . , bi + b2s, . . . b2s−1)

≤ 2
2s−2∑

j=1

E(b1, b2, . . . , bi + b2s, . . . , bj + b2s−1, . . . , b2s−2)

≤ 2(2s− 2)E(2s− 2)

as bi + b2s += 0, bj + b2s−1 += 0, bi + b2s + b2s−1 += 0. Therefore

E(b1, b2, . . . , b2s−1, b2s)
≤ 2qE(b1, b2, . . . , b2s−3, b2s−2) + 4(2s− 2)(2s− 2)E(2s− 2)
≤ (2q + 16(s− 1)2)E(2s− 2).

If all the bi are distinct we have

E(b1, b2, . . . , b2s−1, b2s) ≤ 2
2s−1∑

i=1

E(b1, b2, . . . , bi + b2s, . . . b2s−1)

If s ≥ 2, all the b1, b2, . . . , bi + b2s, . . . b2s−1 are distinct, except
possibly 2 of them. Suppose that b2s−1 are distinct from the others,
we have, as previously

E(b1, b2, . . . , bi + b2s, . . . b2s−1)

≤ 2
2s−2∑

j=1

E(b1, b2, . . . , bi + b2s, . . . , bj + b2s−1, . . . , b2s−2)

where bi + b2s += 0, bj + b2s−1 += 0 and bi + b2s + b2s−1 += 0 as
bi + b2s += b2s−1. Therefore

E(b1, b2, . . . , b2s−1, b2s) ≤ (2q + 16(s− 1)2)E(2s− 2)
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So we have the following bound on E(2s):

E(2s) ≤ (2q + 16(s− 1)2)(2q + 16(s− 2)2) . . . (2q + 16)2q

≤ 2sqs
(
1 +

8(s− 1)2

q

)(
1 +

8(s− 2)2

q

)
. . .

(
1 +

8
q

)
.

So we get

log E(2s) ≤ s log 2 + s log q +
8s3

3q

using the inequality

log(1 + x) ≤ x. (3)

Finally, we get:

E(Ya1 . . . Yas) =
1
qs

E(a1, a1, a2, a2, . . . , as, as) ≤

≤ 1
qs

E(2s) ≤ 2s exp
8s3

3q

if the a1. . . as are linearly independent.
The number Ns of s-uplets (a1, . . . , as) which are linearly inde-

pendent is

Ns = qs
(
1− 1

q

)(
1− 2

q

)(
1− 4

q

)
· · ·

(
1− 2s−1

q

)
.

Using again the inequality (3) this gives log Ns ≤ s log q − 2s−1
q

and the desired result. !

6.2. Case of the other terms

The other terms are bounded by

E(Ya1 . . . Yas) ≤ E(Y s
a ) ≤ (2s)!

(s)!

where we use Holder’s inequality and the above mentioned induc-
tion relations.
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There are at most (q−1)s−1 (2s + s− 3) of such terms. Indeed
we have to find a lower bound for Ns:

Ns = (q − 1)s(1− 1
q − 1

)(1− 3
q − 1

) · · · (1− 2s−1 − 1
q − 1

)

≥ (q − 1)s(1− 1
q − 1

− 3
q − 1

− · · ·− 2s−1 − 1
q − 1

)

= (q − 1)s(1− 2s + s− 3
q − 1

).

Whence

(q − 1)s −Ns ≤ (q − 1)s 2s + s− 3
q − 1

.

7. Bound on E|X − µ|2s

We use the relation

E|X − µ|2s = E(X − µ)2s =
2s∑

i=0

(−1)iE(Xi)µ2s−i

where X = σf

q2 − 1, and µ = E(σf

q2 − 1) = E(1
q

∑
a∈V ×m

Ya) = 2− 2/q
and proposition 5.3.

For even i, we get:

EXi =
1
qi
E(

∑
Ya)i

≤ 2i exp
8i3 − 3× 2i + 3

3q
+ (q − 1)i−1q−i

(
2i + i− 3

) (2i)!
(i)!

≤ 2i
(
1 + O

(1
q

)
+

1.1
q

(2i)!
(i)!

)
.

For odd i:

EXi ≥ 2i (q − 1)i

qi
≥ 2i

(
1− i

q
+ O(i2/q2)

)
.
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Hence, as i ≤ 2s = O(log q), and remarking that the constant
terms cancel:

E|X − µ|2s

≤
∑

i even

(
2s

i

)
22s

(
1 + O(1/q) +

1.1
q

(2i)!
(i)!

)
)

−
∑

i odd

(
2s

i

)
22s

(
1− i

q
+ O

( log2 q

q2

)) (
1− 1

q

)2s−i

≤ 22s

q

∑

i even

(
2s

i

) (
O(1) + 1.1

(2i)!
(i)!

)

+
22s

q

∑

i odd

(
2s

i

) (
2s + i + O(log2 q/q)

)

≤ 1.1
22s

q

∑

i even

(
2s

i

)
(2i)!
(i)!

+
22s

q

∑

i

(
2s

i

)
(4s + O(1)).

We have

∑

i even

(
2s

i

)
(2i)!
(i)!

= (2s)!
∑

i even

(2i)!
i!2(2s− i)!

.

Going from i to i + 2, we multiply the term of the sum by

(2i + 4)(2i + 3)(2i + 2)(2i + 1)(2s− i)(2s− i− 1)
(i + 2)2(i + 1)2

≥ 20

Hence

∑

i even

(
2s

i

)
(2i)!
(i)!

≤ 20
19

(4s)!
(2s)!

.

The other terms are negligible with respect to this one. So, we
have, for q large enough:

β2s ≤ 22s+1

q

(4s)!
(2s)!

.
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ON THE SUPPORTS OF THE WALSH
TRANSFORMS OF BOOLEAN FUNCTIONS

C. Carlet1, 2 and S. Mesnager1

Abstract. In this paper, we study, in relationship with cov-
ering sequences, the structure of those subsets of Fn

2 which
can be the Walsh supports of Boolean functions.

1. Introduction

Cryptographic Boolean functions play an important role in the
design of hash functions and of stream and block ciphers. Var-
ious criteria related to cryptographically desirable Boolean func-
tions have been proposed, such as balancedness, high nonlinearity,
high correlation immunity order, high degree of the propagation
criterion and inexistence of linear structure. The most impor-
tant mathematical tool for the study of cryptographic properties
of Boolean functions is the Walsh (or Hadamard) transform, the
characteristic 2 special case of the discrete Fourier transform. The
Walsh transform permits to measure the correlation between a
Boolean function and all linear Boolean functions. The knowledge
of the Walsh transform of a Boolean function uniquely determines
the function and hence it is possible to work entirely with the
Walsh transform. In particular, its systematic use leads to uni-
form, elegant and efficient treatments and statements of the main
cryptographic criteria. Resiliency and inexistence of linear struc-
tures are directly related to the properties of the support of the

1 MAATICAH, Université de Paris VIII, Département de Mathématiques,
2, rue de la Liberté, 93526 Saint-Denis Cedex - France
2 INRIA - Projet CODES, Bâtiment 25, Domaine de Voluceau - Rocquen-
court, B.P. 105, 78153 Le Chesnay Cedex - France
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Walsh transform of a Boolean function (i.e. its Walsh support).
The other essential criteria - degree, non-linearity, propagation cri-
terion - are also connected, in a more distant way, to the Walsh
support of a Boolean function.

However, little is known on the possible structure of the Walsh
supports of Boolean functions. We know only few generic examples
of subsets of Fn

2 which can be the Walsh supports of some Boolean
functions on n variables. We know even less examples of subsets
of Fn

2 which cannot be such supports.
The interest of studying the structure of Walsh supports of

Boolean functions is still strengthened after the introduction of
covering sequences. The notion of covering sequence of a Boolean
function, related to the derivatives of the function, was introduced
in [7]; it enables a complete characterization of the balancedness
and of the resiliency of Boolean functions, and there exists a char-
acterization of those Boolean functions which admit some given
covering sequence by means of their Walsh spectra. We shall see
that the existence of non-constant covering sequences for a bal-
anced Boolean function depends on a property of its Walsh sup-
port.

In this paper, we summarize what is known on this subject, we
introduce several general results, and we study the forms of the
Walsh supports of all functions on at most 6 variables (for which
a classification is known).

In Section 2, we first introduce the notation, the definitions
and preliminary results on covering sequences. We study subse-
quently the Walsh supports of those balanced Boolean functions
whose covering sequences are indicators of flats. We show (Propo-
sition 2.6) that, for any Boolean function f on Fn

2 which admits
no derivative equal to the constant function 1 and any flat a + E
of Fn

2 , there is an equivalence between the fact that f admits the
indicator of a + E of Fn

2 as non-trivial covering sequence and the
fact that the Walsh support of f is disjoint from the orthogonal
space of E. We characterize then those Boolean functions on Fn

2
whose Walsh support is disjoint from the orthogonal of a given
vector subspace of Fn

2 . Next, in Section 3, we study the possible
structures of the Walsh supports of Boolean functions. Along the
way, we recall what are the Walsh supports of classical Boolean
functions : affine, quadratic, and more generally partially bent. It
is well known that, for every n, many kinds of Boolean functions
(including the classical Maiorana-McFarland’s functions) can have
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Walsh support equal to the whole space Fn
2 , and that the empty

set cannot be such support. Also, any singleton is the support of
an affine function. The next natural step is to ask whether the dif-
ference Fn

2 \ {a} (where a denotes any vector of Fn
2 ) can be or not

the Walsh support of a Boolean function, that is, whether Walsh
supports of Boolean functions can have size 2n − 1. We remark
that adding a linear function moves a to 0; this brings us to be
interested in finding balanced Boolean functions whose Walsh sup-
port is Fn

2 \ {0} (that is, which are the only balanced function in
the coset of the Reed-Muller code of order 1 that they generate).
For small values of the number of variables, it is easy to see that
such functions do not exist. For n ≥ 10, we give a construction
of a class of balanced Boolean functions whose Walsh support has
size 2n − 1 (cf. Construction 1). Such functions admit only one
kind of covering sequences: the sequences which are constant on
Fn

2 \ {0}. The question of knowing whether such functions are ex-
ceptional arises then; indeed, there are examples of characteristics
of n-variable Boolean functions (e.g. non-normality) which are
impossible for small values of n, and which become the common
case for high values of n. We prove in Proposition 3.3 that such
functions are rare among the balanced Boolean functions.

2. Notation and Preliminaries

We shall have to distinguish in the whole paper between the
additions of integers in Z , denoted by + and

∑
i, and the additions

mod 2, denoted by ⊕ and
⊕

i. For simplicity and because there
will be no ambiguity, we shall denote by + the addition of vectors
of Fn

2 (words). If x and b are two vectors in Fn
2 , we denote by

x · b their usual inner product x · b =
⊕n

i=1 xibi. We recall the
basic facts about Boolean functions. A Boolean function f is an
F2-valued function on the vector-space Fn

2 of n-tuples of elements
from F2. Any Boolean function f on n variables admits a unique
algebraic normal form (A.N.F.) :

f(x1, . . . , xn) =
⊕

u∈Fn
2

au

(
n∏

i=1

xui
i

)
=

⊕

u∈Fn
2

auxu.

We call the degree of the algebraic normal form of a Boolean func-
tion its algebraic degree. The Hamming weight wt(f) of f is the
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number of vectors x in Fn
2 such that f(x) = 1. A function f is bal-

anced if wt(f) = wt(f ⊕ 1), i.e. if wt(f) = 2n−1. The “sign”
function of f is the integer-valued function χf (x) = (−1)f(x).
The Walsh transform of f , that is, the discrete Fourier trans-
form of χf , whose value at b ∈ Fn

2 equals by definition χ̂f (b) =∑

x∈Fn
2

(−1)f(x)+x·b, is related to the Hamming weight of the function

f⊕lb (where lb(x) = b·x) via the relation: χ̂f (b) = 2n−2wt(f⊕lb).
It satisfies Parseval’s relation:

∑

b∈Fn
2

χ̂f
2(b) = 22n (1)

and the inverse formula relation:
∑

b∈Fn
2

χ̂f (b)(−1)b·x = 2nχf (x) (2)

The Hamming distance between two Boolean functions f1 and f2

on Fn
2 is equal to the weight of f1 ⊕ f2. The minimum distance

between f and the set of all affine functions lb⊕ ε (b ∈ Fn
2 , ε ∈ F2),

called the nonlinearity of f , is denoted by Nf and satisfies the
relation:

Nf = 2n−1 − 1
2

max
b∈Fn

2

|χ̂f (b)| . (3)

Because of Parseval’s relation, it is upper bounded by 2n−1 −
2n/2−1. This bound is tight for n even. The functions which
achieve it are called bent. But these functions are never balanced.
The maximum nonlinearity of balanced functions is unknown for
every n ≥ 8.

The auto-correlation function of the sign function of a Boolean
function f is r̂(a) =

∑
x∈Fn

2
(−1)f(x)⊕f(x+a). The function

Daf(x) = f(x)⊕f(x+a) is called a derivative of f . As shown in [3],
for every Boolean function, we have (2n − Nr̂)(2n − Ncχf

) ≥ 2n,
where Nr̂ and Ncχf

are the numbers of zeros of respectively r̂ and
χ̂f . If f satisfies the equality (2n−Nr̂)(2n−Ncχf

) = 2n, then f is
called partially-bent.

Notation: Throughout this paper, Sf denotes the Walsh sup-
port of f , i.e. Sf := {ω ∈ Fn

2 | χ̂f (ω) %= 0}.
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2.1. Covering sequences of balanced functions

Definition 2.1. A covering sequence of a Boolean function f on
Fn

2 is any real-valued sequence λ = (λa)a∈Fn
2

such that
∑

a∈Fn
2

λaDaf

is a constant function ρ. The value of ρ is called the level of this
sequence. If ρ %= 0, then we say that the covering sequence is
non-trivial.

The following characterization of balanced Boolean functions is
shown in [7] :

Proposition 2.2. [7] If a Boolean function on Fn
2 admits a non-

trivial covering sequence, then it is balanced. Conversely, any bal-
anced function admits the constant sequence 1 as non-trivial cov-
ering sequence (with level 2n−1). Thus, any Boolean function is
balanced if and only if it admits a non-trivial covering sequence.

Note that we can change the value λ0 of any (non-trivial) cover-
ing sequence without changing its property of being a (non-trivial)
covering sequence. A question arises: does there exist balanced
functions admitting as only non-trivial covering sequences those
which are constant on Fn

2 \ {0}? We shall see that this ques-
tion is related to a question on the Walsh supports. Note that
any balanced quadratic function, and more generally any balanced
partially-bent function (cf. [3]), admits a non-trivial atomic cov-
ering sequence (i.e. with one coefficient λa equal to 1 and all the
others null). Equivalently, it has a constant derivative equal to 1.
Such function is affinely equivalent to the sum of a Boolean func-
tion on n − 1 variables and of the function xn. It is (weakly) de-
generate (see [8]). In this paper, we are interested in the functions
which admit no derivative Daf equal to the constant function 1.

Recall that we denote by χ̂f (b) the value
∑

x∈Fn
2
(−1)f(x)+x·b.

We denote similarly by λ̂(b) the value
∑

a∈Fn
2

λa(−1)a·b, i.e. the
value at b of the Fourier transform of the sequence λ. Recall
also that the support of λ is {a ∈ Fn

2 | λa %= 0}. The following
characterization is shown in [7] :

Theorem 2.3. [7] Let f be any Boolean function on Fn
2 and λ =

(λa)a∈Fn
2

any real-valued sequence.
f admits λ as covering sequence if and only if λ̂ takes constant

value on the support Sf = {b ∈ Fn
2 | χ̂f (b) %= 0} of χ̂f . Let r be
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this constant value, then the level of this covering sequence is the
number 1

2 [(
∑

a∈Fn
2

λa)− r].

Notice that if λ̂ takes value r on the support Sf of χ̂f then,
replacing its coefficient λ0 by λ0−r, we obtain a covering sequence
λ′ such that λ̂′ takes value 0 on Sf .

Thanks to Theorem 2.3, we can characterize by their Walsh
supports those balanced functions whose non-trivial covering
sequences are all constant on Fn

2 \ {0}.

Corollary 2.4. Let f be any balanced n-variable Boolean function.
The Walsh support of f equals Fn

2 \ {0} if and only if the only
non-trivial covering sequences of f are those sequences which are
constant on Fn

2 \ {0}.

Proof. If Sf equals Fn
2 \ {0} then the only non-trivial covering

sequences of f are those sequences which are constant on Fn
2 \

{0}, according to Theorem 2.3 and to the fact that a sequence is
constant on Fn

2 \ {0} if and only if its Fourier transform has the
same property (this is a direct consequence of the bijectivity of the
Fourier transform). Conversely, if Sf of f does not equal Fn

2 \ {0},
then, by inverse Fourier transform, there exists a sequence whose
Fourier transform equals the indicator of Sf , and this sequence
cannot be constant on Fn

2 \ {0} since its Fourier transform is not.
!

2.2. Walsh support of balanced Boolean functions whose cov-
ering sequences are indicators of flats

Since every balanced function admits the constant covering se-
quence 1, we focus now on the covering sequences whose coeffi-
cients are equal to 0 or 1. In the sequel, we shall always exclude,
as we said already, the possibility that a function admits a deriv-
ative equal to the constant 1, because it is an extremal case (it is
the simplest case of balancedness for a Boolean function) and be-
cause the functions admitting constant derivatives are degenerate
(see [8]).

We first make an observation on those Boolean functions which
admit a covering sequence whose support is included in a vector
subspace of Fn

2 .

Proposition 2.5. Let E be any vector subspace of Fn
2 . Let f be

any Boolean function on Fn
2 . Then f admits a covering sequence
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λ with support S ⊆ E if and only if the restriction of f to any
coset of E admits the same covering sequence λ.

Proof. The condition is clearly necessary and sufficient since the
integer-valued function

∑
a∈E λaDaf is equal to a constant func-

tion ρ if and only if its restriction to any coset of E equals ρ. !

Proposition 2.6. Let E be any vector subspace of Fn
2 and u + E

any of its cosets. Let f be any Boolean function on Fn
2 . Assume it

admits no derivative Daf equal to the constant function 1. Then
f admits the indicator of u+E as non-trivial covering sequence if
and only if Sf is disjoint from E⊥ = {x ∈ Fn

2 | x ·v = 0, ∀v ∈ E}.
This is equivalent to the fact that the restriction of f to any coset
of E is balanced. The level of this covering sequence is then equal
to |E|/2 and the indicator of every coset of E is also a covering
sequence of f with the same level. More generally, any sequence
λ such that λa+u = λu for all a ∈ E and all u ∈ Fn

2 , is also a
covering sequence of f .

Proof. Denote by λ = (λa)a∈Fn
2

the indicator of u + E. For every
b ∈ Fn

2 , λ̂(b) =
∑

a∈E(−1)(u+a)·b equals (−1)u·b |E| if b ∈ E⊥

and 0 otherwise. Thus, according to Theorem 2.3, alinea 2, λ is
a covering sequence of f if and only if Sf is either included in
E⊥ ∩ u⊥ (but in such case, the covering sequence is trivial, since
we have then r =

∑
a∈Fn

2
λa = |E| in Theorem 2.3; this is excluded

by the hypothesis) or included in E⊥ \ u⊥ (but in such case, for
every element a of u+E, the function Daf is equal to the constant
function 1, since we have then r = −|E| in Theorem 2.3; this is
also excluded by the hypothesis), or disjoint from E⊥ (in which
case the level of the sequence is equal to |E|/2). This latter case
is the only one satisfying the hypothesis. Its equivalence with the
fact that the restriction of f to any coset of E is balanced is a
consequence of Proposition 2.5 applied to the sequence equal to
the indicator of E (whose Fourier transform equals |E| times the
indicator of E⊥) and of Proposition 2.2.

The indicator of every coset of E (whose Fourier transform
equals ±|E| times the indicator of E⊥) is then clearly also a cov-
ering sequence of such function f with the same level.

Any sequence λ such that λa+u = λu for every a ∈ E and every
u ∈ Fn

2 is the linear combination of the indicators of cosets of E.
Therefore, it is also a covering sequence of f . !
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Remark. If a balanced function f is such that χ̂f
−1(0) contains

a non-zero vector b, then we can apply Propositions 2.6 and 2.5
to the vector-subspace E⊥ = {0, b}. Hence, Proposition 2.6 shows
(again) that a balanced function admits a non-trivial non-constant
covering sequence if and only if its Walsh support is different from
Fn

2 \ {0}.

Remark. Let f be any Boolean function on Fn
2 and λ = (λa)a∈Fn

2

a covering sequence of f . Let r be the constant value of λ̂ on Sf .
Then the nonlinearity of f satisfies:

Nf ≤ 2n−1 − 2n−1

√
|λ̂−1(r)|

where λ̂−1(r) = {a ∈ Fn
2 | λ̂(a) = r} and |λ̂−1(r)| denotes the

cardinality of λ̂−1(r). Indeed, according to Parseval’s relation (1)
and since Sf is included in λ̂−1(r), we have

∑

b∈bλ−1(r)

χ̂f
2(b) = 22n.

Thus, we have

max
b∈Fn

2

(
χ̂f

2(b)
)

= max
b∈bλ−1(r)

(
χ̂f

2(b)
)
≥ 22n

|λ̂−1(r)|

and the result follows from relation (3).

3. The Walsh supports of Boolean functions

We denote by Sn the set of all the Walsh supports of Boolean
functions on Fn

2 . We begin with some general elementary remarks
on Sn. We subsequently study the possible structures of Walsh
supports.

3.1. Generalities

For every n, Sn is globally invariant under any affine auto-
morphism of Fn

2 . Indeed, it is clearly invariant under transla-
tions since if g(x) = f(x) ⊕ a · x then Sg = a + Sf , and it is
also invariant under linear isomorphisms: let f be any Boolean
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function on Fn
2 , and L any linear automorphism of Fn

2 ; let L#

be the unique linear automorphism of Fn
2 such that, for every

x and y in Fn
2 , we have: y · L#(x) = L(y) · x (the matrices of

these two automorphisms are transposed one of each other and
we have (L#)−1 = (L−1)#). Then for every b in Fn

2 , we have
χ̂f◦L! (b) =

∑
x∈Fn

2
(−1)f◦L!(x)+x·b =

∑
x∈Fn

2
(−1)f(x)+L!−1(x)·b =

∑
x∈Fn

2
(−1)f(x)+x·L−1(b) = χ̂f (L−1(b)). Thus, the Walsh support

of f ◦L# is equal to L(Sf ). These remarks means that two Boolean
functions f and g which are affinely equivalent, namely if there
exists a linear automorphism L on Fn

2 , two n-dimensional binary
vectors a and b and a binary scalar c such that, for all x ∈ Fn

2 ,
g(x) = f(L(x)+a)⊕ b ·x⊕ c, then their Walsh support are linked
by the relation : Sg = b + L#(Sf ).

If f is a Boolean function on Fn
2 and g a Boolean function on

Fm
2 , then Sf × Sg is the Walsh support of the function h(x, y) =

f(x) ⊕ g(y) on Fn+m
2 . In particular, taking g affine, Sg is then a

singleton and Sh = Sf × {a}.
We do not know any other example of an operation on sets,

under which Sn would be globally invariant. In particular, Sn is
not invariant under intersection; indeed, it contains all singletons
(it is well-known that if f is affine, say f(x) = a · x ⊕ ε, then
Sf equals the singleton {a}, and the converse is true according to
Parseval’s relation and to Relation (2)) and it does not contain the
empty set. It is not invariant under union or symmetric difference
either; indeed, it does not contain pairs: let us suppose that a pair
{a, b}, a %= b, is the Walsh support of a Boolean function f ; let us
denote by λa and λb the values of the Walsh transform of f at a and
b; then, we have |λa| < 2n and |λb| < 2n according to Parseval’s
relation; and according to Relation (2), we have λa + λb = ±2n

and λa − λb = ±2n, which is clearly impossible.
Many secondary constructions of Boolean functions permit to

express the Walsh transform of the constructed function f by
means of those of the functions taken in input; but the Walsh sup-
port Sf of f depends on the values of the these Walsh transforms -
not only on their supports. This is the case, for instance, of Siegen-
thaler’s construction f(x, xn+1) = (xn+1⊕1)f1(x)⊕xn+1f2(x), for
which we have χ̂f (a, an+1) = χ̂f1 (a) + (−1)an+1χ̂f2 (a).
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3.2. The whole space Fn
2 as a Walsh support

For every n, Sn contains Fn
2 as an element, i.e. there exist

functions f whose Walsh support is equal to Fn
2 . These functions,

which are such that no function f(x)⊕b·x⊕ε (where b ∈ Fn
2 , ε ∈ F2)

is balanced, can be constructed in many different ways. A first
class of examples of such functions is that of Boolean functions of
odd weights. A second class, valid for every even n, is that of bent
functions, which are characterized by the fact that, for every b ∈
Fn

2 , the number χ̂f (b) has magnitude 2n/2. A third example can
be found in the general class of Maiorana-McFarland functions.
The following proposition is well-known (see for instance [2, 4]).

Proposition 3.1. Let s and t be any positive integers, g any
Boolean function on Ft

2 and φ any mapping from Ft
2 to Fs

2. Define
for every x ∈ Fs

2 and every y ∈ Ft
2: f(x, y) = x ·φ(y)⊕ g(y). Then

χ̂f (a, b) = 2s
∑

y∈φ−1(a)

(−1)g(y)⊕b·y,∀a ∈ Fs
2, b ∈ Ft

2.

Thus, if for every a ∈ Fs
2 the set φ−1(a) has odd size (such φ exists

if and only if s ≤ t) then Sf is equal to Fs+t
2 .

3.3. The other flats of Fn
2 as Walsh supports

3.3.1. Even-dimensional flats

For every n, the Walsh support of any quadratic function on
Fn

2 is a flat of Fn
2 of even dimension. Conversely any flat of Fn

2 of
even dimension is the Walsh support of a quadratic function.

Indeed, any quadratic function f on Fn
2 may be written (see

[9]) as f = q(t) ◦ A ⊕ 'a ⊕ ε, where q(t) denotes the canonical
quadratic function: q(t)(x1, ..., xn) =

⊕t
i=1 xixt+i , ε ∈ F2, A is a

linear automorphism of Fn
2 and 'a, a ∈ Fn

2 , is the linear Boolean
function 'a(x) := a · x. According to Subsection 3.1, we have
Sf = a + A#(Sq(t)). It is well known that Sq(t) = F2t

2 × {0} and so
Sf is a flat of Fn

2 of even dimension. Conversely, let a+V be any flat
of Fn

2 of even dimension (V being a vector subspace of Fn
2 ); there

exists a linear automorphism A of Fn
2 such that A(V ) = F2t

2 ×{0}.
Set f := q(t) ◦A#−1 ⊕ 'a. Then Sf = a + A−1(F2t

2 × {0}) = a + V .
More generally, the Walsh support of any partially-bent func-

tion on Fn
2 , that is, of any function f = g ◦ A ⊕ 'a ⊕ ε, where g

is a bent function on 2t variables and A is a linear mapping from
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Fn
2 to F2t

2 , is a flat of Fn
2 of even dimension. Conversely any flat

of Fn
2 of even dimension is the Walsh support of a partially-bent

function, in which the choice of the bent function g is arbitrary.

3.3.2. Odd-dimensional flats

For every n, there also exist functions whose Walsh supports are
any odd-dimensional flats a + E of Fn

2 of dimensions at least 3 (E
being a vector subspace of Fn

2 ), and in fact any flats of dimensions
at least 2: take for instance f := δE⊥ ⊕ 'a where 'a denotes the
linear Boolean function 'a(x) := a·x and δE⊥ denotes the indicator
of E⊥ := {x ∈ Fn

2 | ∀y ∈ E, x · y = 0}; according to Subsection
3.1, Sf = a + SδE⊥

; now, straightforward calculation yields

χ̂δE⊥
(ω) =






2n − 2
∣∣E⊥∣∣ if ω = 0

−2
∣∣E⊥∣∣ if ω ∈ E \ {0}

0 otherwise

Therefore SδE⊥
= E.

Remark. We have had to exclude the case of 1-dimensional flats
in the construction above. Actually, this case is peculiar, since we
have seen that a pair (that is, a 1-dimensional flat) cannot be the
Walsh support of a Boolean function..

3.4. Complements of singletons

As seen in the introduction, if a Boolean function f is such that
b %∈ Sf , then changing f(x) into f(x)⊕ b · x (a function belonging
to the same coset of the Reed-Muller code of order 1) permits to
assume that f is balanced. Thus we are brought to study the
Walsh supports of balanced functions. We show now that there
exist balanced functions f such that χ̂f

−1(0) contains no non-
zero vector, by giving a construction of a new class of Boolean
functions on any number n ≥ 10 of variables, and whose Walsh
supports equal Fn

2 \ {0}.

