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Université de Rouen, March 13–15th, 2006

by the

Laboratoire d’Informatique Fondamentale et Applications
de Rouen

Laboratoire d’Algorithmique, Complexité et Logique de
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Édité par J.-F. Michon, P. Valarcher and J.-B. Yunès, 2005.
ISBN: 2-87775-403-0

c© PUBLICATIONS DES UNIVERSITÉS DE ROUEN ET DU HAVRE, 2006
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Boolean Functions: Cryptography and Applications BFCA’06

Fonctions Booléennes : Cryptographie & Applications

PRÉFACE

Jean-Francis Michon1, Pierre Valarcher2 and

Jean-Baptiste Yunès3

The Meeting

The second “Boolean Functions: Cryptography and Applica-
tions” international meeting took place on March 13-15th, 2006,
in Rouen, France. As the preceding it was co-organized by the
LIFAR, University of Rouen and the LIAFA, University Paris VII
- Denis Diderot of Paris.

As expected and for the second time contacts between scientists
of the field were successful, and it is clear now that a community
around the domain exists, sharing great interests on Boolean func-
tions. About 40 participants came from about 10 foreign countries.
Submitted papers were all reviewed by at least two referees who
finally selected 14 of them.

L’Atelier

Le second atelier international “Fonctions Booléennes: Crypto-
graphie et Applications” a eu lieu les 13, 14 et 15 mars 2006,

1 LIFAR - Université de Rouen, F-75821 Mont Saint Aignan Cedex, France.
email: jean-francis.michon@univ-rouen.fr
2 LACL - I.U.T. de Fontainebleau, Route forestière Hurtault, F-77300,
Fontainebleau, France.
email: valarcher@univ-paris12.fr
3 LIAFA - Université Denis Diderot - Paris 7. 175 rue Chevaleret, F-75013
Paris, France.
email: Jean-Baptiste.Yunes@liafa.jussieu.fr

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



IV PRÉFACE

à Rouen (France). Comme le précédent il a été conjointement
organisé par le LIFAR de l’Université de Rouen et le LIAFA de
l’Université Paris 7 - Denis Diderot.

Comme attendu et pour la seconde fois des contacts ont été
établis entre scientifiques du domaine, et il semble désormais établi
qu’une communauté intéressée par les fonctions Booléennes émerge
clairement. Plus de 40 participants sont venus d’une dizaine de
pays étrangers. Les articles soumis ont été évalués par au moins
deux examinateurs qui en ont retenu 14.

Thanks / Remerciements

The committee is thankful to its sponsors for their support:
Le comité remercie vivement ses sponsors:

Le LIFAR
L’Université de Rouen
Le Conseil Régional de Seine-Maritime
GDR-ALP
PURH

Organizing committee / Comité d’organisation

Jean-Francis Michon (Univ. de Rouen, LIFAR)

Pierre Valarcher (I.U.T. Fontainebleau, LACL)

Jean-Baptiste Yunès (Univ. Paris 7, LIAFA)

Program and selection committee
Comité de programme et de sélection

Ali Akhavi (CNRS, LIAFA)

Didier Alquié (CELAR)

An Braeken (ESAT - COSIC K.U. Leuven)

Hervé Chabanne (SAGEM)

Jean-Charles Faugère (CNRS, LIP6)

Philippe Guillot (Univ. Paris 8, MAATICAH)

Jean-Francis Michon (Univ. de Rouen, LIFAR)

Pierre Valarcher (I.U.T. Fontainebleau,LACL)

Jean-Baptiste Yunès (Univ. Paris 7, LIAFA)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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Referees / Examinateurs

Ali Akhavi Jean-Charles Faugère
Didier Alquié Aline Gouget
Gwénolé Ars Philppe Guillot
An Braeken Sihem Mesnager
Julien Bringer Jean-Francis Michon
Claude Carlet Raphaël Rossignol
Hervé Chabanne Pierre Valarcher
Emmanuelle Dottax Jean-Baptiste Yunès

BFCA on the WEB / BFCA sur Internet

http://www.liafa.jussieu.fr/bfca/

Special Thanks / Remerciements particuliers

The program committee is thankful to MM. Antoine Rauzy
and Serge Grigorieff who accepted to be invited and who gave to
all participants two very interesting lectures. M. Rauzy from IML,
Marseille (France), has talked about his research on risk analysis
and its relations to the world of Boolean functions. M. Grigorieff
from LIAFA, University Paris VII (France) has presented us the
state-of-the-art of randomness in computer science.