Construction 1. Let k and m be two positive integers such that
m ≥ k + 2 and 2k−1 ≥ m + 1 (this is possible only with m ≥ 6
and k ≥ 4, and for every n ≥ 10, there exist such m and k for
which n = m + k). Then there exists a mapping φ from Fm

2 to
Fk

2 such that the size of φ−1(0) is equal to 1 and, for any nonzero
vector a ∈ Fk

2, the size of φ−1(a) is an odd integer greater than

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



76 C. CARLET, S. MESNAGER

or equal to 3. There also exists a subset E of Fk
2 × Fm

2 such that
E ⊆ {(x, y) ∈ Fk

2 × Fm
2 / x · φ(y) = 0}, such that |E| = 2k−1 and

which contains an element (0, v) of even Hamming weight as well as
all the elements of the form (0, ui), where the vector ui (1 ≤ i ≤ m)
is defined as ui

j = 1 if j = i and ui
j = 0 otherwise (such a subset E

exists because we suppose that |E| = 2k−1 ≥ m+1). We denote by
δE the indicator of E: δE(x, y) = 1 if (x, y) ∈ E and δE(x, y) = 0
otherwise. Define then the following Boolean function f on Fk+m

2 :

∀(x, y) ∈ Fk
2 × Fm

2 , f(x, y) := φ(y) · x⊕ δE(x, y).

Proposition 3.2. Let f be defined as in construction 1. Then f
is balanced and the Walsh support Sf of f equals Fn

2 \ {0}.

Proof. A straightforward calculation yields: ∀(a, b) ∈ Fk
2 × Fm

2 ,

χ̂f (a, b) = 2k
∑

y∈φ−1(a)

(−1)b·y − 2
∑

(x,y)∈E

(−1)a·x⊕b·y.

In particular, when (a, b) = (0, 0), we have :

χ̂f (0, 0) = 2k|φ−1(0)|− 2|E| = 0

which ensures that f is balanced. Let (a, b) ∈ Fk
2 × Fm

2 be a non
zero word i.e. (a, b) %= (0, 0). If b = 0 then

χ̂f (a, 0) ≥ 2k|φ−1(a)|− 2k > 0

since |φ−1(a)| > 1. Assume now that b %= 0. Since |φ−1(a)| is odd,
it holds ∑

y∈φ−1(a)

(−1)b·y ≡ |φ−1(a)| ≡ 1 (mod 2)

which implies that

2k

∣∣∣∣∣∣

∑

y∈φ−1(a)

(−1)b·y

∣∣∣∣∣∣
≥ 2k.

Therefore it suffices to show that
∣∣∣∣∣∣

∑

(x,y)∈E

(−1)a·x⊕b·y

∣∣∣∣∣∣
< 2k−1 = |E|
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to ensure that χ̂f (a, b) %= 0. To this end, we show that we can
find two elements z1 and z2 in E such that (a, b) · z1 = 0 and
(a, b)·z2 = 1. Suppose that b is not the all-one vector. There exists
then at least two indices i and j such that bi = 0 and bj = 1, and
it suffices to take z1 = (0, ui) and z2 = (0, uj). If b is the all-one
vector, it suffices to take z1 = (0, v) and z2 = (0, u1). !

Concerning the values of n smaller than 10, we know that
for n = 1, the Boolean function f : x ∈ F2 -→ x is such that
Sf = F2 \ {0}. By computer search, we know that there is no
Boolean function f such that Sf = Fn

2 \ {0} when n ∈ {2, 3, 4}.
We present in appendix B some results about the Walsh supports
of Boolean functions on 5 variables. In particular, we have checked
with a computer program that there is no Boolean function on 5
variables whose Walsh support is equal to F5

2 \ {0}. To this end,
we have used the classification of Boolean functions on 5 variables
obtained by Berlekamp and Welsh [1]. In the case n = 6, the same
method can be used with a classification of Boolean functions on
6 variables: such classification was obtained for the first time by
Maioarana [10]; it is precisely listed on the web page maintained
by Fuller (http://www.isrc.qut.edu.au/people/fuller), with
the indication, for every class, of the algebraic degree, the non-
linearity and the maximum value in autocorrelation spectrum.
But it is possible to avoid visiting all the classes. Indeed, as-
sume there exists a Boolean function f on 6 variables such that
Sf = F6

2 \ {0}. Let d be the algebraic degree of f (we assume
d ≥ 2 since the Walsh support of affine functions are singletons).
It is known that the values of a balanced Boolean function f on
n variables of algebraic degree d are divisible by 22+'n−2

d (. There-
fore, for d ∈ {2, 3, 4}, the Walsh spectrum of f is of the form
{±8k, k = 0 . . . 7}. Let nk be the number of words ω ∈ F6

2 such
that χ̂f (ω) = ±8k. Clearly n0 = 1. Parseval’s relation requires
that ())

∑7
k=1 k2nk = 64. Moreover the condition Sf = F6

2 \ {0}
implies that ()))

∑7
k=1 nk = 63. One easily sees that there is no

solution for the diophantine system formed with ()) and ())). This
shows that d must be equal to 5. We checked with a computer
program that no Walsh support of any balanced Boolean function
on 6 variables of algebraic degree equal to 5 is equal to Fn

2 \ {0}.
Concerning the other values n ∈ {7, 8, 9}, the question remains

completely open since all the arguments exposed above fail for
these values of n.
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The question then arises of knowing if there are few or many
balanced Boolean functions f : Fn

2 → F2 such that Sf = Fn
2 \ {0}.

We answer in the proposition below that only a small number
of balanced Boolean functions are such that Sf = Fn

2 \ {0}. We
denote below by En the set of all balanced Boolean functions on
Fn

2 .

Proposition 3.3. For every positive integer n, the density in En

of the set {f ∈ En | Sf = Fn
2 \ {0}} is less than

√
π
2 e

3
2n+3 2−

n
2 .

Proof. Let us introduce the following family of subsets of the set
Bn of all Boolean functions on Fn

2 :

Fa = {f : Fn
2 → F2 | Sf = Fn

2 \ {a}},

where a ∈ Fn
2 .

It is easily shown that all the subsets Fa have the same cardi-
nality: fix a ∈ Fn

2 \ {0} and define the mapping ϕa from Bn to Bn

which maps f ∈ Bn to f⊕'a (where 'a denotes the linear mapping
on Fn

2 defined as 'a(x) := a · x for every x ∈ Fn
2 ). Given f ∈ Fa,

we have Sϕa(f) = a + Sf = Fn
2 \ {0} (see Subsection 3.1). Hence

ϕa is a bijection between Fa and F0.
We deduce from the inclusion

⋃

a∈Fn
2

Fa ⊆ Bn and from the fact

that the sets Fa are pairwise disjoint that |Bn| ≥ 2n|F0|. Hence
|F0| ≤ 22n−n.

Finally, the density in En of F0 is equal to |F0|
|En| . It is well-known

that |En| =
( 2n

2n−1

)
. Moreover Lemma A.2 provides the following

lower bound on |En| :
( 2n

2n−1

)
≥

√
2
π 22n−n

2 e−
3

2n+3 . This lower
bound together with the upper bound |F0| ≤ 22n−n yields to the
result. !

Appendix A. Lower bounds on binomial coefficients

Lemma A.1 (Robbins, [11]). For n ≥ 1,

n! =
√

2πn
(n

e

)n
er(n)

where r(n) satisfies 1
12n+1 < r(n) < 1

12n .



ON THE WALSH SUPPORTS OF BOOLEAN FUNCTIONS 79

Lemma A.2. For n ≥ 1,
(

2n

2n−1

)
≥

√
2
π

22n−n
2 e−

3
2n+3

Proof. By definition ,
( 2n

2n−1

)
= 2n!

(2n−1!)2 . If we use Lemma A.1,

then we get

(
2n

2n−1

)
≥
√

π2n+1
(

2n

e

)2n

er(2n)

π2n
(

2n−1

e

)2n

e2r(2n−1)
=

√
2
π

22n−n
2 er(2n)−2r(2n−1)

Now r(2n)− 2r(2n−1) ≥ 1
12 2n+1 −

2
12 2n−1 ≥ − 3

2n+3 . !

Appendix B. On the Walsh supports of Boolean functions
in five variables

Berlekamp and Welsh [1] shown that the set of all Boolean func-
tions on 5 variables can be reduced to 48 equivalence classes with
29 equivalence classes of even Hamming weight and 19 equivalence
classes of odd Hamming weight.

The equivalence class of 0 is simply formed by affine functions
on F5

2 (whose Walsh supports are the singletons of F5
2). The Walsh

support of Boolean functions of odd Hamming weights is the whole
space F5

2. These equivalence classes are:

x1x2x3x4x5

x1x2 ⊕ x1x2x3x4x5

x1x2 ⊕ x3x4 ⊕ x1x2x3x4x5

x1x2x3 ⊕ x1x2x3x4x5

x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4x5

x1x4 ⊕ x1x2x3 ⊕ x1x2x3x4x5

x4x5 ⊕ x1x2x3 ⊕ x1x2x3x4x5

x1x4 ⊕ x2x5 ⊕ x1x2x3 ⊕ x1x2x3x4x5

x1x2 ⊕ x4x5 ⊕ x1x2x3 ⊕ x1x2x3x4x5

x1x2 ⊕ x3x4 ⊕ x1x2x3 ⊕ x1x2x3x4x5

x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x1x2 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x2x3 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x2x3 ⊕ x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5
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x2x4 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x2x3 ⊕ x2x4 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x2x4 ⊕ x3x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x2x3 ⊕ x2x4 ⊕ x3x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

x2x3 ⊕ x2x4 ⊕ x3x5 ⊕ x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2x3x4x5

By computer search, we also found Boolean functions of even
weights whose Walsh support is the whole space F5

2. These equiv-
alence classes are:

x4x5 ⊕ x1x2x3

x1x2x3 ⊕ x1x4x5

x2x4 ⊕ x1x2x3 ⊕ x1x4x5

Concerning the other equivalence classes of even Hamming
weights, we begin with Boolean functions whose Walsh support is
a flat or the complement of a flat with respect to F5

2 (clearly these
properties are invariant under equivalence and addition of affine
function). We adopt the following convention to write the Boolean
functions and Walsh supports: the Boolean functions are written
in abbreviated notation; for example, we simply write 12+2345 for
x1x2 ⊕ x2x3x4x5. We also write the flats in abbreviated notation.
For example, 1+ (234) denotes the flat e1 +span{e2, e3, e4} where
(e1, e2, e3, e4, e5) denotes the canonical basis of F5

2 while (234) de-
notes the complement of span{e2, e3, e4} with respect to F5

2.

Equivalence class Walsh support
2345 (2345)
23 + 2345 (2345)
23 + 45 + 2345 (2345)
24 + 35 + 123 + 2345 4 + 5 + (23)
12 + 34 + 2345 5 + (234)
12 + 34 (1234)
123 (123)
12 (12)

For the other equivalence classes of even Hamming weights, we can
write the Walsh supports of 9 equivalences classes as a symmetric
difference of two flats or the complement of a symmetric difference
of two flats with respect to F5

2.
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Equivalence class Walsh support
12 + 2345 1 + (2345) ∆ (2)
123 + 2345 1 + (2345) ∆ (23)
12 + 123 + 2345 (2345)∆ 1 + (23)
24 + 123 + 2345 5 + (234) ∆ 3 + (2)
45 + 123 + 2345 (2345)∆ 1 + (23)
12 + 34 + 123 + 2345 (2345)∆ 1 + (23)
14 + 123 4 + (123) ∆ (1)
14 + 35 + 123 + 2345 1 + 2 + (345) ∆ 1 + 4 + 5 + (23)
14 + 25 + 123 (1245)∆ 4 + 5 + (123)

Concerning the remaing equivalence classes, their Walsh supports
can not be written in a simple form as above. We introduce the
rank and affine rank of a subset of F5

2. The rank of a subset E of
F5

2 is the dimension of the subspace of F5
2 generated by E while

the affine rank of a subset E of F5
2 is the dimension of the smallest

flat containing E. These notions have been used by Carlet and
Charpin [5] to classify the cubic Boolean functions on n variables
which are (n − 4)-resilient. Note that the rank and the affine
rank are constant on an equivalence class. For all the remaining
equivalence classes, the rank and the affine rank are equal to 5
but not the rank and the affine rank of the complement of their
Walsh supports with respect to F5

2. Therefore, for each remaining
equivalence class, we give the cardinal |Sf | of its Walsh support,
the rank k and the affine rank k of the complement of the Walsh
support with respect to F5

2.

Equivalence class |Sf | k k
23 + 24 + 35 + 123 + 145 16 5 5
23 + 123 + 145 13 5 5
123 + 145 + 2345 23 4 4
12 + 45 + 123 + 2345 25 4 4
14 + 123 + 2345 21 4 5
24 + 35 + 123 + 145 + 2345 26 4 4
24 + 45 + 123 + 145 + 2345 22 4 5
45 + 123 + 145 + 2345 22 4 5
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Abstract. The class of Rotation Symmetric Boolean Func-
tions (RSBFs) has received serious attention in searching
functions of cryptographic significance. These functions are
invariant under circular translation of indices. In this paper
we study such functions on odd number of variables and in-
teresting combinatorial properties related to Walsh spectra
of such functions are revealed. In particular we concentrate
on plateaued functions (functions with three valued Walsh
spectra) in this class and derive necessary conditions for ex-
istence of balanced rotation symmetric plateaued functions.
As application of our result we theoretically show the non ex-
istence of 9-variable, 3-resilient RSBF with nonlinearity 240
that has been posed as an open question in FSE 2004. Fur-
ther we show how one can make efficient search in the space
of RSBFs based on our theoretical results and as example
we complete the search for unbalanced 9-variable, 3rd order
correlation immune plateaued RSBFs with nonlinearity 240.
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1. Introduction

In designing cryptographically significant Boolean functions,
many requirements have to be fulfilled, such as balancedness, non-
linearity, algebraic degree, correlation immunity, resistance from
algebraic attacks etc. Some of them may contradict each other,
e.g., bent functions, which have highest possible nonlinearity, can
not be balanced. Getting the best possible trade-off among these
parameters has always been a challenging task as we can see in
many papers (see [13, 14, 16] and the references in these papers).
The class of Rotation symmetric Boolean functions (RSBFs) is a
class of functions that are invariant under circular translation of
indices. It has been shown that many functions in this class are
rich in terms of cryptographic properties [2,5,7,10,15,16]. Further
the RSBF class is much smaller (≈ 2

2n

n ) compared to the space
of n-variable Boolean functions (22n) and hence search techniques
work much better in this smaller class. Given Boolean functions
on even number of input variables, the best possible nonlinear-
ity can be achieved when the magnitude of all the Walsh spectra
values are the same. However, this is not possible when the num-
ber of input variables are odd. In such a scenario, the functions
with three valued Walsh spectra 0,±λ may be investigated [1,18],
which are known as plateaued functions. It has been noted that
there are functions with very good cryptographic properties in this
class [1, 18].

In [16], two data structures, the matrices nA and nB, were pre-
sented and made the search for RSBFs more efficient. The matrix
nB is used for fast generation of the truth table from its algebraic
normal form, and nA is used for fast calculation of the Walsh trans-
form for the RSBF. In this paper we investigate the matrix nA in
detail. We introduce a new matrix, nH, which is a sub matrix of
nA, for odd n, after some permutation. This allows us to improve
the calculation of the Walsh transform for RSBFs and provides
much better combinatorial insight to the problem. Our matrix
structure can be used to make a concrete study on plateaued RS-
BFs on odd number of variables and we could provide necessary
conditions on existence of balanced plateaued RSBFs. The con-
struction of 9-variable, 3-resilient Boolean function with nonlin-
earity 240 is still an unsolved open question in literature [13, 14].
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In [16] an estimate to search such functions in rotation symmet-
ric class has been presented which needed search of 243 Boolean
functions and could not be completed in [16]. Since such functions
are plateaued functions, we apply our results to theoretically show
the nonexistence of 9-variable, 3-resilient, nonlinearity-240 func-
tions in the rotation symmetric class. Furthermore, using the ma-
trix nH, we found efficient search strategies for plateaued RSBFs
which are much faster than what presented in [16]. We also use
efficient implementation strategy in software to make the search
faster. As an example of our search efficiency we exhaustively
searched for unbalanced 9-variable, 3rd order correlation immune,
algebraic degree 5 and nonlinearity-240 RSBFs and found 2 · 8406
many such functions. The search took only 6064 seconds against
the estimated time of 3 years1 as presented in [16].

2. Preliminaries

A Boolean function on n variables may be viewed as a map-
ping from Vn = {0, 1}n into V1 = {0, 1}. We interpret a Boolean
function f(x1, . . . , xn) as the output column of its truth table, i.e.,
a binary string of length 2n,

f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

We say that a Boolean function f is balanced if the truth table
contains an equal number of 1’s and 0’s.

The Hamming weight of a binary string S is the number of ones
in the string. This number is denoted by wt(S). The Hamming
distance between two strings, S1 and S2 is denoted dH(S1, S2)
and is the number of places where S1 and S2 differ. Note that
dH(S1, S2) = wt(S1 ⊕ S2).

Any Boolean function f(x1, . . . , xn) has a unique representation
as a polynomial over F2, called the algebraic normal form (ANF),

1Note that, we have attempted to make the search (as explained in [16])
faster using efficient software implementation and found that it is possible to
implement optimized code that can search the complete space in 470 hours
using a Pentium M 1.6 GHz computer with 512 MB RAM. We have also
parallelized the effort over a few computers and searched the complete space
as explained in [8].
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as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . ., a12...n ∈ {0, 1}. The algebraic
degree, deg(f), is the number of variables in the highest order
term with non-zero coefficient. A Boolean function is affine if
there exists no term of degree > 1 in the ANF and the set of all
affine functions is denoted A(n). An affine function with constant
term equal to zero is a linear function. The nonlinearity of an
n-variable function f is the minimum distance from the set of all
n-variable affine functions,

nl(f) = min
g∈A(n)

(dH(f, g)).

Boolean functions used in ciphers must have high nonlinearity to
prevent linear attacks [6, 9].

Many properties of Boolean functions can be described by the
Walsh transform. Let x = (x1, . . . , xn) and ω = (ω1, . . . ,ωn) both
belonging to {0, 1}n and x · ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be
a Boolean function on n variables. Then the Walsh transform of
f(x) is a real valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

A Boolean function f is balanced iff Wf (0) = 0. The non-
linearity of f is given by nl(f) = 2n−1 − 1

2 maxω∈{0,1}n |Wf (ω)|.
Correlation immune functions and resilient functions are two im-
portant classes of Boolean functions. A function is m-resilient (re-
spectively mth order correlation immune) iff its Walsh transform
satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m (respectively 1 ≤ wt(ω) ≤ m).

Following the same notation as in [13,14,16] we use (n, m, d,σ)
to denote an n-variable, m-resilient function with degree d and
nonlinearity σ. Furthermore, by [n, m, d,σ] we denote an unbal-
anced n-variable, mth order correlation immune function with de-
gree d and nonlinearity σ.
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2.1. Rotation Symmetric Boolean Functions

The rotation symmetric Boolean functions are invariant under
cyclic rotation of inputs. Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For
1 ≤ k ≤ n, we define the permutation ρk

n(xi) as

ρk
n(xi) =

{
xi+k, if i + k ≤ n

xi+k−n, if i + k > n

Let (x1, x2, . . . , xn−1, xn) ∈ Vn. Then we extend the definition as
ρk

n(x1, x2, . . . , xn−1, xn) = (ρk
n(x1), ρk

n(x2), . . . , ρk
n(xn−1), ρk

n(xn)).
Hence, ρk

n acts as k cyclic rotation on an n-bit vector.

Definition 2.1. A Boolean function f is called Rotation Symmet-
ric if for each input (x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn)) =
f(x1, . . . , xn) for 1 ≤ k ≤ n.

The inputs to a rotation symmetric Boolean function can be
divided into partitions so that each partition consists of all cyclic
shifts of one input. A partition is generated by

Gn(x1, x2, . . . , xn) = {ρk
n(x1, x2, . . . , xn)|1 ≤ k ≤ n}

and the number of such partitions is denoted by gn. Thus the num-
ber of n-variable RSBFs is 2gn . Let φ(k) be Euler’s phi -function,
then it can be shown by Burnside’s lemma that (see also [15])

gn =
1
n

∑

k|n

φ(k) 2
n
k .

By gn,w we denote the number of partitions with weight w.
It can also be checked that the number of degree w RSBFs is
(2gn,w − 1)2

Pw−1
i=0 gn,i . For the formula of how to calculate gn,w for

arbitrary n and w, we refer to [15].
A partition, or group, can be represented by its representative

element Λn,i. This is the lexicographically first element belonging
to the group. The representative elements are again arranged
lexicographically. The rotation symmetric truth table (RSTT) is
defined as the gn-bit string

[f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)].
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In [16] it was shown that the Walsh transform takes the same
value for all elements belonging to the same group, i.e., Wf (u) =
Wf (v) if u ∈ Gn(v).

In [16], two matrices were introduced, nA and nB, for efficient
search of RSBFs. The matrix nA is defined as

nAi,j =
∑

x∈Gn(Λn,i)

(−1)x·Λn,j ,

for an n-variable RSBF. Using this gn × gn matrix, the Walsh
spectra for an RSBF can be calculated from the RSTT as

Wf (Λn,j) =
gn−1∑

i=0

(−1)f(Λn,i)
nAi,j .

The notation of ρk
n can be extended, in a similar fashion, to

monomials. For example, if we have a 4 variable rotation symmet-
ric Boolean function and the term x1x2x3 is present in the ANF,
then the terms x2x3x4, x3x4x1 and x4x1x2 must also be present in
the ANF. We can associate n-bit pattern (x1, x2, . . . , xn) of Λn,i

with a monomial as well. If there is a ‘1’ in the corresponding
position we say that the variable is present in the monomial. Con-
sidering this, the gn × gn matrix nB is defined as [16]

nBi,j =
⊕

e∈Gn(Λn,j)

e|Λn,i .

That is, we take a function with all monomials coming from one
group, represented by Λn,j . Then we check the value of the func-
tion when the input is Λn,i. This value is put in the location nBi,j .
With this matrix, one can get the RSTT of the function from the
ANF.

Note that the ANF of the RSBFs are such that if one monomial
from a rotational symmetric group is present in the ANF then all
the other monomials of that rotational symmetric group are also
present [7,16]. Thus the algebraic normal from of any RSBF pos-
sesses a very nice and regular form. The algebraic attack (see [3,11]
and the references in these papers) is getting a lot of attention re-
cently. To resist algebraic attacks, the Boolean functions used in
the cryptosystems should be chosen properly. It is shown [3] that
given any n-variable Boolean function f , it is always possible to
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get a Boolean function g with degree at most 'n
2 ( such that f ∗ g

is of degree at most 'n
2 (. Here the functions are considered to be

multivariate polynomials over GF(2) and f ∗ g is the polynomial
multiplication. Thus while choosing an f , the cryptosystem de-
signer should be careful that it should not happen that degree of
f ∗ g < 'n

2 ( where g is also a low degree function. Recently there
are experimental evidences that the RSBFs are good in terms of
algebraic immunity [4] and this gives a good motivation to study
the RSBFs for cryptographic purposes.

3. Walsh Spectra of RSBFs

In this section we derive combinatorial results related to RS-
BFs and their Walsh spectra. We first start with a technical result
that counts the number of groups of t elements when t|n. This re-
sult will be used later to analyse the Walsh spectra of balanced
plateaued RSBFs. In fact, the result is true for classes of cycli-
cally shift-invariant binary sequences irrespective of their usage in
RSBFs.

Theorem 3.1. For an n-variable RSBF the number of groups with
t elements is dn,t = 1

t

∑
k|t µ( t

k )2gcd(n,k), for t = 1, 2, . . . , n, where
µ(t) is the Möbius function, i.e., µ(t) = 1, if t = 1, µ(t) = 0, if
ei ≥ 2 and µ(t) = (−1)m, otherwise, when t = pe1

1 pe2
2 . . . pem

m is
factorized in powers of m distinct primes, p1, p2 . . . pm.

Proof. Let S = {0, 1}n and x ∈ S. Denote by pt the number of
elements for which ρt

n(x) = x. Since the number of orbits for the
permutor ρt

n is gcd(n, t), and each orbit must contain all 0’s or all
1’s to fulfill the condition ρt

n(x) = x, the number of combinations
must be pt = |{x ∈ S : ρt

n(x) = x}| = 2gcd(n,t). A recursive
expression for dn,t can be derived as

dn,1 = 2 and dn,t = (pt −
∑

k|t,k<tk · dn,k)/t.
Each element x ∈ S must be counted once in some group t.

First we count how many elements will be counted in groups of
size t, and then divide this number by t, in order to get the number
of such groups dn,t. Hence, t · dn,t = 2gcd(n,t) −

∑
k|t
k<t

k · dn,k ⇒
∑

k|t k · dn,k = 2gcd(n,t). We use Möbius function µ(t) to invert the
expression. Hence, dn,t = 1

t

∑
k|t µ( t

k )2gcd(n,k). !

Corollary 3.2. gn =
∑n

t=1 dn,t and |S| =
∑n

t=1 t · dn,t = 2n.
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3.1. Investigation of nA Matrix for n Odd

We consider nA when n is an odd number and note that the
number of groups with even wt(Λn,i) is the same as the number of
groups with odd wt(Λn,i). Moreover, if we consider all Λn,i with
even Hamming weights and denote by Λn,i the representative el-
ement for the group containing the complement of Λn,i, it is easy
to note that Gn(Λn,i) ,= Gn(Λn,j) for any i, j. Hence, the set of
groups can be divided into two equal parts containing representa-
tive elements of even weight and odd weight, respectively.

Permute the matrix nA using a permutation π such that the
first gn/2 rows correspond to the representative elements, Λn,i, of
even weight and the second gn/2 rows correspond to the comple-
ments of them. That is we first list the representative elements
λn,i with even weights in lexicographical order for i = 0 to gn

2 − 1.
Then we put the elements (these are of odd weights) in the order
such that Λn,i = Λn,i− gn

2
for i = gn

2 to gn − 1. In the permutation
we swap rows and the corresponding columns of nA. We denote
the resulting matrix by nAπ and show that nAπ is of the form

nAπ =
(

nH nH
nH −nH

)
,

where nH is a sub matrix of nAπ.
Let us consider n = 5, for which gn = 8. In [16], the group

representatives are ordered lexicographically, i.e., (0, 0, 0, 0, 0),
(0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1),
(0, 1, 1, 1, 1), (1, 1, 1, 1, 1). We get the matrix 5A. On the other
hand if we permute them as (0, 0, 0, 0, 0), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1),
(0, 1, 1, 1, 1), (1, 1, 1, 1, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1), (0, 0, 0, 0, 1),
i.e., even weight elements and then the corresponding odd weight
elements, we get the matrix 5Aπ which is of a nice sub matrix
structure.

5A =





1 1 1 1 1 1 1 1
5 3 1 1 −1 −1 −3 −5
5 1 1 −3 1 −3 1 5
5 1 −3 1 −3 1 1 5
5 −1 1 −3 −1 3 1 −5
5 −1 −3 1 3 −1 1 −5
5 −3 1 1 1 1 −3 5
1 −1 1 1 −1 −1 1 −1





,
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5Aπ =





1 1 1 1 1 1 1 1
5 1 −3 1 5 1 −3 1
5 −3 1 1 5 −3 1 1
5 1 1 −3 5 1 1 −3
1 1 1 1 −1 −1 −1 −1
5 1 −3 1 −5 −1 3 −1
5 −3 1 1 −5 3 −1 −1
5 1 1 −3 −5 −1 −1 3





.

We now present the proof with the following results. Let X ∧ Y
and X ⊕ Y denote bitwise AND respectively XOR for the vectors
X and Y .

Proposition 3.3. Let A = (a1, a2, . . . , an) ∈ {0, 1}n and B =
(b1, b2, . . . , bn) ∈ {0, 1}n. If wt(A) and wt(B) is an even number
and if n is odd, then

n⊕

i=1

(ai ∧ bi) =
n⊕

i=1

(ai ∧ bi) =
n⊕

i=1

(ai ∧ bi) = 1⊕
n⊕

i=1

(ai ∧ bi). (1)

Proof. We have (X ∧ Y )⊕ (X ∧ Y ) = (X ⊕X) ∧ Y = 1 ∧ Y = Y .
Since

⊕n
i=1

(
(ai ∧ bi) ⊕ (ai ∧ bi)

)
=

⊕n
i=1 bi = 0, it follows that

⊕n
i=1(ai ∧ bi) =

⊕n
i=1(ai ∧ bi). The second equality in (1) also

follows immediately. Similarly, we can write (X ∧Y )⊕ (X ∧Y ) =
(X ⊕X) ∧ Y = 1 ∧ Y = Y . Since

⊕n
i=1

(
(ai ∧ bi) ⊕ (ai ∧ bi)

)
=

⊕n
i=1 bi = 1, it follows that

⊕n
i=1(ai ∧ bi) = 1⊕

⊕n
i=1(ai ∧ bi) !

Theorem 3.4. When n is odd, the matrix nAπ is of the form

nAπ =
(

nH nH
nH −nH

)
,

where nH is a gn
2 ×

gn
2 matrix.

Proof. Since the matrix nAπ is written such that Λn,i corresponds
to row/column i and Λn,i corresponds to row/column gn/2+ i, we
can write the following. For 0 ≤ r, c < gn/2 we have
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nAπ
r,c =

∑

x∈Gn(Λn,r)

(−1)x·Λn,c

=
∑

x∈Gn(Λn,r)

(−1)
Ln

i=1(xi∧Λ(n,c)i
)

nAπ
r,c+ gn

2
=

∑

x∈Gn(Λn,r)

(−1)x·Λn,c+ gn
2

=
∑

x∈Gn(Λn,r)

(−1)
Ln

i=1(xi∧Λ(n,c)i
)

nAπ
r+ gn

2 ,c =
∑

x∈Gn(Λn,r+ gn
2

)

(−1)x·Λn,c

=
∑

x∈Gn(Λn,r)

(−1)
Ln

i=1(xi∧Λ(n,c)i
)

nAπ
r+ gn

2 ,c+ gn
2

=
∑

x∈Gn(Λn,r+ gn
2

)

(−1)x·Λn,c+ gn
2

=
∑

x∈Gn(Λn,r)

(−1)
Ln

i=1(xi∧Λ(n,c)i
)

Since the number of 1’s in Λn,i is even, 0 ≤ i < gn/2, it fol-
lows from Proposition 3.3 that nAπ

r,c = nAπ
r,c+ gn

2
= nAπ

r+ gn
2 ,c =

− nAπ
r+ gn

2 ,c+ gn
2

. !

Corollary 3.5. The first column of the matrix nA contains exactly
dn,t values of t, for t = 1, 2, . . . , n. Also, for n odd, dn,t is an even
number.

Proof. The first column nAi,0 is constructed as

nAi,0 =
∑

x∈Gn(Λn,i)

(−1)x·#0 = |Gn(Λn,i)|,

since we know that there are dn,t groups with |Gn(Λn,i)| = t, the
first part of the corollary follows.

We have proved that for odd n, nA can be constructed through
the matrix nH which must contain dn,t

2 groups of size t in the first
column. Hence, dn,t is even. !

In Subsection 2.1 we defined the RSTT of an RSBF as the
gn-bit string

[f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)],
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where Λn,0,Λn,1, . . . ,Λn,gn−1 are ordered lexicographically. Given
Theorem 3.4, from now on, we consider the RSTTπ, where we first
list the representative elements λn,i with even weights in lexico-
graphical order for i = 0 to gn

2 − 1. Then we put the elements in
the order such that Λn,i = Λn,i− gn

2
for i = gn

2 to gn − 1. In the
rest of the document, we will use only this ordering (permutation)
and by abuse of notations, apply (RSTT, RSTTπ) and (nA,n Aπ)
as the same thing unless specifically mentioned.

3.2. Improved Walsh Transform Computation

The fact that nAπ is of this form reduces the number of
operations needed to calculate the Walsh spectra for an RSBF. For
notation purposes, divide the RSTT into two partitions, σ1 and
σ2, such that RSTT = {0, 1}gn = {0, 1}gn/2 ‖ {0, 1}gn/2 = σ1 ‖ σ2.
We define a one-to-one mapping

µσ : σ1 ‖ σ2 = {0, 1}
gn
2 ‖ {0, 1}

gn
2

−→ σ∗1 ‖ σ∗2 = (−1){0,1}
gn
2 ‖ (−1){0,1}

gn
2 ,

i.e., if σ1i = 0 then σ∗1i
= 10 = +1, otherwise σ∗1i

= (−1)1 = −1.
Then we can define

w1 = σ∗1 nH, w2 = σ∗2 nH (2)

and Wf (ω) = ((w1 + w2) ‖ (w1 − w2)). In the following, we will
sometimes refer to w1 and w2 as partial Walsh transform, or just
pWT. To compute the Walsh transform using the matrix nA, g2

n
operations must be done. In the case when nH is used, the number
of operations is instead 2 ·

(gn
2

)2 + gn = g2
n
2 + gn ≤ g2

n.

3.3. Plateaued RSBFs

A Boolean function on odd number of variables is said to be
plateaued [1,18] if its Walsh transform takes only the three values 0
and ±λ, where λ is some positive integer. We call λ the amplitude
of the function.

Following the notation (2) from Subsection 3.2, for plateaued
RSBFs we get,

w1i + w2i = 0 or ± λ, w1i − w2i = 0 or ± λ. (3)
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w1i + w2i w1i − w2i w1i w2i

0 0 0 0
0 +λ +λ/2 −λ/2
0 −λ −λ/2 +λ/2

+λ 0 +λ/2 +λ/2
+λ +λ +λ 0
+λ −λ 0 +λ
−λ 0 −λ/2 −λ/2
−λ +λ 0 −λ
−λ −λ −λ 0

Table 1. Possible values for w1i and w2i when
searching for plateaued RSBFs.

There are only 9 valid pairs (w1i , w2i) fulfilling (3) and they are
listed in Table 1. This means that w1i and w2i ∈ {0, ±λ/2, ±λ},
i.e., they can only take 5 values. The partition of the matrix nAπ

as in Theorem 3.4 and Table 1 give us the following result.

Proposition 3.6. Consider an RSBF on odd number of variables
represented by the RSTT (σ1 ‖ σ2).

(1) If it is plateaued then the functions with RSTT (σ2 ‖ σ1),
(σ1 ‖ σ2), (σ2 ‖ σ1), (σ1 ‖ σ2), (σ2 ‖ σ1), (σ1 ‖ σ2) and
(σ2 ‖ σ1) are also plateaued.

(2) If it is correlation immune (respectively resilient) then the
functions with RSTT (σ2 ‖ σ1), (σ1 ‖ σ2), and (σ2 ‖ σ1)
are also correlation immune (respectively resilient).

3.4. Necessary condition for balanced plateaued RSBFs

Based on the above discussion, we now present concrete re-
sults on necessary conditions for existence of balanced plateaued
RSBFs.

Theorem 3.7. For n odd, if there exist an n-variable balanced
plateaued RSBF with amplitude λ = 2k, then the following condi-
tion must be satisfied:

There exist k′1 . . . k′n and k′′1 . . . k′′n, k∗i ∈ [0 . . . dn,i

2 ], and τ ∈
{0, 1}, such that

∑n
t=1 t · k′t = τλ+2n

4 ,
∑n

t=1 t · k′′t = −τλ+2n

4 .

Proof. If the function (σ1 ‖ σ2) is balanced, then from Table 1,
the partial Walsh transform (pWT) for the first column must be
{0, ±λ

2 }, i.e., (σ∗1 ·nH)[0] = τ · λ
2 , (σ∗2 ·nH)[0] = −τ · λ

2 , for τ ∈ {0, 1}.
In the first column there are dn,t

2 groups of size t. Let for k′t
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of them σ∗1 get (+1), and for the rest (dn,t

2 − k′t) it will be (-
1). Then pWT for the first column is expressed as (σ∗1 · nH)[0] =∑n

t=1[t·k′t−(dn,t

2 −k′t)·t] = τ · λ2 ⇒ 2
∑n

t=1 k′t·t = τλ
2 +

∑n
t=1 t· dn,t

2 ⇒
∑n

t=1 t · k′t = τλ+2n

4 , for k′t = [0 . . . dn,t

2 ].
The similar expression for (σ∗2 · nH)[0] is

∑n
t=1 t · k′′t = −τλ+2n

4 ,
for k′′t = [0 . . . dn,t

2 ]. !

Now we present the result for non existence of (9, 3, 5, 240)
RSBF, which has been posed as an open question in [16].

Theorem 3.8. A (9, 3, 5, 240) RSBF can not exist.

Proof. Note that this function is plateaued [14]. Thus we analyze
9-variable balanced plateaued functions for λ = 25 and for this
we need to study the 9H matrix. Since 29 = 512, for a balanced
function to exist, it must be that 1 · k1 + 3 · k3 + 9 · k9 = ±τ ·25+512

4
following Theorem 3.7 and we get the only solution k′1 = 1, k′3 =
0, k′9 = 15 and k′′1 = 0, k′′3 = 1, k′′9 = 13 for τ = 1.

Let us now consider the value of Wf (011011011), which must be
any one of 0,±32. Let Wf (011011011) = w1i + w2i . From Table 1
we get that w1i , w2i can take values 0,±16. To get the exact
values of w1i , w2i one needs to look at the last but one column of
the matrix 9H. The matrix 9H can be seen as [A|B] where A,B
are respectively the following two matrices.
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0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 5 1 1 5 1 1 1 1 1 −3 −3 1 −3 1
9 1 5 1 1 1 1 −3 1 −3 1 1 −7 1 −3
9 1 1 5 −3 1 −3 1 −3 −3 −3 1 −3 −3 −3
9 5 1 −3 1 −7 −3 1 −3 −3 1 −3 5 1 −3
9 1 1 1 −7 5 −3 −3 −3 1 1 −3 5 1 1
9 1 1 −3 −3 −3 1 −3 1 −3 −3 5 1 5 5
9 1 −3 1 1 −3 −3 1 −3 5 1 −3 −3 1 5
9 1 1 −3 −3 −3 1 −3 1 5 5 5 1 −3 −3
9 1 −3 −3 −3 1 −3 5 5 1 5 1 −3 −3 1
9 −3 1 −3 1 1 −3 1 5 5 1 −3 −3 1 −3
9 −3 1 1 −3 −3 5 −3 5 1 −3 1 5 −3 1
9 1 −7 −3 5 5 1 −3 1 −3 −3 5 1 −3 −3
9 −3 1 −3 1 1 5 1 −3 −3 1 −3 −3 1 5
9 1 −3 −3 −3 1 5 5 −3 1 −3 1 −3 5 1
9 5 1 −3 1 −3 1 5 1 −3 1 1 1 1 −3
9 −3 −3 5 1 −3 1 1 1 1 1 1 1 1 1
9 −3 −3 5 1 −3 1 1 1 1 1 1 1 1 1
9 −3 −3 1 5 1 1 −3 1 −3 5 −3 1 5 −3
9 −7 5 −3 5 1 −3 5 −3 1 −3 1 5 −3 1
9 1 1 1 1 −3 5 −3 −3 1 1 −3 −3 −7 1
9 1 −3 1 1 1 1 −3 −7 5 1 1 1 1 −3
9 1 −3 −3 −3 5 1 1 1 1 −3 −3 1 −3 1
9 1 −3 1 1 1 −7 −3 1 −3 1 1 1 1 5
9 1 1 1 1 −3 −3 −3 5 1 −7 −3 −3 1 1
9 −3 5 −3 1 1 −3 −3 −3 1 1 5 −3 1 1
9 −3 1 1 −3 1 1 1 1 1 −3 −3 1 5 −7
9 −3 1 1 −3 1 1 1 1 −7 5 −3 1 −3 1
3 −1 −1 3 −1 −1 −1 3 −1 −1 −1 3 −1 −1 −1
9 5 5 5 1 5 1 1 1 1 1 1 1 1 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 −3 −3 −3 −7 1 1 1 1 1 −3 −3 −3 −3 5
1 −3 −3 −3 5 1 −3 −3 −3 1 5 1 1 −3 5
−3 5 5 1 −3 1 1 −3 1 1 −3 1 1 9 5

1 1 1 5 5 1 1 −3 1 1 1 −3 −3 −3 1
−3 −3 −3 1 1 −3 1 5 1 −3 1 1 1 −3 5

1 1 1 1 −3 5 1 1 −7 −3 −3 1 1 −3 1
5 1 1 −3 5 −3 −3 1 −3 −3 −3 1 1 9 1
1 1 1 1 −3 −3 −7 1 1 5 −3 1 1 −3 1
−3 1 1 −3 1 1 5 1 −3 1 1 1 −7 −3 1

1 1 1 5 −3 1 1 −3 1 −7 1 −3 5 −3 1
1 1 1 −3 1 −3 1 −3 1 −3 5 −3 −3 9 1
1 1 1 1 5 −3 1 1 1 −3 −3 1 1 −3 1
1 1 1 5 −3 −7 1 −3 1 1 1 5 −3 −3 1
−3 1 1 −3 1 1 −3 1 5 1 1 −7 1 −3 1
−3 −3 −3 −3 −3 −3 1 1 1 −3 1 5 5 9 −3
−3 −7 1 1 1 5 −3 −3 5 −3 −3 5 −3 −3 1
−3 1 −7 1 1 −3 5 −3 −3 5 −3 −3 5 −3 1
−3 1 1 1 −3 1 −3 5 −3 1 1 −3 −3 9 1
−3 1 1 −3 1 1 −3 1 −3 1 1 1 1 −3 1
−3 5 −3 1 1 5 1 5 1 −3 1 1 1 −3 −3

1 −3 5 −3 −3 1 5 −3 −3 1 5 1 1 −3 −3
1 −3 −3 5 1 5 −3 −3 −3 5 1 1 1 9 −3
1 5 −3 −3 −3 1 −3 −3 5 1 5 1 1 −3 −3
−3 −3 5 1 1 −3 1 5 1 5 1 1 1 −3 −3

1 −3 −3 1 1 1 5 1 5 1 −3 −3 −3 9 −3
5 5 −3 −3 1 1 1 1 1 1 −3 5 −3 −3 −3
5 −3 5 −3 1 1 1 1 1 1 −3 −3 5 −3 −3
3 −1 −1 3 −1 −1 −1 3 −1 −1 3 −1 −1 −1 −1
−3 1 1 1 1 −3 −3 −3 −3 −3 −3 −3 −3 −3 −7

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Let us represent the last but one column of the matrix 9H as a
column matrix C. Thus w1i = σ∗1C and w2i = σ∗2C, where σ∗1,σ

∗
2

are as given in Subsection 3.2. The values k′1, k
′′
1 correspond to the

top most element of C, which is 1 and the values k′3, k
′′
3 correspond

to the last but one element of C, which is −1. The values of k′9, k
′′
9

correspond to the other 28 values in the column matrix C, where
twenty one many values are −3 and seven many values are 9. Let
k′9 = a′ + b′ and k′′9 = a′′ + b′′, where a′, a′′ correspond to the
values −3 and b′, b′′ correspond to the values 9. Now w1i = σ∗1C =
1×1+(−1)×(−1)+(2a′−21)×(−3)+(2b′−7)×9 = 2−6a′+18b′.
Also, we have a′ + b′ = k′9 = 15. Thus the only possible solution
is a′ = 12, b′ = 3 and in that case w1i = −16. Similarly, w2i =
σ∗2C = (−1)× 1 + 1× (−1) + (2a′′ − 21)× (−3) + (2b′′ − 7)× 9 =
−2− 6a′′ + 18b′′. Also, we have a′′ + b′′ = k′′9 = 13. Thus the only
possible solution is a′′ = 9, b′′ = 4 and in that case w2i = 16. Hence
Wf (011011011) = w1i+w2i = 0. From Theorem 3.4, it follows that
if Wf (011011011) = w1i + w2i then Wf (001001001) = w1i − w2i .
Thus, Wf (001001001) = −32 ,= 0. Hence, from definition, the
function can not be 3-resilient. This proves that there can not be
any (9, 3, 5, 240) RSBF. !

We have checked the necessary condition is satisfied for λ =
2

n+1
2 for odd composite n = 15, 21 and 25. For n = 15, the

solutions are k′1 = 1, k′3 = 0, k′5 = 1, k′15 = 550 and k′′1 = 0, k′′3 =
1, k′′5 = 2, k′′15 = 541 when τ = 1. For n = 21, the solutions are
k′1 = 0, k′3 = 1, k′7 = 1, k′21 = 24990 or k′1 = 0, k′3 = 1, k′7 = 4, k′21 =
24989 or k′1 = 0, k′3 = 1, k′7 = 7, k′21 = 24988 and k′′1 = 1, k′′3 =
0, k′′7 = 2, k′′21 = 24941 or k′′1 = 1, k′′3 = 0, k′′7 = 5, k′′21 = 24940 or
k′′1 = 1, k′′3 = 0, k′′7 = 8, k′′21 = 24939 when τ = 1. For n = 25,
the solutions are k′1 = 1, k′5 = 1, k′25 = 335626 and k′′1 = 0, k′′5 =
2, k′′25 = 335462 when τ = 1. Note that there is no solution with
τ = 0. It will be interesting to find out some general solution
pattern for odd composite n’s from the necessary condition of
Theorem 3.7, which is done for odd prime n’s in Corollary 3.9
below. Further we need to study the other columns of the matrix
nH as in the proof of Theorem 3.8 if we like to prove the non
existence results for these cases.

Corollary 3.9. For a balanced plateaued RSBF on n ≥ 3 vari-
ables, n prime, τ can only be (+1), i.e., pWT must take the value
±λ/2. Further, the necessary condition of Theorem 3.7 is always
satisfied for n prime and λ = 2

n+1
2 .
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Proof. For n prime, in the first column of nH we have 1 row with
(+1) and 2n−1−1

n rows with values (+n). With τ = 0 we require
σ∗1 such that pWT = 0, i.e., (k · n± 1) must be 0, for some k. For
prime n ≥ 3 there is no such k.

Now we prove the second part. For n prime, dn,1 = 2 and
dn,n = 2n−2

n . Thus we get an equation of the form 1 · k1 + n · kn =
τλ+2n

4 = ±2
n−3

2 + 2n−2, where k1 ∈ [0, 1] and kn ∈ [0, . . . , 2n−1−1
n ].

We show that it is always possible to get an integer solution for
k1, kn.

Note that for n > 3 prime, n|2n−1−1, i.e., n|(2
n−1

2 +1)(2
n−1

2 −
1).

If n|(2
n−1

2 +1), then n|2
n−3

2 (2
n−1

2 +1), i.e., n|2
n−3

2 +2n−2. Thus
for τ = 1, we take k′1 = 0. Also, n|2

n−3
2 + 2n−2 − (2

n−1
2 + 1), i.e.,

n|− 2
n−3

2 + 2n−2 − 1. Thus for τ = −1, we take k′′1 = 1.
If n|(2

n−1
2 − 1), then n|2

n−3
2 (2

n−1
2 − 1), i.e., n| − 2

n−3
2 + 2n−2.

Thus for τ = −1, we take k′′1 = 0. Also, n|−2
n−3

2 +2n−2+(2
n−1

2 −1),
i.e., n|2

n−3
2 + 2n−2 − 1. Thus for τ = 1, we take k′1 = 1. !

Existence of (n, n−3
2 , n+1

2 , 2n−1−2
n−1

2 ) functions for odd n is an
important open question in Boolean function literature [13,14,16].
These functions are plateaued with λ = 2

n+1
2 . The only results

available are for n = 5, 7 as described in [12]. Corollary 3.9 shows
that the necessary condition is satisfied for any odd prime n when
we search in the class of RSBFs. This gives a partial theoretical
justification why such functions were available in the RSBF class
for n = 5, 7 as observed in [15]. Thus it will be interesting to
target the problem for n = 11 also.

4. Search Strategy

Based on the theoretical results discussed so far, we present
how these results can be used for actual search for RSBFs with
certain cryptographic properties. It has been observed in [16] that
to search for (9, 3, 5, 240) one needs to check for 243 many RSBFs.
Though we have already proved theoretically that such RSBF does
not exist, we now show that the search can be reduced to 234 only.
This search also produces the [9, 3, 5, 240] functions and we im-
plement the search to get the complete list of [9, 3, 5, 240] RSBFs.
Apart from the theoretical results, we exploit nontrivial software
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implementation to make the search much faster. This is impor-
tant since the search space becomes larger for higher number of
variables and best possible software implementation is required for
actual search.

The algorithm uses only the matrix nH in the search. The idea
behind the algorithm is very simple and it can be used to find
plateaued RSBFs for a desired Walsh transform, e.g., m-resilient
or mth order correlation immune.

The first step of the algorithm is to search the complete set
of σ1’s such that w1 = σ∗1 · nH only take values from the set
w1i ∈ {0,±λ/2,±λ}. Note that in the positions where the Walsh
transform must be zero, the corresponding values of the pWT
must be w1i ∈ {0,±λ/2}, three valued only. Let us denote this
set of σ1’s by Sσ1 . From (2) and Table 1 we see that w2 = σ2 · nH
is calculated in the same way and has the same restrictions, so it
means that Sσ2 = Sσ1 .

The second step of the algorithm is to calculate the Walsh trans-
form for (σ1 ‖ σ2) in the space Sσ1 × Sσ2 . It means that we need
to save Sσ1 in a list or in a file.

The time complexity for the first step to find Sσ1 is O(2gn/2)
and the second step has the complexity O(|Sσ1 |2), so the total time
complexity is O(2gn/2)+O(|Sσ1 |2). Note that in this strategy we do
not care about what degree we have on the functions, all functions
with desired Walsh spectra will be found.

Now we describe how to use the proposed search strategy to
implement an exhaustive search for [9, 3, 5, 240] functions. For
RSBFs on 9 variables there are g9 = 60 groups and, hence, the
total search space for these functions is 260. However, in the ANF
there can not be terms of degree 6, 7, 8 or 9 and, at least one term
of degree 5 must be present. Therefore, the search space does not
include all RSBFs on 9 variables, instead the search space is of size
2

P4
i=1 g9,i(2g9,5 − 1) = 229(214 − 1) ≈ 243. This is the complexity

of the algorithm when one first uses the nB matrix and then the
nA matrix in the search [16], without considering nH. The term
of degree 0 is not considered in the search space.

The restrictions on Walsh spectra for a [9, 3, 5, 240] function
are Wf (ω) = 0, for 1 ≤ wt(ω) ≤ 3 and Wf (ω) = 0 or ± 32, for
wt(ω) = 0, wt(ω) > 3. We do not use the restriction that the
function has a certain degree, instead we only use the matrix nH
to reduce the time complexity. Since g9 = 60, the matrix nH is of
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Boolean functions on 9 variables 2512

RSBFs on 9 variables 260

Finding [9,3,5,240] using matrices nA, nB [16] 243

Finding [9,3,5,240] using our strategy 234

Table 2. Different search strategy complexities.

wt(ω)⇐0 2 4 6 8

σ1a

σ1b

{0,±16} {0,±16}{0,±16,±32}

⇐ pWT

nH

H1

H2

︸︷︷︸ ︸︷︷︸︸︷︷︸

Figure 1. For fast implementation purposes, the
matrix nH is divided into sections.

size 30 × 30. We divide the RSTT into 2 parts, σ1 and σ2, each
of 30 bits, and generate the set Sσ1 . By simulation we found that
this set is of size |Sσ1 | ≈ 217 so there is no memory problem with
storing the complete set in memory. This will give us the total
search of 234, which is 29 times faster than only using nA and nB
as done in [16].

Although the complexity is reduced it is important to mini-
mize the constant time needed to check each candidate pair. For
fast implementation purposes we divide the matrix nH into two
sections, H1 and H2 as shown in Figure 1, each containing 15
rows. We divide σ1 in the same way and denote the two parts
σ1 = (σ1a ‖ σ1b). For each section, the sum of the rows is pre-
computed for each of the 215 possible inputs, and these sums are
stored in the table Hfast[2][215][30], having 2 sections with 215

possible inputs for each, and the result is a vector of 30 integers.
Now to calculate the partial Walsh transform we only need 2 table
look ups and a maximum of 30 integer summations. Unnecessary
computation can be avoided by calculating the values of the pWT
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one by one. If one value is not valid, then we stop and select the
next σ1. Since Wf (ω) must be 0 for wt(ω) ≤ 3, the pWT in these
positions must be in {0,±16}. Note that the complement of the
representative elements of weight 6 and 8 have weights 1 and 3,
so in these positions pWT must also be in {0,±16}. In the rest
positions, pWT ∈ {0,±16,±32}. These restrictions can be seen
in Table 1. When Sσ1 is found, we try all combinations for the
cartesian product (Sσ1 × Sσ1) and check if the Walsh transform is
valid for a [9, 3, 5, 240] function. Since Sσ2 = Sσ1 , we can use the
same precomputed tables for fast calculation of w2 = σ∗2 · nH.

The exact search time required is 6064 seconds on a computer
with Pentium M 1.6 GHz processor and 512MB RAM using Win-
dows XP operating system. In [16], it was estimated that the
search will take almost 3 years to complete the search on a single
Pentium 1.6 GHz computer with 256 MB RAM using Linux 7.2
operating system.

Using our strategy we could check that there is no resilient RS-
BFs with parameters (9, 3, 5, 240) (already proved theoretically)
and there are 8406 correlation immune functions with the same
parameters [9, 3, 5, 240], when the term of degree 0 is not consid-
ered. That is if we also consider the complement of the functions
then there are 2× 8406 many functions.

Let us denote the autocorrelation value of an n-variable Boolean
function f with respect to the vector α as

∆f (α) =
∑

x∈{0,1}n

(−1)f(x)⊕f(x⊕α),

and the absolute indicator

∆f = max
α∈{0,1}n,α (=0

|∆f (α)|.

Low autocorrelation value is important for functions in crypto-
graphic applications [17]. Thus we also check the ∆f value for
these [9, 3, 5, 240] functions.

The ∆f values of the functions are 80 (4956 many out of 8406),
96 (1020), 112 (312), 136 (180), 152 (1734) and 224 (204). A
few correlation immune RSBFs with these parameters have been
reported using simulated annealing based heuristic search [2]. We
execute the search completely and show that the search space can
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be exhaustively analysed implying that the heuristic method is
not required in this case.

It should be noted that we have only exploited the nH matrix
but not used the degree restrictions on the functions. The nB
matrix may also be used for faster search with nH.

Motivated by Corollary 3.9 and the discussion after it, we also
attempted the search for (11, 4, 6, 992) functions. Note that these
functions are plateaued. Existence of these functions is not yet
known. Since g11 = 188, the 11H matrix is 94 × 94 and the
method of search that we attempt here will not work. Even if
using the degree restriction and use of nB matrix does not come
to much help. We attempted some heuristic search and found
an (11, 1, 6, 992) plateaued RSBF with ∆f value 240. Heuristic
search, as attempted in [2] may come to help in such a scenario.

5. Conclusion

In this paper we studied the Walsh spectra of rotation sym-
metric Boolean functions. The set of rotation symmetric Boolean
functions is much smaller than the complete space of Boolean func-
tions. Even then complete search of RSBFs is not practical for
n ≥ 9. Our results provide combinatorial insight to the Walsh
spectra of the functions and we show that some necessary con-
ditions on existence of certain kinds of functions can be derived
from them. In particular, we studied the plateaued RSBFs in this
paper. The central result here is to show that the nA matrix can
be written as (

nH nH
nH −nH

)

after certain permutations when n is odd. Further research in
this direction is to study these matrices in more details and to
see whether some methods can be explored to analyse functions
on higher number of variables. It should also be noted that the
matrix structure we present here cannot be extended for n even
and studying that case is also an interesting research area.
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[16] P. Stănică, S. Maitra and J. Clark. Results on Rotation Symmetric Bent
and Correlation Immune Boolean Functions. In Fast Software Encryp-
tion 2004, to be published in volume 3017 in Lecture Notes in Computer
Science, Springer-Verlag, 2004.

[17] X-M. Zhang and Y. Zheng. GAC – the criterion for global avalanche
characteristics of cryptographic functions. Journal of Universal Computer
Science, 1(5):316–333, 1995.

[18] Y. Zheng and X. M. Zhang. Plateaued Functions. In ICICS’99, pages 284-
300, volume 1726 in Lecture notes in Computer Science, Springer Verlag.



Boolean Functions: Cryptography and Applications BFCA’05
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ANALYSIS OF AFFINELY EQUIVALENT BOOLEAN
FUNCTIONS

Qingshu Meng1, Min Yang1, Huanguo Zhang1 and Yuzhen Liu1

Abstract. By walsh transform, autocorrelation function,
decomposition, derivation and modification of truth table,
some new invariants are obtained. Based on invariant
theory, we get two results: first a general algorithm which
can be used to judge if two boolean functions are affinely
equivalent and to obtain the affine equivalence relationship
if they are equivalent; second, the classification of the Reed-
Muller code R(4, 6)/R(1, 6), R(3, 7)/R(1, 7).

1. Introduction

Boolean functions are used widely in science and engineer-
ing, like in circuit design, cryptography and error-correction cod-
ing. The affine classification of boolean functions is meaningful
at least for the following two reasons: first, equivalent functions
have similar properties (like Hamming weight distribution in error-
correction coding, same nonlinearity property in cryptography).
second, the number of representatives is much less than the num-
ber of boolean functions. Out of the need of circuit design, the
classification of boolean functions under the action of general affine
group was discussed much often in 60s in the 20th century [1–3].
Recently the analysis of affine equivalence of Boolean functions
was discussed in several papers [4–8]. Fuller and Millan disclosed
the affine equivalence between the output functions of the AES s-
box by getting the affine equivalence relationship, but the method
is not efficient in the case of bent functions. Method in paper [8]

1 Comp. school, Wuhan Univ. Hubei China. email: mqseagle@sohu.com
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is not efficient too in the bent functions case though it improves
the efficiency of Fuller-Millan algorithm. In eurocrypt’03, a tool-
box was developed to analyze affine equivalence between bijec-
tive s-box or s-box with small n − m, where n, m are numbers
of inputs and outputs respectively, and thus the toolbox can’t
deal with Boolean functions, where m = 1. In attacking HFE
problem(hidden fields equation), Geiseleman gave an collum-wise
method, but the method is not efficient in Boolean function with
uneven truth table. Other papers on classifying Boolean functions
can be found in papers [9–11]. To authors’ knowledge, how to
judge if two functions are equivalent and how to get the equiv-
alent relationship if they are equivalent is not known in general
case.

In this paper, first an algorithm is given which can efficiently
solve the two above problems in general case. Second, we classify
the Reed-Muller codes R(4, 6)/R(1, 6), R(3, 7)/R(1, 7). The basic
tools we use are Walsh transform, autocorrelation function, deriva-
tion function, decomposition, and modification of truth table.