Le comité de programme souhaite remercier particulièrement
MM. Autoine Rauzy et Serge Grigorieff qui ont accepté l’invitation
qui leur a été faite de venir donner une conférence. M. Rauzy de
l’IML à Marseille, a parlé de ses importants travaux sur l’analyse
de risque et les liens existants avec les fonctions Booléennes.
M. Grigorieff du LIAFA de l’Université Paris VII nous a présenté
l’état de l’art sur l’aléatoire en Informatique.

About the proceedings / À propos des actes

Producing these proceedings is a major task involving authors,
reviewers and the publication staff. Editors would like to thank
the authors themselves for their contributions, the reviewers who
critiqued the submissions and the publication staff for their opera-
tion. The proceedings of the last year conference are available [1].

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



VI PRÉFACE

La production de ces actes est un travail important qui fait
appel à la fois aux auteurs, aux examinateurs mais aussi à l’éditeur.
C’est pourquoi le comité souhaite vivement remercier les auteurs
eux-mêmes pour leurs contributions, les examinateurs pour leur
travail de critique et l’éditeur pour son aide précieuse. Les actes
de l’année précédente sont disponibles [1].

Paris, June (Juin), 2006 JFM, PV & JBY

References

[1] Boolean Functions: Cryptography & Applications, Proceedings of First
International Workshop BFCA’05, Edited by J.-F. Michon, P. Valarcher
and J.-B. Yunès, Presses Universitaires de Rouen et du Havre, 2005.
ISBN: 2-87775-403-0
Available at/Disponible auprès de:

Publications des Universités de Rouen et du Havre
Rue Lavoisier
76821 - Mont-Saint-Aignan Cedex. France
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A METHOD OF CONSTRUCTING HIGHLY

NONLINEAR BALANCED BOOLEAN FUNCTIONS

Baha Güclü Dündar1, Faruk Göloğlu1, 2, Ali Doğanaksoy1, 3 and

Zülfükar Saygi1

Abstract. Constructing highly nonlinear balanced Boolean
functions having an order of resilience of at least one is a
significant area of research in the study of Boolean functions.
In this paper, we show that generalization of Dobbertin’s
construction (i.e. changing any 2

n

2
−1 bits of a normal bent

function), cannot have resilience more than zero.

1. Introduction

Boolean functions are fundamental tools in the design of crypto-
systems. An important criterion that a Boolean function should
satisfy is high nonlinearity to introduce confusion into the system.

Bent functions constitute a family of Boolean functions with
maximum possible nonlinearity. But as a consequence of Parseval’s
Identity, they exist only for an even number of variables. They
have been studied for over 30 years, but their classification is still
an important open problem. The fact that they have the best
propagation characteristics among all Boolean functions is another

1 Institute of Applied Mathematics,
Middle East Technical University,Ankara,Turkey,
email: {e114491,aldoks,saygi}@metu.edu.tr
2 Computer Technology and Information Systems,
Bilkent University, Ankara, Turkey,
email: gologlu@bilkent.edu.tr
3 Department of Mathematics,
Middle East Technical University,Ankara,Turkey,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



2 B. G. DÜNDAR, F. GÖLOĞLU, A. DOĞANAKSOY, Z. SAYGI

aspect of their cryptographical importance. As a drawback, they
are not balanced.

Balance is such an important property that a Boolean function
must satisfy, just as nonlinearity, it is natural to ask whether there
exist balanced Boolean functions with maximum possible nonlin-
earity, i.e. 2n−1 − 2n/2−1 − 2. The answer is yes up to the case of
n = 6. For n ≥ 8 the answer is unknown. One can easily see that
if we assume their existence, their algebraic degree is n − 1 [11]
and we deduce from Carlet’s construction [2] that their resilience
are 0.