2. Preliminary

For each subset s ⊆ {1, 2, · · · , n}, there exists a corresponding
vector (s1, s2, · · · , sn) of dimension n by letting si = 1 if element
i is in s else letting si = 0. And the vector (s1, s2, · · · , sn), si ∈
{0, 1} for i = 1, 2, · · · , n can be denoted by an integer s whose
2-adic expansion is just the vector (s1, s2, · · · , sn). Obviously, the
set, the vector and the integer are isomorphic. In this paper, if
confusion is not caused, we will use the three notations for de-
scription convenience. Denote by F2 the Galois field with two
elements {0, 1} and denote by Fn

2 the vector space over F2. De-
note by pn = F2[x1, x2, · · · , xn]/(x2

1−x1, · · · , x2
n−xn) the algebra

of all functions Fn
2 → F2. For each subset s ⊆ {1, 2, · · · , n}, de-

note
∏

i∈s xi ∈ pn by xs. The algebraic normal form of a Boolean
function Fn

2 → F2 can be written as f(x) =
∑2n−1

s=0 asxs, where
as ∈ F2. The degree of f(x) is defined as

deg(f) = max
s∈{0,1,··· ,2n−1},as #=0

H(s),
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and the low degree of f(x) is defined as

ldeg(f) = min
s∈{0,1,··· ,2n−1},as #=0

H(s),

where H(s) is the Hamming weight of vector s. The set
{f(x)|deg(f) ≤ r} is denoted by R(r, n). Denote by R(r, n)/R(s, n)
the set {f(x) + R(s, n)|s < ldeg(f), deg(f) ≤ r}.

Denote by GL(n, 2) the set of all nonsingular matrices of order
n, i.e. the general linear group. Denote by AGL(n, 2) the general
affine group {(A, b)|A ∈ GL(n, 2), b ∈ Fn

2 }. The group operation
is defined as

(A, u)(B,w) = (AB,A(w) + u)

(A, u)−1 = (A−1, A−1(u)),
where (A, u), (B,w) ∈ AGL(n, 2).

The action of group AGL(n, 2) on Boolean functions is defined
as:

c : pn → pn

by : f(x) → f ◦ c = f(xA + b) ,

where c = (A, b) ∈ AGL(n, 2).
Two functions f(x), g(x) ∈ R(r, n)/R(s, n) are called equiva-

lent if there exists (A, b) ∈ AGL(n, 2) such that f(x) = g(xA +
b) mod R(s, n). An invariant of R(r, n)/R(s, n) is a mapping
M from R(r, n)/R(s, n) to a set such that for any two equivalent
functions f(x), g(x) ∈ R(r, n)/R(s, n), M(f) = M(g) holds.

3. Basic Transforms

3.1. Walsh Transform and Autocorrelation Function

Definition 3.1. Define

s(f)(w) =
∑

x∈F n
2

(−1)f(x)(−1)w·x

as the Walsh spectrum of f(x) at vector w, where f(x) ∈ pn, w ∈
Fn

2 .

The transform is called the Walsh transform.

Definition 3.2. Define cf (s) =
∑2n−1

x=0 (−1)f(x)(−1)f(x+s) be the
autocorrelation function of f(x), where f(x) ∈ pn, s ∈ Fn

2 .
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The following two propositions are well known. And the fact
that the distribution of absolute Walsh spectra and autocorrela-
tion function are invariant under affine transform is known due to
Preneel’s work [12].

Proposition 3.3. Let f(x), g(x) ∈ pn be two functions such that
g(x) = f(xA + b) + lx, then for any w ∈ Fn

2 ,

s(g)(w) = (−1)(l+w)·bA−1
s(f)((l + w)A−1T ),

where A−1T is the transpose of A−1.

Corollary 3.4. The absolute Walsh spectrum of f(x) at i is equal
to the Walsh spectrum of g(x) at j, where j = l + iAT . There-
fore the deficiency of the rank of vectors with the same absolute
spectrum between two equivalent functions is at most 1. The dis-
tribution of absolute value of Walsh spectra of f(x) is the same as
that of g(x).

Proposition 3.5. Let f(x), g(x) ∈ pn be two functions such that
g(x) = f(xA + b) + lx, then for any given s ∈ Fn

2 ,

cg(s) = (−1)l·scf (sA).

Corollary 3.6. The absolute autocorrelation function of f(x) at j
is equal to the absoulte autocorrelation function of g(x) at i, where
j = iA. Therefore the ranks of vectors with the same absolute
autocorrelation function value are the same between two equivalent
functions. The distribution of absolute value of autocorrelation
function of f(x) is the same as that of g(x).

3.2. Derivation

For any Boolean function f(x) ∈ R(r, n), define its derivative
function as Da(f) = f(x) + f(x + a). Similarly we can define two-
order derivative function as Da,b(f) = f(x)+f(x+a)+f(x+ b)+
f(x + a + b). By the definition, it is easy to get the following two
properties [13]:

(1) Da,b(f) = Da(f) + Db(f) + Da+b(f).
(2) Da(f ◦ B) = DaA(f) ◦ B, where B = (A, c) ∈ AGL(n, 2).

similarly, Da,b(f ◦B) = DaA,bA(f)◦B, where B = (A, c) ∈
AGL(n, 2).
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Proposition 3.7. If f(x) ∈ R(r, n)/R(s, n), then Da(f ◦ B) =
(DaA(f)) ◦ B mod R(s − 1, n), where B = (A, b) ∈ AGL(n, 2).
If M is an invariant of R(r − 1, n)/R(s − 1, n), then M(Da(f ◦
B)) = M((DaA(f)) ◦ B), so {M(Da(f))|a ∈ Fn

2 } is an invariant
of R(r, n)/R(s, n).

Remark The derivative function was used by Hou [10] in clas-
sification of R(3, 7)/R(2, 7) and by Brier [13] in classification of
R(3, 9)/R(2, 9). Proposition 3.7 is an extension of their result.
Here we use the value {M(Da(f)|a ∈ Fn

2 } of the invariant {M ◦
Da|a ∈ Fn

2 } instead of the invariant itself. In the following part,
we use the value of an invariant instead of the invariant itself for
convenience on several occasions.

3.3. Decomposition

Proposition 3.8. Let f(x), g(x) ∈ R(r, n) be two functions such
that g(x) = f(xA + b) mod R(s, n). If f(x) = (xn + 1)f0(x′) +
xnf1(x′), where x′ = (xn−1, · · · , x1), then g(x) = (x · cn + bn +
1)f0(x′′) + (x · cn + bn)f1(x′′) where c1, c2, · · · , cn are the columns
of the matrix A, and x′′ = (x · cn−1 + bn−1, · · · , x · c1 + b1). Ob-
viously, f0(x′), f1(x′) are affinely equivalent to f0(x′′), f1(x′′) mod
R(s, n − 1) respectively. Similar result holds for two-vector based
decomposition.

By proposition 3.8, if f(x) is decomposed into two subfunctions
at vector a (like a = (1, 0, · · · , 0)), then g(x) can be decomposed
into two subfunctions at vector b = aA(like the b = aA = r1, the
first row) such that the two subfunctions of f(x) are equivalent to
those of g(x).

Proposition 3.9. If M is an invariant of R(r, n−1)/R(s, n−1),
then the set {{M(fax=0),M(fax=1)}|a ∈ Fn

2 } is an invariant of
R(r, n)/R(s, n).

Remarks The basic idea of the decomposition of a function
can be found early in Maiorana’s paper [9], which made the clas-
sification of R(6,6)/R(1,6) possible early in the 90s. And recently
it is used by Brier [13] to classify R(3,9)/R(2,9).
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3.4. The Modification of Truth Table

Definition 3.10. For a function f(x), define its 1-local connection
functions as

fi(x) = { f(x) x '= i
f(x) + 1 x = i

, i = 0, 1, · · · , 2n − 1.

similarly 2-local connection functions can be defined.

Proposition 3.11. Let f(x), g(x) ∈ R(r, n) be such that g(x) =
f(xA + b) + lx, then gj(x) = fi(xA + b) + lx, where jA = (i +
b), i = 0, 1, · · · , 2n−1. Similar result holds for two-local connection
functions.

The above definition 3.10 can be found in [14] and proposition
3.11 can be found in [7].

Proposition 3.12. Let f(x) ∈ R(r, n). If M is an invariant
of R(n, n)/R(1, n), then {M(fi(x))|i ∈ Fn

2 } is an invariant of
R(r, n)/R(1, n).

4. The Analysis of Affinely Equivalent Boolean Functions

Algorithm 4.1. input: two functions f(x), g(x) ∈ R(n, n),
output: A, b, and l, if g(x) = f(xA + b) + lx else

the functions are not equivalent.
(1) Calculate the Walsh spectra and autocorrelation function

of f(x), g(x) respectively. Compare the distribution of ab-
solute Walsh spectra and absolute autocorrelation function
of f(x) with those of g(x) respectively. If the two functions
have two same distributions, then go to step 2 else they are
not affinely equivalent, exit.

(2) Denote the autocorrelation value of g(x) at unit vector ei

by cg(ei). By corollary 3.6, there exists at least one element
v ∈ {v|abs(cf (v)) = abs(cg(ei))} such that v = eiA holds.
Let i = 1, 2, · · · , n, there are n equations.

(3) Decompose f(x) at unit vector ei, and calculate the invari-
ant of the two subfunctions, denote it by deei(f). By propo-
sition 3.9, there exists at least one element v ∈ {v|dev(g) =
deei(f)} such that v = eiA holds. Let i = 1, 2, · · · , n, we
get another n equations. These n equations should be con-
sistent to the n equations obtained in step 2, else the two
functions are not equivalent.
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(4) Calculate the invariant of the derivative function of g(x) at
unit vector ei, and denote it by dei(g). By proposition 3.7,
there exists at least one element v ∈ {v|dv(f) = dei(g)}
such that v = eiA holds. Let i = 1, 2, · · · , n, we get another
n equations. These n equations should be consistent to the
n equations obtained in step 2 and 3, else the two functions
are not equivalent.

(5) Denote by gei(x) the local connection function of g(x) at
unit vector ei, and denote its invariant by lcei(g). By
proposition 3.12, there exists at least one element v ∈
{v|lcv(f) = lcei(g)} such that v = eiA + b holds. Let
i = 1, 2, · · · , n, we get another n equations.

(6) Denote by s(f)(ei) the Walsh spectrum of f(x) at unit vec-
tor ei. By corollary 3.4, there exists at least one element
v ∈ {v|abs(s(g)(v)) = s(f)(ei)} such that v = eiAT + l. Let
i = 1, 2, · · · , n, we get n equations.

(7) By step 2 ∼ 4, we get matrix A. By step 5, we can obtain b.
By step 6, we can get l. With all these parameters(usually
there are many choice for some parameters), we can verify
them by checking if the equation g(x) = f(xA + b) + lx
holds.

4.1. Analysis of the Algorithm

Walsh transform, autocorrelation function, derivation, decom-
position and modification of truth table are the basic transforms to
Boolean functions. Walsh transform and autocorrelation functions
can be done by fast Hadamard transform. Derivation transform
lowers the degree of the two functions, and decomposition trans-
form lowers the number of variables. Thus these two transforms
lower the complexity of our problem. Modification of truth table
gives us more equations with same affine equivalence and thus it
is more possible to obtain the affine equivalence. By step 5 and 6,
it is unnecessary to enumerate parameters b, l. By above analysis,
we say our algorithm is more efficient. However it is not easy to
analyze the computation complexity.

By step 3 and 4, it is easy to address the bent functions case,
and by step 2,3 and 4, we can deal with functions with uneven
truth table. Therefore we say our algorithm is more general.
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5. Classification of Reed-Muller Code

Invariant is a good tool to classify set. If we know N, the
number of equivalent classes under some equivalent relationship,
and an invariant just takes N different values, then the set is
already classified.

5.1. Classification of R(4, 6)/R(1, 6)
The number of orbits of R(4, 6)/R(1, 6) under the action of

AGL(6, 2) is 2499 by Hou’s work [11]. The classification of
R(4, 6)/R(1, 6) can be done as follows:

1. It is easy to get the four orbits of R(2, 6)/R(1, 6). By hou’s
work [10], their complementary functions are the four orbits of
R(4, 6)/R(3, 6), denoted by fi + R(3, 6), i = 0, 1, 2, 3, where

(1) f0(x) = 0,
(2) f1(x) = x3x4x5x6,
(3) f2(x) = x1x2x5x6 + x3x4x5x6,
(4) f3(x) = x1x2x3x4 + x1x2x5x6 + x3x4x5x6.

2. By proposition 3.7, classify the four cosets fi + R(3, 6), i =
0, · · · , 3 into 6,10,12,6 cosets of form gj +R(2, 6), 2 < ldeg(gj(x)),
deg(gj(x)) ≤ 4 respectively. The invariant of R(3, 6)/R(1, 6) used
in proposition 3.7 is the distribution of absolute Walsh spectra.
The basic time complexity of this step is O(4× 220).

3. By proposition 3.9 and 3.12, classify the 34 cosets gi +
R(2, 6), i = 0, 1, · · · , 33 into 2499 cosets of form hi(x) + R(1, 6),
1 < ldeg(hi(x)), deg(hi(x)) ≤ 4, i = 0, 1, · · · , 2498. The invari-
ant of R(4, 5)/R(1, 5) used in proposition 3.9 is the distribution
of absolute Walsh spectra and absolute autocorrelation function.
The invariant of R(6,6)/R(1,6) used in proposition 3.12 is the dis-
tribution of absolute Walsh spectra and absolute autocorrelation
function. For any combination of invariants given in this paper
except the invariant in proposition 3.12, we can’t get 2499 orbits.
The basic complexity is O(34× 215).

5.2. Classification of R(3, 7)/R(1, 7)
The number of orbits of R(3, 7)/R(1, 7) under the action of

AGL(7, 2) is 179 by Hou’s work [11]. All these 179 orbits can be
obtained as follows:

1. By [10], we can get 12 representatives of R(3, 7)/R(2, 7):
fi(x) + R(2, 7), i = 0, 1, · · · , 11.
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2. By proposition 3.9 the coset fi(x) + R(2, 7), i = 0, 1, · · · , 11
can be classifed into 4,8,19,10,20,6,7,29,12,39,10,15 cosets of form
gi(x) + R(1, 7) respectively. these are all 179 representatives. The
invariant of R(3, 6)/R(1, 6) used in proposition 3.9 is the distribu-
tion of absolute Walsh spectra and absolute autocorrelation func-
tion.

By the above two examples, it is very efficient to classify Reed-
Muller code for some parameters by invariant theory.

6. Conclusion

Based on some basic transforms, we give an algorithm which
can be used to judge if two functions are equivalent and to get
the equivalent relationship if they are equivalent in general case.
This result also can be used for IP(isomorphism of polynomi-
als) problem with one secret over F2; Second, R(4, 6)/R(1, 6) and
R(3, 7)/R(1, 7) are classified efficiently by invariant theory. The
direct application of this classification is the semi-enumeration of
8-variable bent functions [15].

Except transforms in this paper, finding other transforms is
useful.
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ON THE DECOMPOSITION OF BOOLEAN

FUNCTIONS

Gérard H. E. Duchamp1, Hatem Hadj Kacem2 and Éric
Laugerotte2

Abstract. The minimization of a weighted automaton given
by its linear representation (λ, µ, γ) taking its letters in an
alphabet A and its multiplicities in a (commutative or not)
field k, due to Schützenberger, provides the construction of
a suffix set P such that the orbit (µ(p)γ)p∈P is a basis of the
k-space µ(k〈A〉)γ. This allows to study algorithmically the
Sn-module Z/2Z[Sn].f where Sn is the symmetric group
which acts on the unknowns x1, . . . , xn by change of vari-
ables, and f(x1, . . . , xn) is a boolean function. In this work,
we present an algorithm which computes the possible de-
compositions of f with respect to this action. In case the
function f is indecomposable the algorithm gives a proof of
indecomposability.

1. Introduction

This contribution is intended to tackle the multifaceted prob-
lem of decomposing the Boolean Functions (BF in the sequel).
By boolean function we here mean any function {0, 1}n !→ {0, 1}
which, in the language of Computer Science, is just any function
taking a n-bits word as argument and returning a boolean value.
These functions are efficiently represented by a BDD (a Binary
Decision Diagram). This representation can be traced back as far
as in the late fifties [14] and was exploited extensively (for the first

1 LIPN, Université de Paris-Nord, 99, avenue Jean-Baptiste Clément, 93430
Villetaneuse, France. email: gerard.duchamp@lipn.univ-paris13.fr
2 LIFAR, Université de Rouen, place Émile Blondel, 76821 Mont-Saint-
Aignan, France. email: eric.laugerotte@univ-rouen.fr
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developments see [1, 2]). The great merit of this coding is that it
is extremely concise and also compatible with boolean automata
theory [12] to such a point that a measure of hardness has been
derived from the consideration of a minimal automaton associated
to the BDD of a boolean function [5].

As a BDD is variable-order dependant, we would like here to
study the orbit of a boolean function under the action of the (alge-
bra of the) symmetric group on the variables. The set of boolean
functions of n-variables is naturally a Z2 (= Z/2Z) vector space.
Thus, the action of the symmetric group given by permutation
of variables can be at once extended by linearity to the algebra
Z2[Sn] = An and, by Krull-Schmitt’s theorem, we get that the
orbit of f can be split (uniquely, up to isomorphism) as a direct
sum of An indecomposable submodules. The interest of such a
splitting is that the components are monogenous (i.e. generated
by a single element). The decomposition reads An.f = ⊕Anfi and
this yields a decomposition of f using EndAn(An.f) idempotents

f = π1.f1 + π2.f2 · · · πk.fk (1)

Surprizingly, a suitable adaptation of Schützenberger’s algo-
rithm [16] for the minimization of automata with multiplicities
(here with coefficients in Z2) makes all this computable. We use
here half of the minimization process, keeping a note of the re-
lators appearing and then getting a minimal presentation of the
module An.f . This process is reminiscent of the theory of non-
commutative Gröbner bases [11], but here we need more. We need
also to compute idempotents in the transfer algebra EndAn(An.f),
which can be done using the reduced basis of the module An.f
previously computed. All the process has been implemented in
MuPAD.

The structure of the contribution is the following. In Section
2, we present the main aspects of weighted automaton minimiza-
tion. In Section 3, we deal with the splitting of modules. After,
in Section 4, we present the algorithmic of the decomposition of
boolean functions. At the end, in Section 5, an example is given
with the numbers of decomposable functions for the first values of
n.
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Figure 1. A Q-automaton.

2. Minimization of weighted automata

Let us give here a short review of the minimization algorithm
from the theory of automata with multiplicities (see also [4, 16]
for fields and domains and [10] for a detailed algorithm and an
extension to skew fields). An automaton with multiplicities A is a
structure equivalent to a triplet (λ, µ, γ) called linear representa-
tion which is defined by:

• an alphabet (of commands, say) A
• a (finite) set of states Q
• a (semi)ring k of scalars
• an input vector λ ∈ k1×Q

• an output vector γ ∈ kQ×1

• a mapping µ : A → kQ×Q

These data are usually represented as a valued graph (see Fig-
ure 1). The mapping µ is at once extended to a morphism from
(A∗, conc) to (kQ×Q, ·) where conc stands for the binary operator
of concatenation of words and · for the usual matrix multiplica-
tion. The number of states of the weighted automaton A is its
dimension noted dimension(A). Therefore A is a finite state ma-
chine taking words and providing coefficients (called also costs or
weights) which are provided by λµ(w)γ for a word w ∈ A∗. The
function A∗ → k, given by w !→ λµ(w)γ, can more conveniently
be written as a noncommutative series

behaviour(A) =
∑

w∈A∗

λµ(w)γw (2)
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Figure 3. A Z2-automaton

which is called the behaviour of A. Such series are just functions
A∗ !→ k called rational [4, 8, 15,17].

The whole set of functions kA∗

(noncommutative series) is often
denoted k〈〈A〉〉 and a function S ∈ k〈〈A〉〉, written in the style of
(2) reads

S =
∑

w∈A∗

〈S|w〉w (3)

so that S(w) (i.e. the coefficient of w in S) will be denoted as
the scalar product 〈S|w〉. The behaviour of A thus determines the
weight of w for the automaton A.

The aim of minimization is to construct an automaton

Amin = (λmin, µmin, γmin)

with the same behaviour and of smallest dimension.
From now on, we set once for all Z2 = Z/Z2.
The Z2-automaton given in Figure 2 is minimized in Figure 3.

Minimization is obtained by a left and a right reduction. In fact,
let ◦ be the left action defined for all formal series S ∈ k〈〈A〉〉 and
all word w ∈ A∗ by w ◦S =

∑

x∈A∗〈S|xw〉x. If S is rational, there
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exists a finitely generated submodule of k〈〈A〉〉 stable for ◦ which
contains the formal series behaviour(A) (this is even a criterium of
rationality, see [4,9]). The generators Si (i = 1, . . . ,dimension(A))
may be explicitly given by

Si =
∑

w∈A∗

(λiµi(w)γi)w

but in general it is not a family of smallest rank.
Finding algorithmically such a minimal family goes as follows [10].
Call suffix set a subset P of the free monoid A∗ such that, if a word
w belongs to P then every suffix of w belongs to P .
Left reduction of A allows to construct a suffix set P such that
(µ(p)γ)p∈P is a basis of the space of columns µ(k〈A〉)γ. The fam-
ily (p ◦ behaviour(A))p∈P generates a stable submodule of k〈〈A〉〉
which contains behaviour(A) and whose the dimension is smaller
or equal to dimension(A). Indeed, it is the smallest possible among
the stable submodules containing behaviour(A). More precisely,
let p ∈ P and a ∈ A,

a ◦ (p ◦ S) =

{

ap ◦ S if ap ∈ P ,
∑

q∈P αa
pq q ◦ S if ap /∈ P .

To each formal series p ◦ S is associated a state in the reduced
automaton. The weight of a transition p → q is the scalar αa

pq,
the transition label being a. After left reduction, right reduction
is applied and returns the minimized automaton Amin because
dim(λminµmin(k〈A〉)) = dim(µmin(k〈A〉)γmin).

3. Splitting modules

In what follows, we consider the algebra An = Z2[Sn] (we omit
the subscript as it is fixed once for all) of the symmetric group
Sn over Z2 [13]. It is generated by the simple transpositions
σ1, . . . ,σn−1 (σi is the transposition of i and i + 1) and there-
fore can be presented by generators (si)1≤i≤n−1 and the relations
(the symbol si standing for σi)







si
2 = 1,

sisj = sjsi if |i − j| > 1,
sisi+1si = si+1sisi+1.
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(called Moore-Coxeter relations [7, 13]). The algebra An acts on
the left on Z2〈x1, . . . , xn〉 by change of variables which are mor-
phisms si : A∗ !→ A∗ defined on the letters by







sixi = xi+1,
sixi+1 = xi,
sixj = xj if j )= i, i + 1.

Let S = {s1, . . . , sn−1} be the set of symbols of these (simple)
transpositions. The morphism Z2〈S〉 → An is onto and then
the notions of submodule and decomposition are the same for
the action of An and the action of Z2〈S〉. For this reason, we
will denote similarly (and with no risk of confusion) the two ac-
tions. Let Fn be the left An-module of boolean functions with
n variables (it is a finite dimensional Z2-vector space). We con-
sider the submodule An.f where f ∈ Fn is a single generator.
Krull-Schmidt’s theorem [6] implies that there exists (unique up
to isomorphisms) a splitting of the module An.f into a direct sum
An.f = M1 ⊕ · · · ⊕ Ml of indecomposable An-submodules Mi.
The aim of the algorithm below is to compute a splitting of An.f
by the knowledge of a complete family of orthogonal projectors
πi ∈ EndAn(An.f) (i = 1, . . . , l) i.e. which satisfy:







πi ◦ πi = πi,
πi ◦ πj = 0 if i )= j,
π1 ⊕ · · ·⊕ πl = 1EndAn (An.f).

Therefore, the module An.f is the direct sum of submodules given
by πi(An.f) which are generated by a single element. If πi is the
projector which carries out An.f to Mi (Mi = πi(An.f)) then πi

must be An-linear.
Let then ϕ ∈ Endk(An.f). Whether ϕ ∈ EndAn(An.f) is algorith-
mically decidable thanks to the fact that the ideal of annihilators
of ann(f) is finitely generated. We explain now how this can be
done.

One can construct a suffix set (see below or [10]) P ⊂ S∗ such
that P.f is a basis of An.f . Let E := {(σi,σ) ∈ S ×P | σiσ /∈ P}.
For (σi,σ) ∈ E, one has:

σiσ.f =
∑

σ′∈P

ασiσ,σ′σ′.f (4)
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and the differences R :=
{

σiσ −
∑

σ′∈P ασiσ,σ′σ′
}

(σi,σ)∈E
are a

complete set of generators of ann(f). The construction of idem-
potents will rely on the following lemma:

Lemma 3.1. Let ϕ ∈ Endk(An.f) and set fϕ = ϕ(f). Then the
linear transformation ϕ belongs to EndAn(An.f) iff:
i) for all σ ∈ P , one has ϕ(σ.f) = σ.ϕ(f)
ii) for all (σi,σ) ∈ E, the difference

(

σiσ −
∑

σ′∈P ασiσ,σ′

)

anni-
hilates fϕ.

Thus, it suffices to compute a basis of An.f , keeping track of
the relators appearing, to obtain a test which allows to select the
idempotents of EndAn(An.f) among the projectors of Endk(An.f).

4. Computation of endomorphisms and projectors

We can transfer the half minimization process to An.f and also
take care of keeping trace of the relators appearing. The following
algorithm allows us to find a suffix set of S∗ and the corresponding
set of relators:

algorithm suffix
input the set S

a boolean function f ∈ Fn

output a suffix set P ⊂ S∗

a set of relators R
(P, Y,R) := (∅, {ε}, ∅)
while Y )= ∅
do take y ∈ Y

if ym /∈ span(mp : p ∈ P )
then (P, Y ) := (P ∪ {y}, (Y − {y}) ∪ yS)
else there exits a relation ym =

∑

p∈P αpmp
(P, Y,R) := (P, (Y − {y}), R ∪ {y −

∑

p∈P αpp})
end if

end while
return(P,R)
end

The set P is a suffix set and the algorithm terminates. In fact, we
show that the set P is suffix at each step of the algorithm. This
is clear from the beginning when P = {ε}. Now, if y ∈ Y ⊆ S∗ is
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accepted it must have been so of every suffix of it before. Let |σ|
denote, as usual, the length of a word σ ∈ S∗. As the space An.f
has a finite dimension, it exists a non-negative integer l such that:

span(σ.f : σ ∈ S∗) = span(σ.f : σ ∈ S∗ and |σ| < l).

One has P ⊆ {σ ∈ S∗ : |σ| < l} and Y ⊆ {σ ∈ S∗ : |σ| < l + 1}.
Then the set Y becomes empty during the algorithm and then the
algorithm terminates.

Lemma 4.1. The set P.f = {σ.f : σ ∈ P} is a basis of the space
An.f .

Proof. Let C = SP \P be the complete suffix code associated to P
[3]. One has the decomposition S∗ = P /S∗CP of the free monoid.
Let σiσ ∈ C. Then there exists a relator σiσ −

∑

σ′∈P ασ′σ′ ∈ R.
Now let σi ∈ S and σiσ ∈ CS∗S. One has by induction:

σiσf =
∑

σ′∈P

ασ′σiσ
′f

=
∑

σiσ′∈P

ασ′σiσ
′f +

∑

σiσ/∈P

∑

σ′′∈P

ασ′βσ′′

σiσ′σ′′f.

And then σiσf ∈ span(σf : σ ∈ P ) which ends the proof. !

By Lemma 4.1, Algorithm suffix computes a complete descrip-
tion of the space Anf . We can observe that the set R of relators
depends on the choice of words y ∈ Y . Let f = x1x2 + x1 ∈ F3.
The set of relators are different if the words are choosen with the
graded or with the usual lexicographic order. In fact, the element
σ2σ2 + ε ∈ S∗ is a relator with the use of the second order but not
with the first. See Figure 4 where a full transition means an action
giving an new element of the basis, a dotted transition giving a
relator.

Lemma 4.2. The ideal generated by the set of relators R is then
ann(f).

In [11], the tools for the proof of Lemma 4.2 are presented.
Therefore we associate at ϕ ∈ End(A.f) a unique element fϕ =
(
∑

σ∈P ασ,εσf) [6]. By Lemma 4.1, it is easy to determine algorith-
mically the endomorphism ϕ in the basis (σf)σ∈P of Af . In fact,
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x1x2 + x1

x1x2 + x2

x1x3 + x3

x2x3 + x3

x2x3 + x2

σ1

σ2

σ1

σ2

σ1

σ2

σ1

σ2

σ1

σ1

σ1

σ1

σ2

σ2

σ2

σ2

σ2

σ1

x1x2 + x1

x1x2 + x2

x1x3 + x3

x1x3 + x1

x2x3 + x2

σ1

σ2

σ2

σ1

σ1 σ2 σ1,σ2

σ1

σ1,σ2

σ1

σ1

σ2

σ2

σ1 σ2

σ2

Figure 4. Suffix sets and relators for f = x1x2 + x1

Algorithm suffix allows to compute the suffix set P and the relator
set R. By linearity, for any element σ′ ∈ P , the endomorphism ϕ
depends only to the unknowns ασ,ε. In fact, one has:

ϕ(σ′f) =
∑

σ∈P

ασ,εσ
′σf =

∑

σ′σ∈P

ασ,εσ
′σf +

∑

σ′σ/∈P

ασ,ε

∑

σ′′∈P

βσ′′

σ′σσ′′.

The scalars βσ′′

σ′σ are given by the relators. The order of computa-
tion of vectors ϕ(σf) is given by the entry of σ in the set P . If
σ = σiσ′ then ϕ(σ′f) will be known. The morphism ϕ is computed
by the following algorithm:

algorithm cons ϕ
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input the set of simple transitions S
the suffix set P
the set of relators R

output the morphism ϕ
Y := S
ϕ(εf) :=

∑

σ∈P ασ,εσf
while Y )= ∅
do take σiσ ∈ Y

if σiσ /∈ P
then Y := Y − {σiσ}
else ϕ(σiσf) := σiϕ(σf)

Y := (Y ∪ Sσiσ) − {σiσ}
end if

end while
return(ϕ)
end

In order to find projectors, we must study the relation of idem-
potence ϕ2 = ϕ. Moreover we must verify that ϕ(σf) = σϕ(f)
for all element σ ∈ P and rϕ(f) = 0 for all relator r ∈ R as
ϕ ∈ EndAn(An.f). Therefore we obtain a system of n× |P |2 + |P |
equations in the unknowns ασ,ε for all σ ∈ P . Each non-trivial
solution ϕ gives a decomposition An.f = An.fϕ ⊕ An.f1−ϕ. In
this case, we restart the algorithm on An.fϕ and An.f1−ϕ. We get
by repetition a direct sum of indecomposable submodules. Other-
wise, if no non-trivial solutions exists, we deduce that the module
An.f can not be written in a direct sum of submodules non-zero
submodules.

Theorem 4.3. Let f ∈ Fn. A finite repetition of Algorithm suffix
and cons ϕ decides if there exits a decomposition of An.f in direct
sum of indecomposable submodules. If the algorithm finds no non-
trivial decomposition at the first step, then the module An.f is
indecomposable.

The preceding process can be applied mutatis mutandis with
A any finitely generated associative algebra with unit over a field
k acting on a finite dimensional (as a k-vector space) A-module.

5. Example of splitting

We consider now the boolean function f = x1x2 + x1 ∈ F3.
A basis of the module A3.f is presented in Figure 4 when the
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x1x3 + x2 + x2x3 + x3

x1 + x1x3 + x2x3 + x3

x1 + x1x2 + x2 + x2x3

x1x2 + x2 + x2x3 + x3

σ1

σ2

σ2

σ1
σ2

σ1,σ2

σ1

σ1

x1 + x1x2 + x1x3 + x2 + x2x3 + x3

σ1,σ2

Figure 5. Indecomposable modules

graded lexicographic order is choosen for the computation of the
suffix set P . Let ϕ ∈ Endk(A3.f) and fϕ ∈ A3.f such that fϕ =
αεε.f+ασ1

σ1.f+ασ2
σ2.f+ασ2σ1

σ2σ1.f+ασ1σ2
σ1σ2.f . The matrix

corresponding to ϕ is:







αε ασ1
+ασ1σ2

ασ2
+ασ2σ1

ασ2
+ασ2σ1

ασ1
+ασ1σ2

ασ1
αε+ασ1σ2

ασ1σ2
+ασ2σ1

ασ2
ασ1

+ασ2

ασ2
ασ1σ2

+ασ2σ1
αε+ασ2σ1

ασ1
+ασ2

ασ1

ασ1σ2
ασ1σ2

ασ1
+ασ2σ1

αε+ασ2
ασ1

+ασ2σ1

ασ2σ1
ασ2

+ασ1σ2
ασ2σ1

ασ2
+ασ1σ2

αε+ασ2







Non-trivial solutions of the system given by ϕ2 = ϕ and σϕ(f) =
ϕ(σ.f) for all σ ∈ P are fϕ = σ2σ1.f + σ1σ2.f and f1+ϕ = ε.f +
σ2σ1.f + σ1σ2.f . Or else, fϕ = x1x3 + x2 + x2x3 + x3 and f1+ϕ =
x1 +x1x2 +x1x3 +x2 +x2x3 +x3. In fact, one has A3.f = A3.fϕ +
A3.f1+ϕ, and the indecomposable modules A3.fϕ and A3.f1+ϕ are
expressed by Figure 5.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



126 G. DUCHAMP, H. HADJ KACEM, E. LAUGEROTTE

First results of experiments are presented in the following table:

Nb of unknowns 1 2 3 4
Nb of functions 1 16 256 65536
Nb of dec. functions 0 0 82 683
% of dec. functions 0 0 32.03 1.04

6. Concluding remarks

The linear representation of the action of the symmetric group
by change of variables of a boolean function has been studied with
respect to indecomposability and using Z2 coefficients. We have
got a presentation of the module generated by a boolean function
by means of an algorithm designed by Schützenberger for the min-
imization of automata with multiplicities and a suited recording of
the relators appearing during the computation. The whole process
has been implemented in MuPAD.
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GREY-BOX IMPLEMENTATION OF BLOCK

CIPHERS PRESERVING THE CONFIDENTIALITY

OF THEIR DESIGN ∗

V. Carlier1, H. Chabanne2 and E. Dottax3

Abstract. In 1997, Patarin and Goubin introduce new
asymmetric cryptosystems based on the difficulty of recover-
ing two systems of multivariate polynomials from their com-
position. We make a different use of this difficult algorithmic
problem to obtain a way of representing block ciphers con-
cealing their design but leaving them executable. We show
how to implement our solution giving a compact represen-
tation with Binary Decision Diagrams.

1. Introduction

Protection of the design of ciphering algorithms is not a new
problem. The situation is a bit paradoxical, as usually confiden-
tiality is addressed by encryption. At one hand, algorithms can
be enclosed into a tamper resistant circuit. A famous example
is given by the Skipjack algorithm history. Its specifications were
once classified and it had to stay into devices such as the Capstone
or Clipper chips, known to implement specific protections against
reverse engineering [18]. We talk in this case of black-box environ-
ment, where confidentiality of design relies on physical resistance.
At the other hand, the new concept of white-box cryptography
emerges [6, 7, 14]. Here, the whole source code is supposed to
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be known to the attacker, and the security is provided by logical
ways. Note, however, that in these articles, the sole keys used by
the algorithm are to be hidden, the design of the algorithm being
known. We place ourselves in-between and call our solution grey-
box cryptography. We propose a solution using well-known tamper
response techniques where volatile memories are zeroized whenever
an intrusion is detected, and we accept that some information is
recovered by an intruder. This hypothesis is confirmed by exper-
iments [20] and seems quite reasonable to assume. We then find
ourselves with an instance related to a well-known algorithmic
problem, introduced for cryptographic purposes by Goubin and
Patarin in the two rounds schemes with partial revelation of the
polynomials, noted 2R− schemes [12]. In this, we follow works of
Sander et al. [15,19] where the Quadratic Residue Hypothesis [11]
is used to hide polynomials and subsequently programs, and more
recently of Billet and Gilbert [3] who utilize the Isomorphism of
Polynomials problem [8, 16, 17] to implement a concealed block
cipher with a traceability property.

The remainder of this paper is organized as follows. Section
2 explains the setting of our solution. Section 3 goes further in
details giving some concrete examples and explaining the method
used. Section 4 concludes.

2. A New Way to Implement a Block Cipher Protecting
the Confidentiality of its Design

2.1. 2R− Schemes

Goubin and Patarin introduce in [12] new asymmetric cryp-
tosystems based on the idea of hiding one or two rounds of small
S-box computations with secret functions of degree one or two.
The public key is given by multivariate polynomials of small de-
gree. In the following we recall the so-called two-rounds schemes,
designed to be more secure than one-round schemes.

Let K be a finite field with q = pm elements. Plaintexts and
ciphertexts are elements of Kn. The secret key consists of three
affine bijections r, s, t : Kn → Kn, and two applications f, g, each
given by n quadratic equations over K. The public key consists of
the polynomials P1, . . . , Pn of degree 4 in n variables that describe
the composed mapping H = t ◦ g ◦ s ◦ f ◦ r. When all these poly-
nomials are given, the scheme is called a 2R scheme. When only
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some of them are given, the scheme is called a 2R− scheme. The
public-key side computation is just an application of the mapping
H. For the secret-key computations, we need to invert the func-
tions f and g. The authors propose to choose them among the
following classes of functions:

– C!-functions: monomials over an extension of degree n
over K;

– triangular functions:

(a1, . . . , an) #→ (a1, a2 + q1(a1), . . . , an + qn−1(a1, . . . , an−1))

where the qi are quadratic;
– S-boxes functions, which map (a1, . . . , an) ∈ Kn to:

(S1(a1, . . . , an1
), S2(an1+1, . . . , an1+n2

), . . .
. . . , Sd(an1+n2+...+nd−1+1, . . . , an1+...+nd

))

where n =
∑

ni and the Si : Kni → Kni are quadratic;
– Combinations of S-boxes with triangular functions;
– D!!-functions: squaring in an extension of K of degree n.

These schemes are based on the difficulty of decomposing compo-
sitions of multivariate polynomials, i.e. given h = f ◦ g, recover
f and g. Note that if we drop t and g in above description, we
get the one-round schemes, and they have all been shown to be
insecure [12]. The two-rounds schemes have also been shown to
be insecure when g lies in the first two classes [12]. The variant
that we are interested in is 2R with S-boxes, where both f and g
are S-boxes functions.

So far, there exist two different attacks against 2R with S-
boxes. In [2], Biham succeeds in cryptanalysing the scheme. Note
that this attack is not based on functionnal decomposition. An-
other attack has been published [10], based on the algebraic struc-
ture of the scheme and with the intention of decomposing the com-
position. However, the attack imposes restrictions on the scheme:

(1) the field K should have more than 4 elements;
(2) the attack would not work if the S-box functions are not

quadratic.

Note as well that the 2R− schemes, i.e. when some of the polyno-
mials describing the composition are kept secret, are not subject
to these atttacks.
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2.2. Our Idea and a Way to Implement It

Our idea is to use the same problem as in 2R− schemes for
protecting the confidentiality of the design of block ciphers.

A block cipher is usually composed of several rounds, and a
round itself is composed of different operations. The description
of these operations constitutes the design of the algorithm: they
have been chosen by the designer and they are an evidence of
its know-how. Our method aims at keeping these design secret
by composing rounds. For a given cipher acting on n-bit blocks,
let x1, . . . , xn be the boolean input variables and y1, . . . , yn the
output bits after the first round. Each yi can be expressed as
a boolean function p1,i in the variables x1, . . . , xn and obtained
by combination of its component functions, including an S-box
function. We compute as well the boolean functions (p2,i)1≤i≤n

corresponding to the second round of the cipher. Let (qi)1≤i≤n

be the boolean functions that implement these two rounds (an
example with DES is shown on Fig. 1). This system of boolean
functions allows us to describe the two rounds of the cipher in
an executable way, but without revealing information about the
design of the algorithm.

8

>

>

>

<

>

>

>

:

R2(1)=q1(L0(1), . . . , L0(32), R0(1), . . . , R0(32))
R2(2)=q2(L0(1), . . . , L0(32), R0(1), . . . , R0(32))

...
R2(32)=q32(L0(1), . . . , L0(32), R0(1), . . . , R0(32))

L0 R0

L1
R1

L2 R2

K1

K2

f

f

Figure 1. Two rounds of DES.

We further subtract some equations from attackers analysis by
a physical mean. The design of the algorithm is stored in a volatile
memory which is zeroized when an intrusion is detected. Such
techniques known as tamper response can be implemented follow-
ing various ways [21]. The simplest one is a quick drop of the
power line of the memory (see Fig. 2). Due to data remanence
phenomena [13] and external conditions [20], it is hard to exactly
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predict how many equations will be erased. Now the confidential-
ity of the design is based on the same problem as the 2R− scheme.

global

VCC
SRAM

power
gate

on/off

V

V

t

tamper
detection

Figure 2. Physical implementation of the “−” of 2R−.

There is one point that we have not tackled yet but that is
worthy of attention: the treatment of the secret key. As the key
is usually diversified into several subkeys (one for each round), we
have several possibilities to implement the block cipher, among
them:

(1) The boolean functions have additionnal variables ki so that
for each round, the corresponding subkey can be input, the
key schedule being performed separately. At one hand, this
allows flexibility in key injection, and has the advantage
that each round can be represented by the same boolean
functions, so we can implement the whole cipher with only
one composition of two rounds. On the other hand, it
adds a lot of variables to the boolean functions we have to
compute.

(2) The secret key is integrated into the boolean functions, i.e.
we perform the key schedule before the implementation of
the cipher and we compute the boolean functions with only
the text variables as input. This has the drawback that
every round will have a different expression, so we have
to compute and implement every composition of 2 rounds
separately.

(3) If the cipher permits it, we can envisage an intermediate
solution. When the block cipher has a very simple key-
schedule, it is possible to integrate the main key and the
key-schedule into the boolean functions. We can think for
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instance about the block cipher 3-Way [9] of which key-
schedule is reduced to bitwise XOR-ing a short round con-
stant to the main key. This allows us to implement all the
cipher with only one composition of two rounds, but with-
out adding too many variables to the boolean functions.

These different solutions may lead to different levels of security.

3. An example

3.1. BDDs

We choose binary decision diagrams (BDDs) for representing
boolean circuits. They were introduced in 1986 by Bryant [4] and
are known to give a compact representation of logical functions.
Some operations are defined on BDDs. For instance, we can use
their composition for step by step computing the BDDs standing
for one or many rounds. As well, the algorithm for evaluating
BDDs can be considered as a trivial way to implement our solution
with a network of multiplexers.

BDDs are data structures used to represent boolean functions.
Here we shortly present their properties, the interested reader is
referred to [1, 4, 5].

Let f be a boolean function of n variables. If f|xi=b denotes the
function resulting when the i-th variable is replaced by the con-
stant b, the Shannon expansion of the function f around variable
xi is given by:

f = xi · f|xi=1 + xi · f|xi=0

This simple relation is used to represent boolean functions as par-
ticular graphs in an if-then-else notation.

Definition 3.1. A binary decision diagram (BDD) is a rooted, di-
rected acyclic graph with two types of nodes. A non-terminal node
N is labelled i ∈ {0, . . . , n} and has two children noted low(N)
and high(N). A terminal node is labelled 0 or 1 and has no child.

A graph having root node labelled i denotes the function fi

fi(x1, . . . , xn) = xi · fhigh(N)(x1, . . . , xn) + xi · flow(N)(x1, . . . , xn)

The set of values {x1, . . . , xn} describes a path in the graph start-
ing from the root : at each node labelled i, we follow the high
child if xi = 1 (“THEN”) and the low child otherwise (“ELSE”).
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Definition 3.2. A BDD is ordered (OBDD) if, on all paths
through the graph, the labels respect a given order. An OBDD is
reduced (ROBDD) if the following conditions are satified:

uniqueness: two nodes having the same label and children
are equal;

non-redondant tests: there are no node with both children
leading to the same node.

These three conditions for constructing an ROBDD are illus-
trated on Fig. 3. Figure 4 shows an example on the function
f(x, y, z) = x · y + z.

xx x x

y z

ordering
x < y, x < z

uniqueness non-redundant
tests

Figure 3. The conditions of ROBDDs.

Note that ROBBDs depend only on the order of the variables,
so they are canonical representations of functions. In other words,
for a given variables order, any way of computing an ROBBD leads
to the same result. There exist various types of BDDs. Here we
use signed BDDs, where a tag is added on each link for if we have
to complement the result. This leads to more compact represen-
tations, as a function and its complementary can be represented
by the same BDDs.

3.2. Grouping together two rounds of DES

To fix ideas, we here give some figures (see Tab. 1) on the num-
ber of nodes needed to represent the right part of the composition
of the first two rounds of DES with signed ROBDDs. What we ex-
actly compute is illustrated by Fig. 1. Each one of the 32 bits here
stands as a logical function of 34 variables. Note that when repre-
sented by polynomials, each of these logical functions has degree
25 and more than 150000 terms. We used the BDD library [22]
to compute the composition of two rounds. The following table
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xx

y yy

zz z z z

00 0 0 1 11 1 1 1

decision tree ROBDD

Figure 4. Representations of the function
f(x, y, z) = x · y + z.

gives the exact complexity of the BDDs, which varies from 6667 to
34947 nodes (13750 on average), R(i, j) standing for the j-th bit of
the right block after i rounds of DES. Note that in this experiment
the key is fixed to a random value. As for the variable ordering,
it has a great influence on the size of the BDDs, for instance the
size of the BDD for one bit can be more than 1.5 millions of nodes
with some orders. The figures given here were obtained with an
order that gives acceptable size for all BDDs. However, we think
that the complexity can be further reduced, for instance by using
a specific order for each output bit. Further research is needed to
explicit the relation between the input variable ordering and the
size of the resulting BDD.

bit #nodes bit #nodes bit #nodes bit #nodes

R(2,1) 13448 R(2, 9) 16536 R(2,17) 17256 R(2,25) 9402
R(2,2) 30741 R(2,10) 13564 R(2,18) 34947 R(2,26) 13449
R(2,3) 9322 R(2,11) 6667 R(2,19) 7240 R(2,27) 6944
R(2,4) 7095 R(2,12) 7067 R(2,20) 13436 R(2,28) 25947
R(2,5) 6938 R(2,13) 32393 R(2,21) 7002 R(2,29) 6813
R(2,6) 19294 R(2,14) 9285 R(2,22) 7057 R(2,30) 20057
R(2,7) 7057 R(2,15) 6914 R(2,23) 16337 R(2,31) 17070
R(2,8) 9592 R(2,16) 16076 R(2,24) 18064 R(2,32) 7070

Table 1. Complexity of BDDs for the right block
of DES after 2 rounds.
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3.3. An implementation

In a straightforward implementation of the complete DES, 8
sets of such BDDs (one for each pair of rounds) are placed in a
memory and we run through them, according to the value of the 64
input bits. Each node (except the last one) is coded on 40 bits and
consists of its variable number, 2 tags for the signs of the “THEN”
and “ELSE” links (we use signed ROBBDs), and the addresses of
its “THEN” and “ELSE” nodes. All the BDDs necessary to represent
the 16 DES rounds need approximately 18 Mo of memory to be
stored using this representation. We used a RAM memory, which
is accessed by an FPGA (Field Programmable Gate Array). The
FPGA is programmed to take as input the 64 plaintext bits, and
to run through the BDDs in memory according to these values.
When the FPGA reaches the leaves of the last set of BDDs, it gets
the 64 output bits. The throughput of this implementation is 152
Kbits/s.

As a comparison, the white-box DES implementation of [14],
which is a software implementation, occupies 4.5 MB and encrypts
one block in 30ms.

4. Conclusion

We introduce a new way of implementing cryptographic algo-
rithms preserving their confidentiality. Our technique demands
some tamper response in case of intrusion to obtain an instance
of a hard algorithmic problem. There is still avenues to improve
this. For instance, and as usual with BDDs, variable ordering
should have a great importance for size optimization of manip-
ulated graphs [5]. A very simple implementation of this scheme
consists in storing BDDs in an external but tamper responsive
SRAM, and to add some logic to run through this memory. From
another point of view, note that some cryptographic algorithms
are more difficult to represent this way as they rely on primitives
for which BDDs are not so efficient such as multiplicators or rota-
tors. Finally, we try to place ourselves outside known attacks but
we are dealing with special instances where a sparse polynomial is
composed with approximately itself. We invite readers to carefully
analysis our solution before using it.
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CRYPTOGRAPHICAL BOOLEAN FUNCTIONS
CONSTRUCTION FROM LINEAR CODES

Philippe Guillot1

Abstract. This paper presents an extension of the Maio-
rana-McFarland method for building Boolean functions with
good cryptographic properties.

The original Maiorana-McFarland construction was pro-
posed to design bent functions. Then, it was extended in [1]
to build highly nonlinear resilient functions.

The classical construction splits the set of variables into
two separate subsets. There, is proposed a decomposition
of the whole working space into two complementary vector
spaces. One of these spaces is considered as a linear code
and its parameters assign cryptographic properties to the
constructed Boolean function.

The cryptographical properties we are interested in are
nonlinearity, resiliency and propagation properties.

The obtained functions are linearly equivalent to those
constructed by the traditional way. Thus, no improvement
for affine invariant parameters such as nonlinearity is ex-
pected. On the other hand, for non affine invariant crypto-
graphic parameters such as resiliency order or propagation
order, better values are obtained.

1. Motivation

Cryptographic algorithms design is still based on confusion and
diffusion principles stated by Shannon in 1949 (see [6]). Diffusion
means that a bit change in the key is propagated in the whole
ciphertext. It is performed by linear transformations. Confusion
means that the relationship between the key, the plaintext and the

1 Université Paris 8. email: philippe.guillot@univ-paris8.fr
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ciphertext is complex and involved. It is performed by nonlinear
transformations and mostly implemented as Boolean functions.

The nonlinearity may be defined in at least four ways.
First, a Boolean function is nonlinear if it is not correlated to

any affine function. This is the correlation criterion. It means that
the function is far from the set of affine functions.

Nonlinearity may also be defined through propagation proper-
ties. If some variables are changed, is the value changed too ?
If the function has a linear structure, then the answer is always
predictable : yes or no depending on which variables are changed.
For cryptographic oriented functions, the answer should be unpre-
dictable.

Third, a linear function is expressed as a n-variable polynomial
of degree one. A nonlinear function should be expressed as a
polynomial of degree as high as possible.

Finally, a linear function is simple. A nonlinear function is
expected to be complex. The complexity may be measured by
several ways : number of gates to implement it, number of nodes
in a Binary Decision Diagram, and so on.

The designer has to deal with all these criteria together. It is
rarely possible to optimize all of them. We are mainly interested in
the sequel in a compromise between correlation and propagation
criteria.

2. Spectral Analysis

The mathematical tool to explore nonlinearity of boolean func-
tions consists in two objects: the Walsh transform and the auto-
correlation function. In this section, we recall basic results and
definitions which will be used in the sequel.

Let n be any integer ≥ 2 and Fn
2 be the n-dimensional vector

space over the field F2. For any vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Fn

2 , the inner product of x and y is x · y =
x1y1 + · · · + xnyn ∈ F2.

A Boolean function over Fn
2 is a mapping Fn

2 → F2.
The Fourier transform of a Boolean function f is by definition

the real valued function f̂ defined as

∀u ∈ Fn
2 f̂(u) =

∑

x∈Fn
2

f(x)(−1)u·x.
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The Fourier transform of the sign function fχ = (−1)f = 1−2f
is called the Walsh transform of f :

∀u ∈ Fn
2 f̂χ(u) =

∑

x∈Fn
2

(−1)f(x)+u·x.

For all u ∈ Fn
2 , the Wash transform value f̂χ(u) is the number

of times f(x) equals u · x minus the number of time it differs.
Thus f̂χ(u) measures the correlation between f and the linear
form λu : x &→ u · x. The function f is statistically independent
from λu if and only if f̂χ(u) = 0. In particular, f is balanced if
and only if f̂χ(0) = 0.

The power of this tool is based on the orthogonality relation of
the so called Walsh functions χu : x &→ (−1)u·x:

∀(u, v) ∈ Fn
2 × Fn

2

∑

x∈Fn
2

χu(x)χv(x) =
∑

x∈Fn
2

(−1)(u+v)·x

=

{
2n if u = v;
0 elsewhere.

For any p-dimensional vector subspace E of Fn
2 , the dual of E,

denoted E⊥, is the (n−p)-dimensional vector space of linear forms
that vanish on E.

E⊥ = {u ∈ Fn
2 | ∀x ∈ E, u · x = 0}.

If f is defined on a vector subspace E of Fn
2 , the expression of

the Fourier transform of f is given by

f̂(u) =
∑

x∈E

f(x)(−1)u·x.

A first glance, f̂ is defined over the whole space Fn
2 , but in fact

f̂(u) remains unchanged when u is added to any element of E⊥.
In other word, f̂ is constant on any coset of E⊥. Thus, f̂ may be
considered as defined over the quotient space Fn

2/E⊥.
For convenience and easier computation, it may be useful to

consider a complementary space F of E, i.e. such that Fn
2 =

E⊕F . The dual spaces E⊥ and F⊥ are complementary too and the
quotient space Fn

2/E⊥ is isomorphic to F⊥. Thus, f̂ is considered
as defined on F⊥.
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The second object of the spectral analysis is the autocorrelation
function. For any Boolean function f over Fn

2 , the autocorrelation
function of f , denoted rf is by definition:

rf :
Fn

2 → R
u &→

∑

x∈Fn
2

(−1)f(x)+f(x+u) .

The value rf (u) is the number of time f(x) equals f(x+u) mi-
nus the number of times it differs. Thus it measure the avalanche
effect of vector u.

If rf (u) = 0 then the value of f is unpredictable when the
variables xi such that ui = 1 are changed.

If rf (u) = ±2n then the function x &→ f(x) + f(x + u) is
constant. In this case, the vector u is called a linear structure
for f . The set of linear structures over Fn

2 is the subset of Boolean
function that do have a linear structure. The set of affine functions
over Fn

2 is a subset of the set of linear structures (see [4]).

3. Cryptographic criteria

In a symmetric algorithm, the Boolean function is in charge
of the confusion property. Thus, it has to be highly nonlinear.
The nonlinearity is measured by the distance δ(f) of the Boolean
function f from the set of affine functions. It can be expressed by
mean of the Walsh transform (see [4]) :

δ(f) = 2n−1 − 1
2

max
u∈Fn

2

(
|f̂χ(u)|

)
.

The lower is the greatest magnitude of the Walsh transform,
the further is the function from the set of affine functions.

Another nonlinearity measure is given by the distance σ(f) of
the Boolean function f from the set of linear structures. It can be
expressed by mean of the autocorrelation function (see [4]) :

σ(f) = 2n−2 − 1
4

max
u∈Fn

2 \{0}

(
|rf (u)|

)
.

Similarly, the lower is the greatest magnitude of the autocor-
relation function on nonzero vectors, the further is the function
from the set of linear structures.
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The cryptographer should minimize maximum magnitude of
both the Walsh transform and the autocorrelation function in or-
der to design non linear functions with good cryptographic prop-
erties.

Both δ and σ are affine invariants, i.e. the values δ(f) and
σ(f) remain unchanged if f is composed with any invertible affine
mapping on Fn

2 .
A Boolean function is said to be k-resilient, if the knowledge

of any k variables does not provide any statistical information on
the value of f . A function is 0-resilient means that it is balanced.
Resiliency has a nice characterization by mean of the Walsh trans-
form (see [7]).

Proposition 3.1. A Boolean function f over Fn
2 is k-resilient if

and only if for any vector u ∈ Fn
2 of weight less than or equal to

k, its Walsh transform vanishes at vector u, i.e. f̂χ(u) = 0.

A Boolean function satisfies the propagation criterion at order
k, which is denoted PC(k), if changing any k variables does not
allow to guess if the value of f changes or not. Similarly, prop-
agation criterion has a characterization by mean of the autocor-
relation function. The following proposition is a straightforward
consequence of the definition.

Proposition 3.2. A Boolean function f over Fn
2 satisfies PC(k)

if and only if for any nonzero vector u ∈ Fn
2 \ {0} of weight less

than or equal to k, its autocorrelation function vanishes at vector
u, i.e. rf (u) = 0.

4. The Maiorana-McFarland Construction

The Maiorana-McFarland construction was originally designed
to build bent function (see [3]). It has been extended in [1] to
build resilient functions. Here, we extend it again according to a
technique similar to those proposed in [2].

Let n ≥ 2 be an integer and Fn
2 = E ⊕ F a decomposition into

two complementary vector subspaces : E of dimension p and F of
dimension q = n− p.

For any mapping π : E → Fn
2 and any mapping h : E → F2

the Maiorana-McFarland construction defines a Boolean function
f as follows :
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f : E ⊕ F → F2

x + y &→ π(x) · y + h(x) .

The mapping π is defined onto Fn
2 , but as π(x) is only involved

by an inner product with an element of F , the value of f is un-
changed when π(x) is translated by any vector in F⊥. Thus, π
may be considered to be defined onto the quotient space Fn

2/F⊥,
which is isomorphic to E⊥.

The traditional definition appears to be a particular case of
this definition by considering E = {(x1, . . . , xn) ∈ Fn

2 | xp+1 =
0, . . . , xn = 0} and F = {(x1, . . . , xn) ∈ Fn

2 | x1 = 0, . . . , xp = 0}.
Conversely, any linear equivalent of the classical Maiorana-

McFarland construction may be obtained by the way presented
here.

In order to establish the correlation properties of the function
f , the following proposition expresses the Walsh transform.

Proposition 4.1. For any w ∈ Fn
2 , let w = u + v be the unique

decomposition of w in the direct sum E⊥ ⊕ F⊥ with u ∈ E⊥ and
v ∈ F⊥.

f̂χ(u + v) = 2q
∑

x∈π−1(u)

(−1)h(x)+v·x (1)

Proof. By definition, for any w ∈ Fn
2 ,

f̂χ(w) =
∑

(x,y)∈E×F

(−1)π(x)·y+h(x)+w·(x+y)

=
∑

x∈E

(−1)h(x)+w·x
∑

y∈F

(−1)(π(x)+w)·y

The latter sum equals |F | = 2q if π(x) + w ∈ F⊥ and 0 else-
where. Thus, the only nonzero terms in the above sum are those
such as π(x) ∈ w+F⊥. As, x ∈ E in the sum, w ·x = u ·x+v ·x =
v · x. Furthermore, π(x) ∈ w + F⊥ ⇔ x ∈ π−1(u) and the result
holds. !

In order to study resiliency, we are interested in the case where
the Walsh transform vanishes. This occurs in two cases : either
if π−1(u) is empty or if the function x &→ h(x) + v · x is balanced
on the subset π−1(u) of E. This latter property is not so easy to
check in general. An interesting particular case is when π−1(u) is
an affine subspace of E.
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Proposition 4.2. Let u be an element of E⊥, if the preimage
π−1(u) is the affine subspace of E defined by direction Vu and
element xu, then, for all v ∈ F⊥,

f̂χ(u + v) = 2q(−1)v·xu (̂hu)χ(v),

where hu denotes the Boolean function on Vn defined by t &→ h(t+
xu).