On the other hand, some constructions of highly nonlinear bal-
anced Boolean functions exist (having nonlinearity smaller than

2n−1 − 2
n

2
−1 − 2) in literature [2, 3, 10, 12–14, 17–19, 21, 22, 24].

Almost all of these constructions concentrate not only on high
nonlinearity but also on other cryptographic properties such as
resilience and propagation characteristics.

H. Dobbertin conjectured in [7], based on his construction, that
nonlinearity of balanced Boolean function defined on GF (2)n can-

not exceed 2n−1 − 2
n

2 + Nh where Nh denotes the nonlinearity
of the balanced Boolean function h used in the construction. In
order to attain highly nonlinear balanced Boolean functions, he
converted some bits of the n

2 -dimensional subspace of a normal
Boolean function f , where f is constant.

In this paper, we concentrate on converting any 2
n

2
−1 bits of

a normal bent function in order to generate highly nonlinear bal-
anced Boolean functions.

Furthermore, we study the resilience and the autocorrelation
function of our construction and reach to the conclusions that
any balanced Boolean function converted from a bent function by
changing 2

n

2
−1 bits has zero resilience and their absolute indicator

is at most 2
n

2
+1.

2. Preliminaries

In this section we fix the notation and give an introduction on
the subject. A Boolean function of n variables is a GF (2)-valued
function defined on GF (2)n. In this paper, we are interested in
Boolean functions with even number of variables. The support of
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a Boolean function f is defined as,

Supp(f) = {x ∈ GF (2)n | f(x) = 1} .

The weight of f is w(f) = |Supp(f)|. A Boolean function is
called balanced if w(f) = 2n−1. An affine function is a Boolean
function f : GF (2)n → GF (2), of the form:

f(x) = a · x ⊕ ǫ,

where a ∈ GF (2)n, and ǫ ∈ GF (2). Note that a nonconstant affine
function is balanced. An affine Boolean function is called a linear
function if ǫ = 0.

Walsh transform of f is defined as:

Wf (a) =
∑

x∈GF (2)n

(−1)f(x)⊕a·x

Nonlinearity Nf of f , is the minimum distance of f to all affine
functions. In terms of Walsh transform:

Nf = 2n−1 −
1

2
maxa∈GF (2)n{|Wf (a)|}

There exists a family of Boolean functions with maximal dis-
tance to the set of affine functions using the above nonlinearity
measure. These functions are called bent (cf. [16], [6]), they exist
for even n, and they are characterized by means of Walsh trans-
form. A Boolean function f is called bent if Wf (a) = ±2

n

2 , (i.e.,

Nf = 2n−1 − 2
n

2
−1). The weight of bent functions can take two

values: w(f) = 2n−1 ± 2
n

2
−1.

Definition 2.1. [4,7] A Boolean function f is called normal, if re-
striction of f to an ⌈n/2⌉-dimensional affine subspace is constant.

We cite the following:

Fact 2.2. [7] Let f be a normal bent function, which is constant
on an affine subspace V ⊆ GF (2)n with dim(V ) = n

2 . Then f is
balanced on each proper coset of V .

Definition 2.3. [4,7] A Boolean function f is called k-normal, if
there exists a k-dimensional flat on which f is constant.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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It is known that for n ≤ 7, all Boolean functions are ⌊n/2⌋-
normal [8]. However it is unknown whether there exists any non-
normal bent function with n = 8. Notice that Canteaut, et. al.
proved in [1] that nonnormal bent functions exist for n ≥ 10.

Boolean functions are said to be correlation immune of order
m, if distribution of their truth table is unaltered while fixing any
m inputs [20]. Balanced Boolean functions with correlation immu-
nity m is called m-resilient functions. The m-th order correlation
immune Boolean functions with algebraic degree d satisfies the
inequality d ≤ n − m with m < n. Xiao and Massey gave a char-
acterization of m-th order correlation immune Boolean functions:

Proposition 2.4. [23] A Boolean function f defined on GF (2)n

is correlation immune of order m if Wf (α) = 0 for all α ∈ GF (2)n

such that 1 ≤ w(α) ≤ m.

The autocorrelation function of f with the shift α is defined as:

∆f (α) =
∑

x

(−1)f(x)+f(x+α).