Proof. Set x = t + xu in the sum of expression (1) and the result
holds. !

In order to establish propagation properties of the function f ,
the following proposition expresses the autocorrelation function.

Proposition 4.3. For any z ∈ Fn
2 , let z = x + y the unique

decomposition of z in the direct sum E⊕F with x ∈ E and y ∈ F .

rf (x + y) = 2q
∑

t∈E|π(t)+π(t+x)∈F⊥

(−1)h(t)+h(t+x)+π(t)·y.

Proof.

rf (x + y) =
∑

(t,s)∈E×F

(−1)π(t)·s+h(t)+π(t+x)·(s+y)+h(t+x)

=
∑

t∈E

(−1)h(t)+h(t+x)+π(t+x)·y
∑

s∈F

(−1)(π(t)+π(t+x))·s

The latter sum equals |F | = 2q if π(t) and π(t + x) belong to the
same F⊥–coset, and equals 0 elsewhere. Thus, the only nonzero
terms are those for which π(t) + π(t + x) ∈ F⊥. !

If x = 0, then any t in E satisfies the condition π(t)+π(t+x) =
0 ∈ F⊥. Thus for any y ∈ F ,

rf (y) = 2q
∑

t∈E

(−1)π(t)·y.

Let u = π(t). For any y in F ,

rf (y) = 2q
∑

u∈E⊥

ψ(u)(−1)u·y = 2qψ̂(y), (2)

where, for any u ∈ E⊥, the value ψ(u) is the number of elements
of the preimage π−1(u).

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



148 P. GUILLOT

5. Practical constructions

5.1. π is one-to-one

We assume in this section, that for any u ∈ E⊥, the preimage
π−1(u) contains at most one element. This is possible only if
p ≤ q. If this preimage is nonempty, then the vector space Vu of
proposition 4.1 is always the null vector space and (̂hu)χ(u) = ±1.
Consequently, for all (u, v) ∈ E⊥ × F⊥,

f̂χ(u + v) =
{

±2q if π−1(u) += ∅;
0 elsewhere. (3)

The assumption on π implies that for all t and x in E,

π(t) + π(t + x) ∈ F⊥ ⇐⇒ x = 0.

From proposition 4.3, if x += 0 then rf (x+y) = 0. Finally, from
relation (2), for all (x, y) ∈ E × F ,

rf (x + y) =
{

2qϕ̂π(E)(y) if x = 0;
0 elsewhere, (4)

where ϕπ(E) denotes the indicator of the image π(E) in E⊥.
From relation (3), the following correlation properties of f are

deduced:

• f is balanced if and only if f̂χ(0) = 0, i.e. 0 +∈ π(E). This
requires in particular p < q.

• If for all x ∈ E, the coset leaders of π(x) + F⊥, which
are by definition the element of lowest weight, have weight
at least k, then f̂χ vanishes for all vectors of weight < k.
Therefore, f is (k − 1)-resilient.

• As f̂χ has constant magnitude equal to 2q, the nonlinearity
of f is δ(f) = 2n−1 − 2q−1.

From relation (4), the following propagation properties of f are
deduced:

• As rf (z) is nonzero only for z ∈ F , if F has minimum dis-
tance d, then f satisfies the propagation criterion PC(d−
1).



CRYPTOGRAPHICAL BOOLEAN FUNCTIONS 149

• The distance from f to the set of linear structures depends
on the nonlinearity of the π(E) indicator ϕπ(E). Namely,

σ(f) = 2n−2 − 2q−2 max
u∈E⊥\{0}

|ϕ̂π(E)(u)|.

In particular, if π(E) spans the whole space Fn
2 , then no nonzero

linear form is constant over π(E) and f is non degenerate in the
sense that it is not affinely equivalent to a Boolean function of
strictly less variables.

Relation (4) shows that the propagation order may be increased
if ϕπ(E) is chosen resilient. But on the other hand, due to the
Sarkar-Maitra’s bound (see [5]), this increases the greatest mag-
nitude of the autocorrelation function and thus decreases the dis-
tance from the set of linear structures.

Note that the cryptographic properties of f only depend on the
properties of the vector space F and of the image π(E). Once the
image π(E) and the vector space chosen, choice of permutation π
and Boolean function h lead to 2p! × 22p different functions with
similar cryptographic properties.

By an appropriate choice of π or h, the algebraic degree of f
can be increased to the maximum value, which equals p.

Unfortunately, the following proposition states that, when π is
one-to-one, no better resiliency order than the classical construc-
tion can be expected.

Proposition 5.1. If π is one-to-one, then the maximum resiliency
order k reached by such a construction satisfies

2p ≤
(

q

k + 1

)
+

(
q

k + 2

)
+ · · · +

(
q

q

)
(5)

This is based on the following result:

Lemma 5.2. Let C be any d-dimensional vector subspace of Fn
2 .

For any integer k such that 0 ≤ k ≤ n − d, Then there exists at
least

N = 1 +
(

n− d

1

)
+ · · · +

(
n− d

k

)
(6)

coset leaders of C of weight less than or equal to k.
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Proof. Without a loss of generality, one may assume that a gen-
erator matrix of C is of the systematic form

G =




1

. . . A
1





with information positions on the d first components. Each coset
admits a unique element that vanishes on the information set,
namely of the form x = (0, . . . , 0, xd+1, . . . , xn). The correspond-
ing coset leader has necessarily lower weight than x. The value of
N in (6) is the number of such vector x of weight ≤ k. !

Proof. (of proposition 5.1) Inequality (5) in proposition 5.1 states
that the number of coset leaders of weight > k given by lemma 5.2,
is greater than or equal to the number of vectors in E. !

Example. Let p = 4 and q = 5 and F be the 5-dimensional vector
space given by the generator matrix

GF =





1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 1 1
0 0 0 0 1 1 1 0 0




.

This vector space has minimum distance d = 3, thus the function
f satisfies PC(2). A generator matrix of the dual space F⊥ is

GF⊥ =





0 0 1 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1



 .

The 2p = 16 cosets defined by vectors u = (u1, . . . , u5, 0, 0, 0, 0)
with (u1, . . . , xu) ∈ {00011, 00101, 00110, 00111, 1001, 1011, 1100,
1110, 1111, 10001, 10010, 10101, 10110, 10111, 11000, 11001} only
contain vectors of weight ≥ 2. Consequently, the function f is 1-
resilient.

As maxu∈Fn
2
|f̂χ(u)| = 32, the nonlinearity of f is δ(f) = 28 −

24 = 240.
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For all x ∈ F5
2\{0}, the indicator of π(E) satisfies, |ϕ̂π(E)(x)| ≤

4, thus maxz∈Fn
2 \{0} |rf (z)| = 128 and the distance from f to the

set of linear structures is σ(f) = 128− 32 = 96.

5.2. π is two-to-one

In this section, we assume that π is a two-to-one mapping, that
is to say, for any u in π(E), the preimage π−1(u) contains exactly
two elements, namely xu and x′u. This implies p + 1 ≥ q.

We first examine the Walsh transform of f in such a case. As
any pair is a one-dimensional affine subspace, the proposition 4.2
is applicable. With the notations of proposition 4.2, Vu is the
vector space {0, xu + x′u} and for any v ∈ F⊥,

(̂hu)χ(v) = (−1)h(xu)+v·xu + (−1)h(x′u)+v·x′u

=

{
0 if h(xu) + h(x′u) += v · (xu + x′u);
±2 elsewhere.

For convenience, let H denote the Boolean mapping on F⊥

defined by H : x &→ h(xu) + h(x′u). The Walsh transform of f is
expressed, for any u ∈ E⊥ and any v ∈ F⊥:

f̂χ(u+v) =

{
0 if either π−1(u) = ∅ or H(u) += v · (xu + x′u)
±2q+1 elsewhere

(7)
In particular, f is balanced if either no vector of E maps to 0

by π or h(x0) += h(x′0).
We study now the autocorrelation function of f .
For any t and x in E, if x += 0, then stating that π(t) and

π(t + x) belong to the same F⊥–coset defined by vector u ∈ E⊥

means that {t, t+x} is precisely the pair {xu, x′u} for this coset, and
xu + x′u = x. Thus, from proposition 4.3, and as the pair {xu, x′u}
appears for both xu = t and xu = t + x, for any x ∈ E \ {0} and
any y ∈ F ,

rf (x + y) = 2q+1
∑

u∈E⊥|xu+x′u=x

(−1)H(u)+u·y. (8)

Maximizing the propagation order requires that the autocor-
relation function has as many zero values as possible. If for any
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u ∈ E⊥ the sum xu + x′u is a constant x0 independent of u, then
the sum (8) is nonzero only for x = 0 or x = x0. Let us study this
particular case now.

Relation (7) becomes, for any u ∈ E⊥ and v ∈ F⊥:

f̂χ(u + v) =

{
0 if either π−1(u) = ∅ or H(u) += v · x0;
±2q+1 elsewhere.

(9)

Let F ′ be the vector subspace of F⊥ defined by F ′ = {v ∈
F⊥ | v · x0 = 0}. As x0 ∈ E, then x0 +∈ F . Therefore, F ′ is a
hyperplane of F⊥. Each F⊥-coset is the union of two F ′-cosets
defined by the value ε of the linear form v &→ v · x0. Thus, each
F ′-coset is characterized by a vector u ∈ E⊥ that defines a F⊥-
coset, and a value ε ∈ F2. If any coset defined by u ∈ E⊥ and
εu ∈ F2 such that H(u) = εu only contains vectors of weight ≥ k,
then, from relation (9), the function f is (k − 1)-resilient.

To maximize the resiliency order, for any F⊥–coset Fu defined
by vector u ∈ E⊥, one may choose h(xu) at random in F2 and
define h(x′u) such that h(xu) + h(x′u) = εu, where εu defines the
F ′–coset in Fu which has the greatest minimum weight.

For the propagation point of view, the autocorrelation function
has to be considered. Let G be the real valued function defined
for any u ∈ E⊥ by

G(u) = ϕπ(E)(u)Hχ(u) =






0 if u +∈ π(E);
1 if u ∈ π(E) and H(u) = 0;
−1 if u ∈ π(E) and H(u) = 1.

(10)
Relation (8) becomes, for any x ∈ E and y ∈ F :

rf (x+y) =






2q+1ϕ̂π(E)(y) if x = 0, i.e. x + y ∈ F ;
2q+1Ĝ(y) if x = x0, i.e. x + y ∈ x0 + F ;
0 elsewhere.

(11)

It results from this relation that, if vector space F and the
coset x0 + F have minimum nonzero weight k, then f satisfies
PC(k − 1), and also, let M be the maximum of maxy∈F |Ĝ(y)|
and maxy∈F\{0} |ϕ̂π(E)(y)|, the distance of f from the set of linear
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structures is
σ(f) = 2n−2 − 2q−1M.

Example. The following example shows the construction of a 10
variable 2-resilient and PC(2) Boolean function f with δ(f) = 480
and σ(f) = 96.

Let p = 5 and q = 5 and F be the 5-dimensional vector space
given by the following generator matrix :

GF =





1 0 0 0 0 1 0 1 1 0
0 1 0 0 0 1 0 1 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 0 0 1 1 1




.

The vector space F has minimum distance d = 4. Let E be the
complementary space of F of vectors whose 5 first components are
null. Let x0 be the element of E equal to (0, 0, 0, 0, 0, 1, 1, 0, 1, 0).
All the vectors in the coset x0 + F are of weight ≥ 3, thus the
constructed function f satisfies PC(2).

Let E be the set of vectors u = (u1, . . . , u5, 0, . . . , 0), with
u1 · · ·u5 ∈ {00000, 10100, 01100, 01010, 11010, 10110, 11110,
00001, 10101, 01101, 11101, 10011, 01011, 11011, 10111, 01111}.
The 16 cosets u + F⊥, with u ∈ E are split by the linear form
t &→ x0 · t, into two subsets and one of them only contains vectors
of weight ≥ 3. For any u ∈ E , let εu ∈ {0, 1} be such that the
coset {t ∈ u + F | x0 · t = εu} only contains vectors of weight ≥ 3.
The values of εu are respectively 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1,
0, 0, 1, 1. Thus it is possible to construct a 2-resilient function:

• define the image π(E) = E , and for any t ∈ E′, choose
once the same element in E for π(t) and π(t + x0);

• for any t ∈ E′, let u = π(t). Choose randomly h(t) and
define h(t + x0) = h(t) + εu.

As maxu∈Fn
2
|f̂χ(u)| = 64, the nonlinearity of f is δ(f) = 29 −

25 = 480.
For all x ∈ F5

2\{0}, the indicator of π(E) satisfies, |ϕ̂π(E)(x)| ≤
6, and for all x ∈ F5

2, the function G defined by relation (10) satis-
fies |Ĝ(x)| ≤ 10, thus maxz∈Fn

2 \{0} |rf (z)| = 640 and the distance
from f to the set of linear structures is σ(f) = 256− 160 = 96.
Remark. If the pre-image by π is always an affine subspace of
constant direction V , then it is equivalent to consider the decom-
position E′ ⊕ (F + V ) and taking π one-to-one over E′.
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6. Conclusion

We have studied a family of Boolean functions defined on a di-
rect sum E⊕F of the whole space Fn

2 , similarly to the Maiorana-
McFarland construction. The cryptographic properties of the ob-
tained functions depend on the parameters of the vector subspace
F , seen as a linear code. In a particular construction, the vector
space E is split as a union of affine subspaces. The two cases
of affine subspaces of dimension 0 and 1 have been studied, en-
hancing the cryptographic properties of the constructed Boolean
functions.

It remains to study other decompositions of vector space E as
union of affine subspaces of greater dimension. Another research
direction is to consider E as a union of quasi-disjoint vector spaces,
that is to say vector spaces that intersect only on the zero vector.

Other important cryptographic parameters, such as algebraic
immunity, have also to be considered and studied.
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GENERALIZED CONSTRUCTIONS OF HIGHLY
NON-LINEAR MULTI-OUTPUT BOOLEAN

FUNCTIONS

Zu-Ling Chang1, Fang-Wei Fu2 and Qiao-Yan Wen1

Abstract. This paper presents some generalized construc-
tions of multi-output Boolean functions with high nonlin-
earity. Especially, we consider the constructions of highly
nonlinear n-input m-output Boolean functions when n <
m, multi-output bent functions and highly nonlinear multi-
output balanced Boolean functions. When n < m, we pro-
duce the sufficient and necessary condition for existing multi-
output Boolean function whose nonlinearity is nonzero and
give one generalized method to construct such functions us-
ing the knowledge of Reed-Muller codes. For multi-output
bent functions, we produce generalized methods to construct
multi-output M and PS class bent functions. Finally we
construct highly nonlinear balanced functions using the re-
sults of multi-output bent functions.

Keywords. Boolean functions, (n, m)-functions, nonlinear-
ity, Reed-Muller code, bent functions, balanced functions.

1. Preliminaries

We consider Boolean functions from Fn
2 to F2(or simply func-

tions on Fn
2 ), where F2 is the finite field whose elements are 0 and

1, and the addition operator on F2 is denoted by ⊕. A Boolean
function f(x1, . . . , xn) can be described as the output column of
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its truth table, i.e., a binary string of length 2n having the form

[f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

Also f(x1, . . . , xn) can be expressed as one n-variables polynomial

f(x1, . . . , xn) = a0 ⊕
(

n⊕

i=1

aixi

)
⊕




⊕

1≤i"=j≤n

aijxixj





⊕ · · ·⊕ a12···nx1x2 · · ·xn,

where the coefficients a0, aij , . . . , a12···n ∈ F2. This representation
of f(x) is called the algebraic normal form(ANF) of f(x). In
the algebraic normal form of f(x), every xi1 . . . xis is called one
monomial. The degree of one monomial is the number of different
xi in it and the degree of one Boolean function f(x) is defined as
the maximum degree of monomials in its algebraic normal form.

An affine function f(x1, . . . , xn) is a function that takes the
form of f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn, where aj ∈ F2,
j = 0, 1, . . . , n. Furthermore f is called a linear function if a0 = 0.
The set of all affine functions on Fn

2 is denoted by A(n).
The Hamming weight of one binary string S, denoted by wt(S),

is the number of 1’s in S, and the Hamming distance between two
binary strings S1, S2 with same length, denoted by d(S1, S2), is
equal to wt(S1 ⊕ S2). One Boolean function on Fn

2 is balanced if
wt(f) = 2n−1.

The nonlinearity of a Boolean function f(x1, . . . , xn) is

Nf = min
l∈A(n)

d(f, l).

We call one Boolean function a bent function if its nonlinearity is
2n−1−2

n
2−1, i.e., the maximum nonlinearity of Boolean functions.

At this time n is even.
An n-input m-output function, or an (n, m)-function F (x) is a

function from Fn
2 to Fm

2 , and it can be expressed as

F (x) = (f1(x), f2(x), . . . , fm(x)),

where every fi(x), the component function of F (x), is a Boolean
function on Fn

2 having one output. The nonlinearity of F (x) is

NF = minNg,
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where Ng is the nonlinearity of an arbitrary nonzero linear combi-
nation of component functions of F (x), i.e., g(x) = a1f(x)⊕ · · ·⊕
anf(x), where a1, . . . , an ∈ F2, are not all zero.

For one (n, m)-function F (x) = (f1(x), f2(x), . . . , fm(x)), if for
any output (a1, a2, . . . , am) ∈ Fm

2 , the number of input of F (x)
satisfying F (x) = (a1, a2, . . . , am) is 2n−m, i.e.,

|{F (x) = (a1, a2, . . . , am)|x ∈ Fn
2 }| = 2n−m,

then we say this function is balanced. Furthermore, an (n, m)-
function is balanced if and only if any nonzero linear combination
of its component functions is a single-output balanced function.
Obviously, if an (n, m)-function is balanced, then n ≥ m. An
(n, n)-function is called a permutation if it is balanced.

One (n, m)-function is one (n, m)-bent function if any nonzero
linear combination of these component functions is one single out-
put bent function. So the nonlinearity of (n, m)-bent function is
2n−1 − 2

n
2−1, which is the maximum nonlinearity of all functions

with n input.
(n, m)-function is a main component of one secure secret key

cryptosystems such as stream ciphers and block ciphers. To resist
cryptanalysis for symmetric-key block ciphers, including the linear
cryptanalysis [12], we want (n, m)-functions to have high nonlin-
earity . Some useful results about multi-output Boolean functions
have been given in [16,17, 23], and some constructions for (n, m)-
function with high nonlinearity are presented. But there are still
many questions about this issue. For example, when n < m, some
(n, m)-functions with nonzero nonlinearity have never been exhib-
ited, the problem about constructing such multi-output Boolean
functions with high nonlinearity is still unsolved. How to con-
struct highly nonlinear multi-output bent functions and balanced
functions are both interesting.

In this paper we will mainly solve such questions and find gen-
eralized methods to construct multi-output functions with high
nonlinearity. When n < m, we produce the sufficient and neces-
sary condition for existing multi-output Boolean function whose
nonlinearity is nonzero and construct such functions using the
knowledge of Reed-Muller codes. We also consider the problem
about constructing multi-output bent functions, and produce gen-
eralized methods to construct multi-output M and PS class bent
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functions. Finally we construct highly nonlinear balanced func-
tions using the results of multi-output bent functions.

The remaining part of this paper is organized as follows. In
section 2 we mainly consider the constructions of highly nonlinear
(n, m)-functions. we produce the sufficient and necessary condi-
tion for existing multi-output Boolean function whose nonlinear-
ity is nonzero and construct such functions using the knowledge of
Reed-Muller codes. In Section 3 we consider the generalized con-
structions multi-output bent functions. We talk about the con-
structions of M and PS class bent functions. In section 4 we pro-
duce some constructions of highly nonlinear balanced multi-output
functions. We mainly use (n, m)-bent functions to construct such
functions. Finally we end this paper with some conclusions in
section 5.

2. Constructions of highly nonlinear multi-output func-
tions when n < m

In this section we will mainly consider the construction of non-
linear multi-output functions when n < m using some results of
Reed-Muller code. Let 0 ≤ r ≤ n. The r-th Reed-Muller code
RM(r, n) is the set of all binary strings of length 2n associated
with the algebraic normal form f(x1, . . . , xn) of degree at most r.
Obviously, A(n), the set of all affine functions, is RM(1, n). More
properties of Reed-Muller code can be found in [11], and in this
paper we will use the following theorem.

Theorem 2.1. The Reed-Muller code RM(r, n) has minimum dis-
tance 2n−r, and then has parameters [2n, 1+

(n
1

)
+ . . .+

(n
r

)
, 2n−r].

Let f(x) be a Boolean function with degree r > 1, then it is
in RM(r, n). Obviously A(n) = RM(1, n) ⊆ RM(r, n), so for any
affine function a(x) ∈ A(x), the degree of f(x)⊕a(x) is still r and
the distance between f(x) and a(x) must be not less than 2n−r

because of the minimum distance of RM(r, n) being 2n−r. From
this fact we deduce that if the degree of f(x) is r > 1, then the
nonlinearity of f(x) is at least 2n−r.

The following lemma is well known [21] and therefore stated
without proof.
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Lemma 2.2. Let g(x), x ∈ Fn
2 and h(y), y ∈ Fm

2 be two Boolean
functions. Then the nonlinearity of f(x, y) = g(x)⊕ h(y) is

Nf = 2mNg + 2nNh − 2NgNh.

Not all the (n, m)-functions have nonzero nonlinearity. For
n = 1, 2 and m ≥ 2, it is not possible to get any nonlinearity.
So at first we prove the following theorem about the existence of
(n, m)-function with nonzero nonlinearity.

Theorem 2.3. For two integers n, m, there exists an (n, m)-
function whose nonlinearity is not zero if and only if 2n−n−1 ≥
m.

Proof. Firstly we prove the sufficiency. The number of mono-
mial xi1xi2 . . . xis whose degree is at least two is 2n − n − 1. Be-
cause 2n − n − 1 ≥ m, we can build one (n, m)-function F (x) =
(f1(x), . . . , fm(x)) by arbitrarily choosing m different monomials
as its component functions from these 2n − n− 1 monomials. For
this function F (x), the degree of nonzero linear combinations of its
component functions is at most n and at least 2, the truth tables of
these according functions are all in RM(n, n). From the definition
of nonlinearity and theorem 2.1, we deduce that the nonlinearity
of F (x) is at least 1.

Conversely, in order to make the nonlinearity of one (n, m)-
function F (x) = (f1(x), . . . , fm(x)) nonzero, from the definition
of nonlinearity, these 2m − 1 nonzero linear combinations of com-
ponent functions of F (x) must be nonlinear functions and in each
function the monomials whose degree is at least two must not be
all the same with other functions, so we need 2m − 1 different
nonzero linear combinations of monomials whose degree is at least
two. For an n, the number of monomials whose degree is at least
two is 2n − n − 1, and the number of nonzero linear combina-
tions of these monomials is 22n−n−1 − 1. If 2n − n− 1 < m, then
22n−n−1− 1 < 2m− 1. At this time there are at least two nonzero
linear combinations of component functions of F (x) whose mono-
mials with degree at least two must be identical, then at least one
nonzero linear combination of component functions of F (x) is an
affine function, and the nonlinearity of F (x) is zero. So if the non-
linearity of F (x) is not zero, then we must have 2n−n−1 ≥ m. !
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From theorem 2.1 and theorem 2.3, we deduce that the con-
struction for (n, m)-functions with high nonlinearity is as follows:
we take the different monomials whose degree is at least two and
at most r as the component functions of F (x). If the number of
such monomials is not less than m, then we can always construct
one function satisfying the 2m − 1 nonzero linear combinations
of component functions of F (x) and in each function the mono-
mials whose degree is at least two and at most r are not all the
same with other functions, and the degree of such functions is at
most r. From the definition of nonlinearity and the properties of
Reed-Muller code, the nonlinearity of F (x) is at least 2n−r.

From this construction, the larger n, the larger nonlinearity of
function is constructed by this method. Especially, the number
of monomials whose degree is at least two and at most n − 1 is
2n−n−2. If 2n−n−2 ≥ m, we can construct one (n, m)-function
whose nonlinearity is at least 2, and if 2n−2n−2, i.e., the number
of monomials whose degree is at least two and at most n − 2, is
larger than or equal to m, we can construct one (n, m)-function
whose nonlinearity is at least 4. When

(n
2

)
≥ m, we can get the

following corollary.

Corollary 2.4. For two integers n, m, if
(n
2

)
≥ m, then there

exists an (n, m)-function whose nonlinearity is at least 2n−2.

Proof. If
(n
2

)
≥ m, then there exist at least m different monomials

with degree 2. Let such monomials be the component functions
of one (n, m)-function F (x). Then the nonzero linear combina-
tions of component functions are all with degree 2, so we have the
nonlinearity of F (x) is 2n−2 according to theorem 2.1. !

For example, when n = 4, m = 6, the monomials whose degree
is two are

x1x2, x1x3, x1x4, x2x3, x2x4, x3x4.

We construct one (4, 6)-function

F (x) = (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x))

satisfying

f1(x) = x1x2, f2(x) = x1x3, f3(x) = x1x4,

f4(x) = x2x3, f5(x) = x2x4, f6(x) = x3x4.
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The nonlinearity of F (x) is 4, which is the maximum nonlinearity
of (4, 6)-function.

Corollary 2.5. For two integers n, m, if
(n
2

)
≥ 2m, then there

exists an (n, m)-function whose nonlinearity is at least 2n−1−2n−3.

Proof. If
(n
2

)
≥ 2m, then there exist at least 2m different monomi-

als with degree 2. We construct F (x) = (f1(x), f2(x), . . . , fm(x))
as follows: for 1 ≤ i ≤ m, fi(x) = xi1xi2⊕xi3xi4 , and i1, i2, i3, i4 ∈
{1, 2, . . . , n} are four different integers. Moreover, each monomial
with degree 2 is within at most one component function, and the
nonzero linear combinations of these component functions can’t
be written as the following form:

(xi1 ⊕ · · ·⊕ xis)(xj1 ⊕ · · ·⊕ xjt),

where i1, . . . , is, j1, . . . , jt are different integers. This condition can
be satisfied if for arbitrary two component functions

fi(x) = xi1xi2 ⊕ xi3xi4 , fj(x) = xj1xj2 ⊕ xj3xj4

the set {i1, i2, i3, i4} is the not same as {j1, j2, j3, j4}.
According to [2], all Boolean functions with degree 2 are

partially-bent functions. So all the nonzero linear combinations
of these component functions have the form:

g(x) = x1x2 ⊕ x3x4 ⊕ h(x5, . . . , xn)

after an affine nonsingular transformation. Obviously, b(x) =
x1x2 ⊕ x3x4 is bent function on F 4

2 , so Nb = 24−1 − 2
4
2−1 = 6.

According to lemma 2.2, the nonlinearity of g(x) is

Ng = 2n−4Nb + 24Nh − 2NbNh

= 2n−46 + (24 − 2× 6)Nh

= 2n−1 − 2n−3 + 4Nh

≥ 2n−1 − 2n−3.

So the nonlinearity of F (x) at least 2n−1 − 2n−3. !
J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



162 Z.-L. CHANG, F.-W. FU, Q.-Y. WEN

For example, when n = 6, m = 7, we can construct one (6, 7)-
function whose component functions are:

f1(x) = x1x2 ⊕ x3x6, f2(x) = x1x3 ⊕ x2x5,
f3(x) = x1x4 ⊕ x2x6, f4(x) = x1x5 ⊕ x3x4,
f5(x) = x1x6 ⊕ x3x5, f6(x) = x2x3 ⊕ x4x5,
f7(x) = x2x4 ⊕ x5x6.

Then the nonlinearity of F (x) = (f1(x), f2(x), . . . , f7(x)) is

26−1 − 26−3 = 24.

Using the same idea, we can construct more (n, m)-functions
with high nonlinearity. In fact, the maximum nonlinearity of
(n, m)-function for 3 ≤ n ≤ 8, 1 ≤ m ≤ 8 have been given in [23],
but the authors have not considered the general results. The re-
sults in theorem 2.3 and its following corollaries can be viewed
as the general results about the nonlinearity of (n, m)-functions
when n < m. Furthermore, in [19] the authors mainly discussed
how to construct resilient functions with very high nonlinearity
using linear codes, where highly nonlinear (n, m)-functions with
n < m were also used. So the (n, m)-functions constructed in this
paper can be used to improve the results in [19].

3. Constructions of Multi-output Bent Functions

For the construction of (n, m)-function with high nonlinearity
when n ≥ m, there are lots of results. In [16] Nyberg gave two
examples of highly nonlinear permutations. We suppose that Fn

2
is identified to the Galois field F2n [10].

Proposition 3.1. Let F (x) = x2k+1 be a power polynomial on
F2n with n odd and (k, n) = 1. Then F (x) and its inverse have
nonlinearity 2n−1 − 2

n−1
2 .

Proposition 3.2. The permutation on F2n

F (x) =
{

x−1 x (= 0, x ∈ F2n

0 x = 0

has nonlinearity
NF ≥ 2n−1 − 2

n
2 .
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For constructing highly nonlinear (n, m)-functions when n ≥
m, we can firstly construct one permutation on F2n using propo-
sition 3.1 or 3.2 when n is odd or even respectively. After deleting
some component functions we can get one (n, m)-function with
the same nonlinearity as the corresponding permutations, which
is at least 2n−1 − 2%

n
2 &.

Furthermore, when n ≥ 2m and n is even, we can construct
(n, m)-functions with the highest nonlinearity, i.e., (n, m)-bent
functions. Here is the following theorem in [17].

Theorem 3.3. There exists an (n, m)-bent function if and only if
n ≥ 2m and n is even.

Bent functions were firstly defined in [20]. There are many good
properties about bent functions, and they have many applications
not only in cryptography, but also in algebraic coding theory, se-
quences and design theory etc. [1,14,16,18]. In the remaining part
of this paper we will mainly study the constructions of (n, m)-bent
functions.

3.1. Construction of M Class (n, m)-Bent Functions

One important class of bent functions: Maiorana-McFarland
class [7, 13], i.e., M class, is the set of all the Boolean functions
on Fn

2 = {(x, y), x, y ∈ F p
2 }, of the form:

f(x, y) = x · π(y)⊕ g(y)

where π is any permutation on F p
2 and g any Boolean function

on F p
2 and n = 2p. Let F : Fn

2 → Fm
2 , m ≤ p, be one (n, m)-

function and denote the m output component functions of F by
f1, f2, . . . , fm. Assume that every fi is a function in M class,

fi(x, y) = x · πi(y)⊕ gi(y),

then F = (f1, f2, . . . , fm) is m-output bent function if every non-
zero linear combination of these permutations πi, i = 1, 2, . . . ,m,
is again a permutation on F p

2 . We call such (n, m)-bent functions a
M class (n, m)-bent functions and call such permutations one class
of orthogonal permutations. For constructing such functions, what
we need to do is find families of permutations with the required
property.
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Now we will find such permutations. Let

p(x) = xp ⊕ ap−1x
p−1 ⊕ · · ·⊕ a1x⊕ a0 ∈ F2[x]

be one irreducible polynomial with degree p and S = (sij)p×p, sij ∈
F2 be the companion matrix of p(x) [10,15], i.e.,

S =





0 0 0 . . . 0 a0

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2
...

...
0 0 0 . . . 1 ap−1




.

According to matrix representation of the elements of a finite field
[10,15], for any matrix A = (aij)p×p, aij ∈ F2 which is similar with
S, then any nonzero linear combination of

A0 = I, A,A2, . . . , Ap−1

is still a full rank matrix, so let

πi(x) = xAi−1, i = 1, 2, . . . , p,

then any nonzero linear combination of these permutations will
still be one linear permutation, and such permutation satisfies the
required property. {π1(x), . . . ,πp(x)} is a basis of orthogonal per-
mutations.

Lemma 3.4. Suppose that matrix Ap×p is similar with the com-
panion matrix of one irreducible polynomial with degree p, then
any nonzero linear combination of

πi(x) = xAi−1, i = 1, 2, . . . , p,

is a linear permutation.

Furthermore, if π1,π2, . . . ,πp is one basis of one class of orthog-
onal permutations, then for any permutation H on Fn

2 , π1◦H,π2◦
H, . . . ,πp◦H is still a basis of one class of orthogonal permutations
because for any not all zero c1, c2, . . . , cp ∈ F2

c1π1 ◦H(x)⊕ c2π2 ◦H(x)⊕ · · ·⊕ cpπp ◦H(x)
= (c1π1 ⊕ c2π2 ⊕ · · ·⊕ cpπp) ◦H(x)
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is still a permutation. Also for any linear permutation L(x), L ◦
π1, L ◦ π2, . . . , L ◦ πp is still a basis of one class of orthogonal
permutations because for any not all zero a1, a2, . . . , ap ∈ F2

c1L ◦ π1(x)⊕ c2L ◦ π2(x)⊕ · · ·⊕ cpL ◦ πp(x)
= L ◦ (c1π1 ⊕ c2π2 ⊕ · · ·⊕ cpπp)(x)

is still a permutation, so we get the following theorem.

Theorem 3.5. Let π1,π2, . . . ,πp be one basis of one class orthog-
onal permutations. Let H be any permutation on F p

2 and L be any
linear permutation on F p

2 . Then

L ◦ π1 ◦H,L ◦ π2 ◦H, . . . , L ◦ πp ◦H

is still one basis of one class of orthogonal permutations.

The above results also can be easily extended to general finite
fields Fqn . Also constructing orthogonal permutations is related to
the problem of complete mappings and orthogonal Latin squares.
More information about orthogonal Latin squares can be found
in [6].

Here we talk about the algebraic degree of such bent functions.
For the component function

fi(x, y) = x · πi(y)⊕ gi(y),

we suppose that gi(y) = 0, then deg(fi(x, y)) = deg(πi(y)) + 1. If
πi(y) = yAi−1, then it is a linear permutation, and deg(fi) = 2.
To improve the degree of bent functions, we must use permu-
tation H(y) in theorem 3.5 with high degree. Here we provide
one simple method for constructing permutations on F p

2 with high
degree as follows: Let H ′(y1, . . . , yp−1) = (h1, . . . , hp−1) be an ar-
bitrary permutation on F p−1

2 . We construct one (p, p)-function
H(y1, . . . , yp−1, yp) using H ′ by adding one more component func-
tion

hp = g(y1, . . . , yp−1)⊕ yp,

where g(y1, . . . , yp−1) is an arbitrary Boolean function on F p−1
2

with degree p−1. Then the new function H(y) = (h1, . . . , hp−1, hp)
will be permutation on F p

2 with degree p−1. So the bent function

x · (πi ◦H)(y)⊕ gi(y)
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will have degree p, which is the maximum degree of bent functions.
Especially, we can directly use permutation defined in proposition
3.2, which degree is also p− 1.

In [22] the authors also talked about constructing (n, p)-bent
functions. For a binary vector (y1, . . . , yp) ∈ F p

2 ,define

dec(y1, . . . , yp)
)= 2p−1y1 + 2p−2y2 + · · ·+ yp.

For an element β ∈ F2p , let [β] denote a vector representation of β.
Let α be one primitive element of F2p . Define one (n, p)-function
F (x, y) = (f1, . . . , fp) such that

fi(x, y) = x · ϕi(y)⊕ gi(y)

where

ϕi(y) )=
{

0 if y = (0, . . . , 0),
αdec(y)+i−1 otherwise

and gi is any Boolean function. Such (n, p)-function are M class
bent functions with degree p. In fact, if y (= (0, . . . , 0), then per-
mutation

ϕi(y) = αi−1αdec(y) = πi ◦ αdec(y),

αdec(y) can be viewed as the permutation H(y) in theorem 3.5.
We deduce that the constructing method in [22] is just one special
case of theorem 3.5.

3.2. Construction of PS Class (n, m)-Bent Functions

Another important class of bent functions is partial spread class
[7], i.e., PS class bent functions. The indicator function of one
subspace E of Fn

2 is defined as

IE(x) =
{

1 x ∈ E,
0 x /∈ E.

The class PS bent functions is the set of all the sums in F2 of the
indicators of 2p−1 or 2p−1 + 1 “disjoint” p-dimensional subspaces
of Fn

2 (“disjoint” means that the only common element of any two
subspaces is 0, then the direct sum of any two such subspaces
is Fn

2 ). Dillon denotes by PS− (resp. PS+) the class of those
functions for which the number of p-dimensional subspaces is 2p−1

(resp. 2p−1 + 1).
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Let F : Fn
2 → Fm

2 , m ≤ p, be one (n, m)-function and denote
the m output component functions of F by f1, f2, . . . , fm. If every
nonzero linear combination of these component functions is PS
bent function, then we call such (n, m)-bent functions PS class
(n, m)-bent functions.

PS bent functions is one interesting class of bent functions hav-
ing good algebraic structure and is useful for studying the general
structure of bent functions [3]. The dual of any PS bent function
is exactly the sum in F2 of the indicator functions of the corre-
sponding dual subspaces. The elements of PS− have degree p
exactly, but not those of PS+ which contain for instance all the
quadratic bent functions if p is even. It is an open problem to
characterize the algebraic normal forms of the elements of class
PS.

The key to construct PS bent functions is to divide Fn
2 into 2p+

1 disjoint p-dimensional subspaces. In [4,5] the authors considered
the division of Fn

2 and construction of PS bent functions. Suppose
we have divided Fn

2 into 2p + 1 disjoint p-dimensional subspaces,
say, E0, E1, . . . , E2p . For 0 ≤ i ≤ 2p, we have

Ei = { xAi | x ∈ F p
2 },

where Ai is one p×n matrix on F2 satisfying rank(Ai) = p. We can
call Ai as the generating matrix of Ei. Because these subspaces

are disjoint, then for arbitrary i (= j,
(

Ai

Aj

)
is an invertible n×n

matrix. For any invertible matrix Mn×n,

(
Ai

Aj

)
M =

(
AiM
AjM

)

is still an invertible n × n matrix, AiM and AjM are still p × n
matrices with rank p. So the subspaces

EiM = { xAiM | x ∈ F p
2 }, 0 ≤ i ≤ 2p

is still one division of Fn
2 , and we can get the following lemma.

Lemma 3.6. Under one linear transformation, a division of Fn
2

is still a division of Fn
2 . Furthermore, a PS bent function is still

a PS bent function under one linear transformation.
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From this lemma we can choose one special matrix

M =
(

A0

A1

)−1

,

then
A0M = (Ip,0), A1M = (0, Ip),

where Ip is p × p identity matrix and 0 is p × p zero matrix. We
denote the new subspaces and matrices E′

i and A′
i respectively,

where A′
0 = (Ip,0),A′

1 = (0, Ip). For 2 ≤ i ≤ 2p, A′
i = (Si1, Si2)

must satisfies that

D =
(

A′
0

A′
i

)
=

(
Ip 0
Si1 Si2

)

is an invertible matrix, so

|D| = |Ip|× |Si2| = |Si2| mod 2

is nonzero. So Si2 is an invertible matrix, and similarly Si1 is also
invertible matrix according to A′

1.
From the above result, we can suppose that for 2 ≤ i ≤ 2p, A′

i,
has the form (Ip, Bi), where Bi is an p× p invertible matrix, and
because E′

i and E′
j is disjoint for any i (= j, then

∣∣∣∣
Ip Bi

Ip Bj

∣∣∣∣ =
∣∣∣∣

Ip Bi

0 Bi + Bj

∣∣∣∣ = |Bi + Bj |,

so Bi + Bj is also invertible matrix for i (= j. We call such two
matrices as orthogonal matrices. Under one linear transformation

M =
(

Ip 0
0 B−1

2

)
, then (Ip, B2)M = (Ip, Ip). According the

above results, we get the following theorem [5].

Theorem 3.7. Let E0, E1 . . . , E2p be any division of Fn
2 , and

A0, A1 . . . , A2p be the generating matrices respectively. After one
linear transformation, these matrices can have the following prop-
erties:

1: A0 = (Ip,0), A1 = (0, Ip), A2 = (Ip, Ip);
2: for 3 ≤ i ≤ 2p, Ai = (Ip, Bi), where Bi is an p× p invert-

ible matrix;
3: B2 = Ip, B3, . . . , B2p is one class of orthogonal matrices,

i.e., Bi + Bj is still one invertible matrix for i (= j.
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According to this theorem, we choose the matrix A defined in
lemma 3.4 and let

Bi = Ai−2, i = 2, 3, . . . , p + 1,

then the nonzero linear combinations of such matrices will be 2p−1
orthogonal matrices, then we can get one division of Fn

2 . Such a
division is still one division after one linear transformation.

Suppose that E0, E1 . . . , E2p is one division of Fn
2 , we use them

to construct PS class (n, p)-bent functions. For one vector x =
(x1, . . . , xp) ∈ F p

2 , we define a one-to-one mapping ϕ(x)

ϕ(x) = x12p−1 + x22p−2 + · · ·+ xp.

Obviously ϕ(x) ∈ {0, 1, . . . , 2p − 1}. For arbitrary permutation
function H(x) = (h1(x), . . . , hp(x)) on F p

2 , we define subset Si, i =
1, . . . , p, of {0, 1, . . . , 2p − 1} as follows:

Si = { ϕ(α) | hi(α) = 1, α ∈ F p
2 }.

Obviously the size of Si is |Si| = 2p−1. For such subsets, we define
one (n, p)-function F (x) = (f1(x), . . . , fp(x)) such that

fi(x) =
∑

j∈Si

IEj (x)⊕ ciIE2p (x) mod 2, ci ∈ F2, i = 1, . . . , p.

The nonzero linear combination of such functions b1f1(x)⊕ · · ·⊕
bpfp(x) has the following form

∑

j∈S′

IEj (x)⊕ c′iIE2p (x) mod 2, c′i ∈ F2,

where

S′ = { ϕ(α) | (b1h1 ⊕ · · ·⊕ bphp)(α) = 1, α ∈ F p
2 }

satisfying |S′| = 2p−1 according to the property of permutation,
so it is the sum (modulo 2) of the indicators of 2p−1 or 2p−1 + 1
disjoint p-dimensional subspaces of Fn

2 . Such function is PS−
or PS+ bent function and F (x) = (f1(x), . . . , fp(x)) is PS class
(n, p)-bent function.
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In the above construction, there are many ways to choose that
one-to-one mapping ϕ(x). Generally, Let ϕ(x) be one-to-one map-
ping from F p

2 to {0, 1, . . . , 2p}\{s}, where s ∈ {0, 1, . . . , 2p}. For
example, let

ϕ(x) = x12p−1 + x22p−2 + · · ·+ xp + 1,

then it is one-to-one mapping from F p
2 to {1, 2, . . . , 2p}. We can

produce the general form of PS class (n, m)-bent functions ac-
cording to such one-to-one mappings.

Theorem 3.8. Let E0, E1, E2, . . . , E2p be one division of Fn
2 . Let

ϕ(x) be one-to-one mapping from F p
2 to {0, 1, . . . , 2p}\{s}, s ∈

{0, 1, . . . , 2p} and H(x) = (h1(x), . . . , hm(x)) be an arbitrary bal-
anced (p, m)-function. Define

Si = {ϕ(α)|hi(α) = 1,α ∈ F p
2 } ⊆ {0, 1, . . . , 2p}\{s}, i = 1, . . . ,m.

At this time F (x) = (f1(x), . . . , fm(x)), where

fi(x) =
∑

j∈Si

IEj (x)⊕ ciIEs(x) mod 2, ci ∈ F2, i = 1, . . . ,m,

is PS class (n, m)-bent function.

In [24] the authors produced the definition of hyper-bent func-
tions. One function f(x) from F2n to F2 is hyper bent if and
only if for any positive integer c satisfying (c, 2n − 1) = 1 and any
λ ∈ F2n ,

∑

x∈F2n

(−1)f(x)+Tr(λxc) = ±2
n
2 .

Obviously, f(x) is a hyper-bent function if and only if for any c
such that (c, 2n−1) = 1, f(xc) is still bent function. It is not hard
to prove that bent functions in one subclass of PS bent functions:
PSap [7], are hyper-bent functions. So the method of constructing
PS Class (n, m)-bent functions can be used to construct multi-
output hyper-bent functions.
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4. Construction of Highly Nonlinear Balanced
(n,m)-Functions

In this section we discuss the problem of constructing balanced
(n, m)-functions with high nonlinearity using (n, m)-bent func-
tions.

Dobbertin, in [9] produces one method to construct single-
output Boolean balanced functions with high nonlinearity. The
author shows that, if a bent function is constant on a n

2 , i.e., p-
dimensional subspace of Fn

2 , then it is possible to deduce a highly
nonlinear balanced Boolean function. Furthermore, the bent func-
tion being chosen must be normal because such p-dimensional sub-
space exists only if the bent function is normal(more information
about normal bent functions can can be found in [8]). Let f(x)
on Fn

2 be a normal bent function. If wt(f) = 2n−1 − 2
n
2−1, then

we choose one p-dimensional subspace E such that f(x) = 0 when
x ∈ E, and if wt(f) = 2n−1 + 2

n
2−1 we choose one p-dimensional

subspace E such that f(x) = 1 when x ∈ E. Let g be any bal-
anced function on E. Then the Boolean function f ′ = f +g whose
value at any x ∈ E is g(x) and whose value at any x ∈ Fn

2 \E is
f(x) is a balanced function. Denote by Nn(f ′) the nonlinearity of
f ′ and by Nn

2
(g) the nonlinearity of g, we have:

Nn(f ′) ≥ 2n−1 − 2
n
2 + Nn

2
(g).

Using the same idea, we can construct highly nonlinear bal-
anced (n, m)-functions. Let F (x) = (f1, . . . , fm) be (n, m)-bent
function, whose component functions are all constant on a n

2 -
dimensional subspace E. Let H = (h1, . . . , hm) be one balanced
(n

2 ,m)-function on E with nonlinearity NH , which can be provided
by proposition 3.1 or 3.2. For new (n, m)-function F ′ = F + H,
any nonzero linear combination of its components is nonzero linear
combination of components of F plus nonzero linear combination
of components of H, which is balanced and with nonlinearity at
least 2n−1−2

n
2 +NH , so F ′ = F +H is a balanced (n, m)-function

satisfying

NF ≥ 2n−1 − 2
n
2 + NH .
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According to the above method and the construction of (n, m)-
bent functions in section 3(M bent functions and PS bent func-
tions are all normal), we get the following corollaries whose proofs
are omitted.

Corollary 4.1. (For M class) Let F (x, y) = (f1(x, y), ., fm(x, y))
be one M class (n, m)-bent function on Fn

2 . For i = 1, . . . ,m,

fi(x, y) = x · πi(y)⊕ gi(y)

and πi(0) = 0. Let H(x) = (h1(x), . . . , hm(x)) be one balanced
(n

2 ,m)-function with nonlinearity NH . Define one new (n, m)-
function F ′(x, y) = (f ′1(x, y), . . . , f ′m(x, y)) satisfying that for i =
1, . . . ,m,

f ′i(x, y) =
{

hi(x) y = 0,
fi(x, y) y (= 0.

Then F ′(x, y) is one balanced (n, m)-function and its nonlinearity

NF ′ ≥ 2n−1 − 2
n
2 + NH .

Corollary 4.2. (For PS class) Let p = n
2 . Let E0, E1, E2, . . . , E2p

be one division of Fn
2 and H = (h1, . . . , hm) be one balanced (p, m)-

function on some Es with nonlinearity NH , where s ∈ {0, 1, .., 2p}.
Let ϕ be one-to-one mapping from F p

2 to {0, 1, . . . , 2p}\{s} and
G = (g1, . . . , gm) be an arbitrary balanced (p, m)-function. Define
subset Si, i = 1, . . . ,m, as follows:

Si = { ϕ(α) | gi(α) = 1, α ∈ F p
2 }.

Then the new (n, m)-function F ′(x) = (f ′1(x), . . . , f ′m(x)) satisfy-
ing that for i = 1, . . . ,m,

f ′i(x) =
{

hi(x) x ∈ Es,∑
j∈Si

IEj (x) otherwise.

is balanced and its nonlinearity is

NF ′ ≥ 2n−1 − 2
n
2 + NH .



CONSTRUCTIONS OF NON-LINEAR BOOLEAN FUNCTIONS 173

Using the above results, we can construct balanced multi-output
function with fairly high nonlinearity. For example, when n = 8,
we can construct one M or PS class (8, 4)-bent function and one
(4, 4)-permutation with nonlinearity 4 according to proposition
3.2, then using corollary 4.1 or 4.2 we can construct one balanced
(8, 4)-function with nonlinearity

27 − 24 + 4 = 116,

which is the best known nonlinearity for balanced functions with
8 input variables [9, 21].

5. Conclusions

In this paper we mainly present some generalized constructions
of (n, m)-functions with high nonlinearity. We give sufficient and
necessary conditions for existing (n, m)-function whose nonlinear-
ity is nonzero and general construction of (n, m)-functions when
n < m. We also provide generalized constructions of multi-output
M and PS class bent functions and balanced highly nonlinear
multi-output functions. Especially, the constructions of bent func-
tions can be used to construct generalized bent functions on finite
fields. These results are useful in designing secure secret key cryp-
tosystems as well as random number generators, they also can
be used to construct other functions with good cryptographical
properties.
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EXPONENTIAL SUMS AND BOOLEAN FUNCTIONS

Julien Bringer1 and Valérie Gillot, Philippe Langevin2

Abstract. We study the nonlinearity of Boolean functions
constructed by means of a subgroup of the multiplicative
group of a finite field. The functions that we consider are
constant over the non trivial cosets of a subgroup of small
index. Classical properties of Gauss sums lead us to propose
a new conjecture of the Patterson-Wiedemann type. One
of the major steps of this approach consists in finding good
estimations of exponential sums restricted over subgroup.

1. Nonlinearity

All along the paper, L denotes a finite extension of degree m
of F2 the field of order two. The canonical additive character of
L is denoted by µ. It is defined by means of the abolute trace
of L over F2 by µ(x) = (−1)TrL(x). The Fourier coefficient of a
complex mapping f is defined, at a ∈ L, by

f̂(a) =
∑

x∈L

f(x)µ
(
ax

)
. (1)

We denote by R(f) := supa∈L |f̂(a)| the spectral amplitude of f .
One of the most exciting challenge at the intersection of the coding
theory and cryptography consists in finding the minimal spectral
amplitude that can achieve a binary function i.e. a mapping from
L into ±1. For a such function, the Parseval relation says that
R(f) is greater than or equal to

√
2m. This fact splits the problem

1 SAGEM Défense Sécurité SA. Avenue du Gros Chêne, 95610 Eragny-sur-
Oise, France. email: julien.bringer@sagem.com
2 GRIM, USTV. Bat. U, B.P. 20132. 83957 La Garde, France. email:
{gillot,langevin}@univ-tln.fr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



178 J. BRINGER, V.GILLOT, P. LANGEVIN

in two cases according to the parity of m. In the case when m
is even, there exists bent functions of spectral amplitude

√
2m

and that is the best that we can do. The main questions are :
how to construct bent functions, how to classify or merely how to
count them. In the case when m is odd, the exact value of Rm =
inff R(f) is not known, and the famous conjecture of Patterson-
Wiedemann [6] claims the asymptotic behavior:

Rm ∼
√

2m. (2)

Now, let G be the subgroup of L× of index v. We ask similar
questions. What is the maximal value, say Rv(f), of the character
sums

f̃(a) =
∑

x∈G

f(x)µ
(
ax

)
?

The minimal value, say Rv
m of the Rv(f)’s when f ranges the

set of binary functions is called the spectral radius of index v, in
this paper we study theses numbers. The main goal of the present
contribution is to exhibit examples of groups with small index so
that Rv

m is rather small. For one thing that could seem artificial
but recent works of Bringer, summarized in the next section, show
links with the Patterson-Wiedemann conjecture. In section (5),
we recall the basic notion over exponential sums that we apply to
construct our examples.

2. Bringer construction

Let G be a subgroup of index v of L× and let Ω be the quotient
group L×/G. Let s be a balanced mapping defined over Ω such
that s(ω) = ±1 for all ω %= 1, s(1) = 0, and

∑
ω∈Ω s(ω) = 0. We

consider the binary function

h(x) = f(x)g(x) +
∑

1 #=ω∈Ω

s(ω)g(x/ω) (3)

where f is a binary function, and where g is the indicating function

of G i.e. g(x) =

{
1, x ∈ G;
0, x %∈ G.

. In this paper, we will say that the

binary function h is a configuration of index v by the sequence s
and the section f , briefly a (v, s, f)-configuration. The function h
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is constant over all cosets of G except over G itself. As in [4], we
write the Fourier coefficient of g at a by means of Gauss sums

ĝ(a) =
1
v

∑

χ⊥G

τL(χ)χ̄(a). (4)

See [5], for generality on Gauss sums. Hence

ĥ(a) =
1
v

∑

χ⊥G

τL(χ)s(χ)χ̄(a) + f̃(a). (5)

where s(χ) =
∑

ω∈Ω s(ω)χ̄(ω). Note this last sum is nothing
but the multiplicative Fourier coefficient of s considered as a map-
ping from the group G into {−1, 0,+1}. For χ %= 1, let us set
τL(χ) = υ(χ)√q, note that |υ(χ)| = 1. Since s is balanced, we
have

ĥ(a) =
√

q

v

∑

1 #=χ⊥G

υ(χ)s(χ)χ̄(a) + f̃(a). (6)

The last expression allows us to guess sufficient conditions in
order to construct a configuration with a small spectral amplitude.
For example, if the υ(χ)’s are closed to 1, for all the non trivial
χ, then thanks to orthogonality relations, the previous equation
becomes ĥ(a) ∼ s(ω)√q + f̃(a), where a ∈ ω ∈ Ω. And so, if the
second term is negligeable compared to √q , then h would have
a spectral amplitude near √q. This kind of construction would
be helpfull to confirm the Patterson and Wiedemann conjecture.
The hypothesis of the example can be achieve in some special case
(e.g. for some values of m or for m growing to infinity). A main
problem is how small the second term can be.

This is a more general problem than the conjecture of Patterson
and Wiedemann, but it is interesting to notice that, if we want to
find functions with high non-linearity over L in such a way, we do
not have to be very tight over G.

These are the reasons why, as we said in the introduction, we
focus our interest on the last point and we try to understand the
behaviour of Rv

m. First, note that the Parseval relation, as in the
all space case, gives us a lower bound :

∑

a∈L

f̃(a)2 = 2m 2m − 1
v

=⇒ Rv(f) ≥
√

2m − 1
v

. (7)
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Again, the question is how far to this lower bound are we ? By
analogy with the all-space case, and due to numerical results, we
guess that the Patterson-Wiedemann conjecture would become :

Conjecture 2.1. Let v be an odd integer. For a large integer m
such that v | (2m − 1) :

Rv
m ∼

√
2m

v

3. Quadratic residue construction

In this section, we present a nice configuration involving qua-
dratic residue that gives a higly nonlinear Boolean function of 15
variables constant on the group of index 7 of F×215 .

Let v > 3 be a prime congruent to 3 modulo 4 such that 2 gener-
ates the group of quadratic residues modulo v. In the terminology
of [3], the pair (v, 2) satisfies the quadratic residue conditions. Let
χ be a multiplicative character of order v. There exist integers t,
A and B such that :

τL(χ) = 2t(A + B
√
−v), 2 % |AB;

where t is deeply connected to both Stickelberger theorem and the
class number of the quadratic field Q(

√
−l). For all 0 ≤ j < v,

τL(χj) = 2t
(
A +

(
j

v

)
B
√
−v

)

Let γ be primitive root of L. We assume that χ(γ) is equal
to ζv the principal root of order v. The elements γ0, γ1,. . . , γv−1

forms a system of representatives of Ω. We define the quadratic
residue spread by

h(x) =
v−1∑

j=1

(
j

v

)
g(γ−jx).

It is a balanced function, ĥ(0) = 0 and the other Fourier coef-
ficients are given by means of the Legendre symbole

ĥ(γk) = 2t ×
((k

v

)
A−B + vBδ0(k)

)
(8)
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where δ0(k) = 1 or 0 according to whether k = 0 or not. Indeed,

from Gauss we know
∑v−1

j=0

(
j

v

)
ζks
v =

(
s

v

)√
−v. In particular,

s(χj) =
∑v−1

i=0

(
i

v

)
χ̄(γij) = −

(
j

v

)
. The remainder is a straight-

forward calculation:

vĥ(γk) =
v−1∑

j=1

τL(χj)s(χ̄j)χj(γk) = −
v−1∑

j=1

τL(χj)[
(

j

v

)√
−v]ζkj

= −2t
v−1∑

j=1

[A
(

j

v

)√
−v −Bv]ζkj

= −2tA
√
−v

v−1∑

j=1

(
j

v

)
ζkj + 2tBv

v−1∑

j=1

ζkj

= 2tAv

(
k

v

)
+ 2tBv

v−1∑

j=1

ζkj .

Let χ be a multiplicative character of order 7 in F215 . We can
realize χ as the lift of a non trivial multiplicative character χ′ of
F8, so that

τF215
(χ) = (τF8(χ

′))5 = (−1 +
√
−7)5 = −16(11 +

√
−7)

i.e. A = 11 and B = 1, whence the Fourier transform of the
quadratic spread takes the values −160, −96 and 192.

By an exhaustive computer search among the monomial xs, we
have found that the binary function

h(xs) = µ(x755)g(x) +
v−1∑

j=1

(
j

v

)
g(γ−jx).

has spectral amplitude 232 when s = 755. The spectrum of the
function is detailed in table 1. We believe it is possible to obtain
such good nonlinearity for all the instances m = 3r for which the
Gauss sums lie within a narrow angular sector. It is the case for
m = 15. According to the table table 2 below, the best situation
for that point of view seems r = 13 i.e. for dimension 39.
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value -216 -152 -88 -24 40 104 168 232
multiplicity 7550 6494 1208 3020 755 151 6795 6795

Table 1. Spectrum of the quadratic residue

spread h(x) = µ(x755)g(x) +
∑v−1

j=1

(
j

v

)
g(x/γj).

r 13 26 39 52 65 78 91 96 83 70 57 31 44 18 5

∆ 1 3 5 7 9 11 11 15 17 19 21 23 13 25 27

Table 2. arguments of the Gauss sums for the
group of index 7 in an extension of degree r of F8

which lies in a sector of ∆ degree.

4. Asymptotic Bound

Asymptotically, it is known [7] that almost all boolean func-
tions have high non linearities, and so that they have low spectral
amplitudes. For binary functions over a subgroup G of L×, we
show here that this phenomenon is always true.