The absolute indicator of f [25] is

∆(f) = maxα∈GF (2)n |∆f (α)|.

Proposition 2.5. [9] Let f be any Boolean function with algebraic

degree d on GF (2)n. Then, ∆f (s) is a multiple of 2⌈
n

d
⌉+1 if d 6= 1.

By Proposition 2.5, Boolean functions having algebraic degree
less than n, have an autocorrelation function which is a multiple of
8. In particular, the autocorrelation function of a balanced Boolean
functions is a multiple of 8. Besides, absolute indicator of any
quadratic Boolean function with an even number of variables is
divisible by 2

n

2
+1.

3. Constructing Highly Nonlinear Balanced Boolean Func-

tions

The following proposition [7] gives a method of constructing
highly nonlinear balanced Boolean functions from a normal bent
function f . In this section we denote the n

2 -dimensional subspace
of GF (2)n by A, on which restriction of f is constant.
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Proposition 3.1. [7] Let U = GF (2)
n

2 and V = U2. Let f be
a normal bent function on V . That is, without loss of generality
f(x, 0) = 0 for all x ∈ U . Furthermore let a balanced function
h : U → GF (2) be given. Set for x, y ∈ U ,

g(x, y) =

{
f(x, y), if y 6= 0
h(x), otherwise.

Then g is balanced and we have

Wg(a, b) =

{
Wf (a, b) + Wh(a), if a 6= 0
0, otherwise.

It follows that

Ng = 2n−1 − 2n/2 + Nh.

In Proposition 3.1, in order to obtain a highly nonlinear bal-
anced Boolean function, Dobbertin converts 2

n

2
−1 bits on the re-

striction of f to A.
The following theorem is a generalization of Proposition 3.1 in

which we convert bits of the normal bent function not only on the
restriction to A but also on the restriction to proper cosets of A
to construct highly nonlinear balanced Boolean functions.

Theorem 3.2. Let U = GF (2)
n

2 and V = U2. Let f be a normal
bent function on V . That is, without loss of generality f(x, 0) = 0
for all x ∈ U . Furthermore let h : U → GF (2) with w(h) =

2
n

2
−1 − c and p : V → GF (2) with w(p) = c, p(x, 0) = 0 for all

x ∈ U and Supp(p) ∩ Supp(f) = ∅ be given. Set for x, y ∈ U

g(x, y) =

{
f(x, y) + p(x, y), if y 6= 0
h(x), otherwise.

Then g is balanced and we have

Wg(a, b) =

{
Wf (a, b) + Wh(a) + δ(a, b), if a 6= 0
2c + δ(0, b), otherwise

where real-valued function δ(a, b) = 2
∑

(x,y)∈Supp(p)(−1)a·x+b·y+1.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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Proof. We have

Wg(a, b) =
∑

x,y

(−1)g(x,y)+a·x+b·y

=
∑

x

(−1)h(x)+a·x +
∑

(x,y)∈Supp(p)

(−1)1+a·x+b·y

+
∑

(x,y)/∈Supp(p),y 6=0

(−1)f(x,y)+a·x+b·y

= Wh(a) +
∑

(x,y)∈Supp(p)

(−1)1+a·x+b·y + Wf (a, b)

−
∑

x

(−1)a·x −
∑

(x,y)∈Supp(p)

(−1)a·x+b·y

= Wf (a, b) + Wh(a) −
∑

x

(−1)a·x

− 2
∑

(x,y)∈Supp(p)

(−1)a·x+b·y.

Now if a = 0 then Wf (0, b) = 2
n

2 [7].

We set δ(a, b) = 2
∑

(x,y)∈Supp(p)(−1)a·x+b·y+1. Moreover, the above

equation becomes as follows,

Wg(0, b) = Wh(0) + δ(0, b)

= 2
n

2 − 2w(h) + δ(0, b)

= 2c + δ(0, b).

On the other hand, if a 6= 0 then Walsh transform of g becomes
as,

Wg(a, b) = Wf (a, b) + Wh(a) + δ(a, b)

�

Remark 3.3. If one chooses w(p) = c = 0, that is h to be bal-
anced, then our construction coincides with the Dobbertin’s con-
struction [7].