First, let us recall known bounds on sums of binomial coeffi-
cients.

Lemma 4.1. Let N be any positive integer and 0 < λ < 1/2.
Then

2NH2(λ)

√
8Nλ(1− λ)

≤
∑

0≤i≤λN

(
N

i

)
≤ 2NH2(λ) < 2Ne−2N(1/2−λ)2

where H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the entropy
function.

This lemma implies the following result :

Theorem 4.2. Let m > 0 be an integer, G a subgroup of L× and
N, v the order and the index of G. Let c be any strictly positive
real number such that N > 2c2m. Then, the density of the set {f :
G→ {±1}, Rv(f) ≤ c

√
2Nm} is greater than 1− 2m(1−c2 log2(e)).

If c2 log2(e) > 1, then this density tends to 1 when m tends to
infinity. For every m ≥ 3 and G such that N > 2m, a majority
of functions f defined over G are such that Rv(f) ≤

√
2Nm.
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Proof. Let l : L → F2 be a linear function and lG its restriction
over G, then the number of functions f : G → {±1}, such that
the distance between f and µ(lG) over G is lower than N/2 −
c
√

m
√

N/2, is :

A =
∑

0≤i≤N/2−c
√

m
√

N/2

(
N

i

)
.

Thanks to lemma 4.1, we deduce that : A ≤ 2Ne−2N(1/2−λ)2 ,
where 0 < λ = 1/2− c

√
m/
√

2N < 1/2. So, A ≤ 2N−mc2 log2(e).
Hence, the number of functions f at a distance over G lower

than N/2 − c
√

m
√

N/2 from a linear function is at most 2mA =
2m+N−mc2 log2(e). As f̃(a) = N − 2d(f, x +→ µ(ax)), we obtain
that the density of the set defined previously in the theorem,
among all the binary functions defined over G, is greater than
1− 2m(1−c2 log2(e)).

Moreover, if c2 log2(e) > 1 and if we have a sequence (Gm)m,
where for all m, Gm is a subgroup of order Nm > 2c2m of F×2m ,
then the density, of the functions defined over Gm such that
Rvm(f) ≤ c

√
2Nmm, tends toward 1 when m grows to the infinity.

For the last result, notice that we have 2m(1−c2 log2(e)) < 1
2 if

m ≥ 3 and c = 1. !
Hence, if m ≥ 3 and N > 2m, then

√
2m − 1

v
≤ Rv

m ≤
√

2m

√
2m − 1

v
,

and a majority of functions are between these two bounds. Notice
that in particular, if N = o(2m/m), then the majority of binary
functions f defined over G are such that Rv(f) = o(

√
2m). Which

is sufficient, added to the others points seen in section (2), to
construct boolean functions with high non linearities.

5. Exponential Sums

We consider a polynomial f(X) ∈ L[X] and we write f̃(a) the
Fourier coefficient of the binary function x +→ µ

(
f(x)

)
:

f̃(a) =
∑

x∈G

µ
(
f(x) + ax

)
=

1
v

∑

x∈L×

µ
(
f(xv) + axv

)
. (9)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05



184 J. BRINGER, V.GILLOT, P. LANGEVIN

In particular, if the degree of f(X) is an odd integer s > 1 the
famous Hasse-Weil bound gives the estimation

Rv(f) ≤ 1
v
(sv − 1)

√
2m +

1
v

" s
√

2m. (10)

This in comparison of (7) seems bad. However, when the index of
G is fixed and m increases then (10) is the best that one can say.
Whence, for a given polynomial, there is infinitely many extensions
such that the Parseval bound (7) is far from the reality.

The goal of this section is to estimate the spectral amplitude
of index v of monomials f(x) = γxs for certain γ ∈ L and integer
s. If m is not prime (m = lt), the strategy consists in evaluatinf
the exponential sum over K = Fq instead of L, with [L : K] = l
and q = 2t, like in [2]. So, we search instances of (m, l, t, v, s)
where v is the index of a group G and s an exponent such that
Rv(γxs) is small for a good choice of γ ∈ L. In practice, it is
difficult to obtain smooth hypersurfaces from any γxs. So, we
determine the forms of s and vs to apply the results of [2]. Let
wq(e) be the sum of the digits of the q-ary expansion of an integer
e. Assume that wq(s) %= wq(sv), denote w = max{wq(s), wq(sv)}
and let d ∈ {v, sv} the integer such that w = wq(d).

If d < q is odd or if the q-ary expansion of d is d = 1 + kqj for
any even integer k and j < (m/l), then Theorem 2.1 in [2] gives
the following estimation

Rv(f) ≤ 1
v
(w − 1)l

√
2m +

1
v

(11)

With a computer, we can find a lot of numerical instances
(m, l, t, v, s) satisfying (w − 1)l < (sv − 1). Unfortunately, we did
not find any which satisfy the inequality (w − 1)l < v. However,
we obtain the following proposition for the groups with index 3.

Proposition 5.1. Set m = 2t, with odd t. Consider f(x) = γxs,
with TrL/K(γ) %= 0. The instance

(
2t, 2, t, 3, (q + 1)/3

)
satisfies

R3
m(f) ≤ 4

3
√

2m +
1
3

(12)
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Proof. Set m = 2t, v = 3, vs = q + 1. If f(x) = γxs, we have to
estimate

f̃(a) =
1
v

∑

x∈L×

µ
(
γxsv + axv

)
=

1
v

∑

x∈L×

µ
(
γxq+1 + ax3

)

If a %= 0, max{wq(3), wq(q + 1)} = 3, the estimation (11) gives
(12). If a = 0, we have to calculate

f̃(0) =
1
v

∑

x∈L×

µ
(
γxq+1

)

Let µK be the additive character of K and let be x ∈ L×,

µ(γxq+1) = µK(TrL/K(γxq+1)) = µK(xq+1TrL/K(γ)).

The map from L× to K× defined by x +→ xq+1 is onto, so we have

f̃(0) =
q + 1

v

∑

y∈K×

µK(yTrL/K(γ)) = −q + 1
v

Thus, the inequality (12) rises from |f̃(0)| = q+1
3 ≤ 4

3q + 1
3 .

!
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RANDOMLY GENERATED BENT BOOLEAN
FUNCTIONS ∗

Anna Grocholewska-Czurylo1

Abstract. Arguably, one of the most challenging issues in
the field of cryptography, is the design of a basic building
block of a stream or block cipher - a cryptographically sound
Boolean function. A function that at the same time fulfills
to the maximum a number of, often contradicting, cryp-
tographic criteria. This article presents a new method for
obtaining highly nonlinear balanced functions by means of
random bent function generation. The technique described
herein easily yields functions with so far best known non-
linearity for a certain number of arguments, and gives non-
linearities higher than other known methods in other cases
(however lower than best known examples).

1. Introduction

Over the recent years, a variety of criteria has been identified
that a single Boolean function should maximally fulfill in order to
be considered as a cryptographically sound basic building block
of a strong cipher (be it block or stream cipher). These are bal-
ancedness, nonlinearity, autocorrelation, correlation immunity, al-
gebraic degree etc. Some of these criteria are contradictory (like
balancedness and highest nonlinearity) and tradeoffs have to be
made. These tradeoffs have been the subject of much research,
e.g. [2, 16, 18, 24, 27–29]. The more criteria that have to be taken
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188 A. GROCHOLEWSKA-CZURYLO

into account, the more difficult the problem is. For some of the
properties, it is unclear how tight the best theoretical bounds are.
For example, the most interesting for us in this paper, is the up-
per bound on achievable nonlinearity, which is a subject of con-
jecture [8].

This paper deals with two of the above mentioned criteria,
namely balancedness and nonlinearity. These two criteria are ab-
solutely essential in the design of a cipher. The algorithm pre-
sented aims at randomly generating a balanced Boolean function
with very high nonlinearity. In fact, to the best of the author’s
knowledge, achieved nonlinearity is higher than any of the previ-
ously published methods.

The paper is organized as follows. Section 2 provides some basic
definitions and notations that are used throughout the remainder
of the article. In Section 3 a random bent function generator is
described, which is used as a foundation for obtaining highly non-
linear balanced functions. In Section 4 some results are presented
on comparing S-boxes built from different types of bent functions.
Section 5 deals with balancing the bent functions. Experimental
results and comparisons to other researchs are given in Section 6.
Then conclusions follow in Section 7.

2. Preliminaries

We use square brackets to denote vectors like [a1, . . . , an] and
round brackets to denote functions like f(x1, . . . , xn).

2.1. Boolean function

Let GF (2) = 〈
∑

,⊕, •〉 be two-element Galois field, where∑
= {0, 1}, ⊕ and • denotes the sum and multiplication mod 2,

respectively. A function f :
∑n $→

∑
is an n-argument Boolean

function. Let z = x1 ·2n−1 +x2 ·2n−2 + . . .+xn ·20 be the decimal
representation of arguments (x1, x2, . . . , xn) of the function f . Let
us denote f(x1, x2, . . . , xn) as yz. Then [y0, y1, . . . , y2n−1] is called
a truth table of the function f .

2.2. Linear and nonlinear Boolean functions

An n-argument Boolean function f is linear if it can be rep-
resented in the following form: f(x1, x2, . . . , xn) = a1x1 ⊕ a2x2 ⊕
. . . ⊕ anxn. Let Ln be a set of all n-argument linear Boolean
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functions. Let Mn = {g :
∑n $→

∑
| g(x1, x2, . . . , xn) = 1 ⊕

f(x1, x2, . . . , xn) and f ∈ Ln}. A set An = Ln ∪ Mn is called a
set of n-argument affine Boolean functions. A Boolean function
f :

∑n $→
∑

that is not affine is called a nonlinear Boolean func-
tion.

2.3. Balance

Let N0[y0, y1, . . . , y2n−1] be a number of zeros (0’s) in the truth
table [y0, y1, . . . , y2n−1] of function f , and N1[y0, y1, . . . , y2n−1] be
a number of ones (1’s). A Boolean function is balanced if

N0[y0, y1, . . . , y2n−1] = N1[y0, y1, . . . , y2n−1]

2.4. Algebraic Normal Form

A Boolean function can also be represented as a maximum of
2n coefficients of the Algebraic Normal Form. These coefficients
provide a formula for the evaluation of the function for any given
input x = [x1, x2, . . . , xn]:

f(x) = a0 ⊕
n∑

i=1

aixi ⊕
∑

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn

where
∑

, ⊕ denote modulo 2 summation.
The order of nonlinearity of a Boolean function f(x) is a max-

imum number of variables in a product term with non-zero coeffi-
cient aJ , where J is a subset of {1, 2, 3, . . . , n}. In the case where
J is an empty set the coefficient is denoted as a0 and is called
a zero order coefficient. Coefficients of order 1 are a1, a2, . . . , an,
coefficients of order 2 are a12, a13, . . . , a(n−1)n, coefficient of order
n is a12...n. The number of all ANF coefficients equals 2n.

Let us denote the number of all (zero and non-zero) coefficients
of order i of function f as σi(f). For n-argument function f there
are as many coefficients of a given order as there are i-element
combinations in n-element set, i.e. σi(f) =

(n
i

)
.

2.5. Hamming distance

Hamming weight of a binary vector x ∈
∑n, denoted as hwt(x),

is the number of ones in that vector.
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Hamming distance between two Boolean functions f, g :
∑n $→∑

is denoted by d(f, g) and is defined as follows:

d(f, g) =
∑

x∈
Pn

f(x)⊕ g(x)

The distance of a Boolean function f from a set of n-argument
Boolean functions Xn is defined as follows:

δ(f) = min
g∈Xn

d(f, g)

where d(f, g) is the Hamming distance between functions f and g.
The distance of a function f to a set of affine functions An is the
distance of function f from the nearest function g ∈ An.

The distance of function f from a set of all affine functions is
called the nonlinearity of function f and is denoted by Nf .

2.6. SAC and SAC(k)

A Boolean function f satisfies SAC if complementing any single
input bit changes the output bit with probability of 0.5.

A Boolean function f(x1, . . . , xn) SAC (the strict avalanche
criterion) if f(x)⊕ f(x⊕α) is balanced for any α ∈

∑n such that
hwt(α) = 1.

f(x) satisfies SAC(k) if any function obtained from f(x) by
keeping any k input bits constant satisfies SAC. We say that f is
a SAC(k) function if f(x) satisfies SAC(k).

There exists no SAC(n− 1) functions [9].
If f(x1, . . . , xn) satisfies SAC(n− 2) then deg(f) = 2.
If f(x1, . . . , xn) satisfies SAC(k) for 0 ≤ k ≤ n − 3, then

deg(f) ≤ n− k − 1 [25].

2.7. Bent functions

A Boolean function f :
∑n $→

∑
is perfectly nonlinear if and

only if f(x) ⊕ f(x ⊕ α) is balanced for any α ∈
∑n such that

1 ≤ hwt(α) ≤ n.
For a perfectly nonlinear Boolean function, any change of in-

puts causes the change of the output with probability of 0.5.
Meier and Staffelbach [20] proved that the set of perfectly non-

linear Boolean functions is the same as the set of Boolean bent
functions defined by Rothaus [26].



RANDOMLY GENERATED BENT BOOLEAN FUNCTIONS 191

Perfectly nonlinear functions (or bent functions) have the same,
and the maximum possible distance to all affine functions. So their
correlation to any affine function is consistently bad (minimal).
Linear cryptanalysis works if it is possible to find a good linear
approximation of the S-box.

Bent functions are not balanced. This property prohibits their
direct application in S-box construction, however there exists nu-
merous methods for modifying bent function in such a way so that
the resulting function is balanced and still maintains the good
cryptographic properties of a bent function [20]. Hamming weight
of a bent function equals 2n−1 ± 2

n
2−1.

Differential analysis [19] can be seen as an extension of the
ideas of attacks based on the presence of linear structures [23].
As perfect nonlinear Boolean function have maximum distance to
the class of linear structures (equal to 2n−2), they are a useful
class of functions for constructing mappings that are resistant to
differential attacks.

Bent functions exist only for even n. The nonlinear order of
bent functions is bounded from above by n

2 for n > 2. The number
of Boolean bent function for n > 6 remains an open problem.

3. Random generation of bent functions

There exists a number of algorithms for constructing bent
Boolean functions. Such constructions have been given by Rothaus
[26], Kam and Davida [11], Maiorana [13], Adams and Tavares [1],
and others.

As an example let’s consider the following [1,11]:
Method 1: Let Bn denote a set of bent functions f :

∑n $→
∑

with n even. Given a set of bent functions B6, bent functions in
B8 can be constructed using the following method (method 1):

Let A,B ∈ B6. Then the function f :
∑8 $→

∑
defined by:

f(x0 . . . x7) =






a(x0 . . . x5), x6 = 0, x7 = 0
a(x0 . . . x5), x6 = 0, x7 = 1
b(x0 . . . x5), x6 = 0, x7 = 0
b(x0 . . . x5)⊕ 1, x6 = 0, x7 = 0

is bent. Rearrangements of the 64 blocks in the expression above
also result in bent functions.
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Another method for bent function construction was given by
Rothaus in [26] (method 2): Let x = (x1, . . . , xn) and let a(x),
b(x) and c(x) be bent functions such that a(x)⊕b(x)⊕c(x) is also
bent. Then a function f(x, xn+1, xn+2) = a(x)b(x) ⊕ b(x)c(x) ⊕
c(x)a(x)⊕ [a(x)⊕b(x)]xn+1⊕ [a(x)⊕c(x)]xn+2⊕xn+1xn+2 is bent.

Most of the known bent function constructions take bent func-
tions of n arguments as their input and generate bent functions
of n + 2 arguments. One major drawback of these methods is the
fact that they are deterministic. Only short bent functions (n = 4
or 6) are selected at random and the resulting function is obtained
using the same, deterministic formula every time.

The use of randomly chosen Boolean functions with good cryp-
tographic properties (if we are able to find such functions) is
probably better than the use of functions with similar parameters
which are obtained by an explicit construction. The main reason
is that explicit constructions usually lead to functions which have
very particular (algebraic or combinatorial) structures, which may
induce weaknesses regarding existing or future attacks. There-
fore, authors considered finding and studying randomly generated
Boolean functions (at least with a few inputs and outputs) with
good cryptographic properties, to be of high interest.

Drawing bent functions at random is not feasible already for
small number of arguments (n > 6). To make such generation
possible, an algorithm was designed to generate random Boolean
functions in Algebraic Normal Form thus making use of some ba-
sic properties of bent functions to considerably narrow the search
space. This makes the generation of bent functions feasible for
n ≥ 6.

The algorithm for the generation of bent functions in ANF do-
main takes as its inputs the minimum and maximum number of
ANF coefficients of every order that the resulting functions are
allowed to have. Since the nonlinear order of bent functions is
less than or equal to n

2 , clearly an ANF of a bent function can
not be any ANF coefficient of order higher then n

2 . This restric-
tion is the major reason for random generation feasibility, since it
considerably reduces the possible search space.

Presented in Table 1 are numbers of 12-argument bent functions
of all nonlinear orders that a non-optimized, PC implementation
of the algorithm finds them in a minute (3GHz machine). In Table
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Order Number of bent functions
2 819
3 662
4 315
5 88
6 8

Table 1. Number of 12-argument bent functions
of all nonlinear orders generated in one minute on
a 3GHz PC machine

Order Number of bent functions
2 130000
3 60000
4 11000

Table 2. Number of 8-argument bent functions of
all nonlinear orders generated in one minute on a
3GHz PC machine

2 similar data are given for 8-argument bent functions (as men-
tioned earlier, the nonlinear order of bent functions is bounded
from above by n

2 ).

4. Properties of random and constructed bent functions

4.1. Nonlinearity of pairs (8x2 S-boxes)

Now some comparative results are presented. Three sets of
8-argument bent Boolean functions are analyzed: bent functions
constructed using method 1 mentioned earlier, bent functions con-
structed using method given in [22] (Maiorana functions with per-
muted inputs) and randomly generated bent functions. For ran-
dom, distinct i, j the nonlinearity of fi⊕fj was calculated. Figures
1 and 2 show the resulting nonlinearity distribution (in percent-
age). The random bent functions were generated with the follow-
ing parameters: number of 2nd order coefficients was between 7
and 14 (statistically that yields the highest number of bent func-
tions), number of 3rd order coefficients was fixed at 2 and number
of 4th order ANF coefficients was also fixed at 2. There was no
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Figure 1. Pairs nonlinearity distribution. Con-
structed bent (method I) vs. Generated bent

coefficient of order 0 and 1 to prevent the occurrences of bent func-
tions that would be just a linear transformations of one another.

As shown on those figures among randomly generated functions
more pairs have higher nonlinearity than in other sets, including
the set of Maiorana functions with permuted inputs whose results
are presented in [22].

4.2. Comparing S-boxes

In this section we concentrate on nonlinearity of S-boxes built
using randomly generated bent functions. We give comparative re-
sults of the performance of S-boxes built form bent functions con-
structed using a method introduced by Rothaus [26], bent func-
tions generated with our algorithm described in this paper and
random Boolean functions (not bent).

We compare the nonlinearity of 6× 6 S-boxes testing the feasi-
bility of its linear approximation (since the feasibility of the best
linear approximation is a measure of nonlinearity).

Then we simply test (by calculation) the nonlinearity of 8 × 6
S-boxes.
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Figure 2. Pairs nonlinearity distribution. Con-
structed bent (Permuted Maiorana) vs. Generated
bent

Finally some interesting results are presented pertaining to
SAC criterion (for 8× 2 and 8× 4 S-boxes).

One has to note that for real-life applications bent functions
would have to be modified to be balanced prior to their use in
S-boxes. Such modification algorithms are covered later in the ar-
ticle. Also, for the sakes of clarity, we do not transform random
bent functions into balanced, highly nonlinear functions (to com-
pare S-boxes) as some differences between constructed and random
bent functions could not perhaps be so clearly visualized.

4.3. Linear approximations of S-boxes

By linear approximation of a Boolean function h :
∑n $→

∑m,
written as Y = h(X), we mean any equation of the form:

∑

i∈Y ′

yi =
∑

j∈X′

xj , for Y ′ ⊆ {1, 2, . . . ,m}, X ′ ⊆ {1, 2, . . . , n},

fulfilled with the probability of p = N(X ′, Y ′)/2n, where N(X ′, Y ′)
denotes the number of pairs (X, Y ) fulfilling the equation, and

∑
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Figure 3. Best S-box approximation distribution.
Constructed (Rothaus) vs. Generated bent

is a modulo 2 summation. The sets of indices X ′, Y ′ are called
input and output masks.

The measure of linear approximation effectiveness is the value
of a probability ∆p = |p− 1

2 | called differential probability. For a
fixed n a measure of effectiveness can also be defined as a value of
∆N(X ′, Y ′) = |N(X ′, Y ′)− 2n−1|.

In our experiment we tested linear approximations of 6 × 6 S-
boxes, i.e. functions Y = h(X) :

∑6 $→
∑6, where sub-functions

of function h were constructed bent functions and randomly gener-
ated bent functions. The distribution of the best approximations
was tested, i.e. maximum value of ∆N(X ′, Y ′) among all possible
sets of input and output masks (except empty output mask). For
each type of functions, 10000 of random S-boxes were tested.

Differences between S-boxes built from bent functions cons-
tructed using Rothaus method (method 2) and S-boxes built from
randomly generated bent functions are not very evident.



RANDOMLY GENERATED BENT BOOLEAN FUNCTIONS 197

4.4. Nonlinearity

Now we will show the results of testing the S-boxes for high
nonlinearity. We consider 6×8 S-boxes (each S-box is constructed
of six 8-argument functions).

The nonlinearity of an S-box, that as to say a function: F :∑n $→
∑m such that F (x) = (f1(x), f2(x), . . . , fm(x)) i x ∈

∑n

is calculated as minimal nonlinearity of all linear combinations of
F ’s sub-functions. The nonlinearity of a S-box is then defined as
follows:

NF = min{NfJ |fJ =
∑

i∈J

fi, J ⊆ (1, 2, . . . ,m)}

To calculate nonlinearity of a single S-box 2m linear combina-
tions have to be constructed and their distance to affine functions
calculated. The lowest of all calculated nonlinearities (distances
to affine functions) is the nonlinearity of the S-box.

Using Rothaus construction the maximum achieved S-box non-
linearity was 100 (for about 2% of all S-boxes). For S-boxes built
using randomly generated bent function maximum nonlinearity
was 112 (for about 5% of all S-boxes!). It is worth noting that it
is the highest known nonlinearity for 8× 6 S-box.

This means that using randomly generated bent functions may
lead to constructing S-boxes of better cryptographic qualities in
lesser time.

However, one has to note the fact that in case of randomly
generated bent functions there are also S-boxes of relatively poor
nonlinearity (like 80). So building S-boxes from these functions
requires (more then in other cases) to carefully check the resulting
S-boxes for possible low nonlinearity.

4.5. Strict avalanche criterion for S-boxes

The generalization of SAC(k) to vector output Boolean func-
tions (S-Boxes) has been proposed by Kurosawa and Satoh in [12]
and as a step toward the security of block ciphers against attacks
which keep some input bits constant.

We say that F (x1, . . . , xn) = (f1, . . . , fm) is an (n, m)−SAC(k)
function if all nonzero linear combinations of f1, . . . , fm satisfy
SAC(k).

For the purpose of the research described in this paper various
sample S-boxes were tested. These S-boxes were not necessarily
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k Percentage of S-boxes
0 26.80
1 33.00
2 15.60
3 2.40
4 0.20

Table 3. (8,2)-SAC(k) fulfilling S-boxes

k Percentage of S-boxes
0 37.80
1 19.60
2 3.90
3 0.30
4 0.00

Table 4. (6,2)-SAC(k) fulfilling S-boxes

chosen to fit any particular application but to clearly show the
differences between constructed bent functions and randomly gen-
erated bent functions. Such an S-box in its simplest form would
be just a pair of two Boolean functions (S-box size 8× 2). 10000
S-boxes have been tested during each experiment mentioned be-
low.

And so, for S-boxes of size 8 × 4 built from constructed bent
functions (Rothaus method) there has not been a single S-box
found that would satisfy even the original SAC ((8,4)-SAC(0)),
while among the same size S-boxes built from randomly generated
bent functions there have been ca. 71.5% of non-SAC fulfilling S-
boxes, 28.2% of (8,4)-SAC(0) fulfilling S-boxes and the remaining
0.3% of (8,4)-SAC(1) S-boxes.

For 8×2 S-boxes (pairs of bent functions) there also hasn’t been
a single S-box found that would satisfy SAC for constructed bent
functions. For randomly generated bent functions the proportions
of SAC fulfilling S-boxes were shown in Table 3.

Similarly, for S-boxes of size 6 × 4, there has been no SAC
S-boxes built from constructed bent functions while there were
about 3% of (6,4)-SAC(0) S-boxes built from randomly generated
bent functions.
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For S-boxes of size 6 × 2 (pairs of 6-argument bent functions)
there have been ca. 3% of (6,2)-SAC(0) S-boxes built from con-
structed bent functions, and results for randomly generated bent
functions are given in Table 4.

As one can easily see from the examples above, randomly gener-
ated bent functions possess some interesting cryptographic quali-
ties, quite distinct from those of constructed bent functions. While
generation times for randomly generated bent functions are up to
40 times shorter than the time required for constructing a bent
function (using a Rothaus method, 8-argument bent functions)
this opens new possibilities for designing fast algorithms for strong
S-box constructions.

5. Balancing bent functions

As bent functions achieve maximum possible nonlinearity they
are often used as a foundation for constructing highly nonlinear
balanced functions that could be used directly in for example S-
boxes. In recent years some methods have been proposed that
transform bent functions to balanced Boolean functions with min-
imal loss in nonlinearity. Examples of such methods are given
in [14,15].

For the purpose of this research none of these methods has been
implemented. Instead the adopted approach was to balance gen-
erated bent functions randomly, without any sort of optimization
and then to test the nonlinearity of resulting balanced functions.

Thus balancing is performed as follows. A bent function is ran-
domly generated (using the above mentioned generator). Depend-
ing on whether bent function’s hamming weight is 2n−1− 2

n
2−1 or

2n−1 + 2
n
2−1 missing 1’s or 0’s are added at random positions.

This approach suggests unbiased comparison of the nonlinear-
ities achieved. Had any of the balancing methods been used it
would be uncertain if high nonlinearity comes from properties of
randomly generated bent functions, or from carefully designed bal-
ancing techniques.
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n 8 9 10 11 12
LUB 118 244 494 1000 2014
BK 116 240 492 992 2010
DC 116 492 2010
BC 112 240 480 992 1984
R 112 230 472 962 1955
RHC 114 236 476 968 1961
GA 116 236 484 980 1976
DNL 114 236 480 974 1972
NLT 116 238 486 984 1992
ACT 116 238 484 982 1986
GEN 116 240 488 992 2002

Table 5. Conjectured upper bounds and attained
values for nonlinearity of balanced functions

6. Experimental results for balanced functions

Table 5 summarizes the results obtained. The table shows non-
linearity of balanced Boolean functions achieved by the best cur-
rently known techniques along with best theoretical upper bounds
and the best currently known examples. The table gives values
for Boolean functions of 8 up to 12 arguments. Results for lower
number of arguments are the same for every method and are in
fact maximum achievable.

Abbreviations used in Table 5 are: LUB - Lowest Upper Bound,
BK - Best Known [10], DC - Dobertin’s Conjecture [8], BC - Bent
Concatenation, R - Random, RHC - Random + Hill-Climb [7], GA
- Genetic Algorithms [21], DNL - Direct Non-Linearity [7], NLT
- Non-Linearity Targeted [7], ACT - Auto-Correlation Targeted
[7], and finally GEN - Balanced Randomly Generated functions
(results presented in this paper)

As it can be clearly seen from Table 5, a random generation
method presented in this paper gives the same results of nonlin-
earity of balanced functions only for n = 8, and is better than
any of the other methods for all higher numbers of arguments,
and most profoundly so in case of 11 and 12 arguments. It is
also worth noting, that for n = 9 and n = 11 random generation
methods yield results equal to the best known examples of highly
nonlinear balanced Boolean functions.
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Nonlinearity Number of functions
1986 3
1988 41
1990 543
1992 3979
1994 22458
1996 76942
1998 87004
2000 9474
2002 6

Table 6. Nonlinearities of balanced 12-argument
functions obtained by random balancing generated
bent functions

Other interesting results are presented in Table 6. 200000 12-
argument bent functions were randomly generated and then ran-
domly balanced (as described in Section 5). Table 6 shows the
nonlinearity of the resulting balanced functions.

The vast majority (>97%) of balanced Boolean functions in
Table 6 has nonlinearity between 1994 and 2000, which is very
high (see Table 5).

7. Conclusions

The main relevant cryptographic properties for block ciphers
are the nonlinearity of the S-box, its propagation characteristics
and its resistance to differential attacks. One of the underlying
problem is then to construct S-boxes with high nonlinearity, whose
Boolean components are some highly nonlinear functions which are
randomly chosen.

From the results presented in this paper it seems that random
generated bent functions (and obtained balanced functions) offer
an interesting alternative to construction methods. Not only non-
linear characteristics of these functions are equal or better than
those of constructed functions but also generated functions have a
very compact (small) Algebraic Normal Form which can be used
for efficient storage and fast cryptographic routines.
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A new search algorithm has been presented, which proved to be
very efficient in finding highly nonlinear balanced Boolean func-
tions.

However, before practical applications more research is needed.
In particular, the resiliency of balanced functions has to be inves-
tigated.
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