Remark 3.4. If we alter bits of f merely on the restriction to
proper cosets of A, in other words h(x) = 0, Walsh transform of
g can be expressed as:

Wg(a, b) = Wf (a, b) + δ(a, b)
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By Theorem 3.2, we cover all modifications of a normal bent
function f by converting any 2

n

2
−1 bits of f making it balanced.

Here are some examples of balanced Boolean functions achieving
high nonlinearity as applications of Theorem 3.2.

Remark 3.5. Let n = 8, and f be a normal bent function on
GF (2)8. That is, without loss of generality f(x, 0) = 0 for all
x ∈ GF (2)4. Balanced Boolean function g constructed as:

(1) Let h be a bent function on GF (2)4 with w(h) = 6. Then
by taking any function p satisfying the conditions in our
construction.

(2) Let h be a function on GF (2)4 with w(h) = 7 and Nh = 5.
Then by taking any function p satisfying the conditions in
our construction.

Then g has nonlinearity at least 116.

4. Cryptographic Properties of the Construction

Now we show that, the construction cannot lead to a resilient
Boolean function. The result was proved indirectly in [15], we re-
prove it in the following theorem.

Theorem 4.1. Let g be a balanced Boolean function constructed
by Theorem 3.2. Then g is 0-resilient.

Proof. Let f be a bent function and h be any Boolean function on
GF (2)n, such that Supp(f)∩ Supp(h) = ∅ and w(h) = 2

n

2
−1, and

let Supp(g) = Supp(f) ∪ Supp(h). Then:

Wg(a) =
∑

x

(−1)f(x)+h(x)+a·x

=
∑

x∈Supp(h)

(−1)a·x+1 +
∑

x/∈Supp(h)

(−1)f(x)+a·x

=
∑

x∈Supp(h)

(−1)a·x+1 + Wf (a) −
∑

x∈Supp(h)

(−1)a·x

= Wf (a) − 2
∑

x∈Supp(h)

(−1)a·x

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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For any a ∈ GF (2)n, Wf (a) = ±2
n

2 . If Wf (a) = 2
n

2 , then:

Wg(a) = 0 ⇐⇒
∑

x∈Supp(h)

(−1)a·x = 2
n

2
−1

Since w(h) = 2
n

2
−1,

∑

x∈Supp(h)

(−1)a·x = 2
n

2
−1 ⇐⇒ a · x = 0

for all x ∈ Supp(h).
Hence, g is 1-resilient whenever (e1 · x, . . . , en · x) = (0, . . . , 0)

for all x ∈ Supp(h), where w(ei) = 1, for i = 1, . . . , n.
Since all unit vectors e1, . . . , en form a basis for GF (2)n, (e1 ·

x, . . . , en · x) cannot be (0, . . . , 0) unless x = 0.

Wf (a) = −2
n

2 case is similar. �

Proposition 4.2. Absolute indicator of functions in the set of
balanced Boolean functions on GF (2)n modified from normal bent

functions by changing 2
n

2
−1 bits are at most 2

n

2
+1.

Proof. Let f be a bent function and h be any Boolean function on
GF (2)n, such that g(x) = f(x)⊕ h(x) with Supp(f)∩ Supp(h) =

∅ and w(h) = 2
n

2
−1 then autocorrelation function of balanced

function g is:

∆g(a) =
∑

x

(−1)f(x)+h(x)+f(x+a)+h(x+a)

=
∑

x,x+a∈Supp(h)

(−1)1+1 +
∑

x∈Supp(h),
x+a/∈Supp(h)

(−1)1+f(x+a)

+
∑

x/∈Supp(h),
x+a∈Supp(h)

(−1)1+f(x) +
∑

x,x+a/∈Supp(h)

(−1)f(x)+f(x+a)

︸ ︷︷ ︸

I
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We have:

I = ∆f (a) −
∑

x,x+a∈Supp(h)

1 −
∑

x∈Supp(h),
x+a/∈Supp(h)

(−1)f(x+a)

−
∑

x/∈Supp(h),
x+a∈Supp(h)

(−1)f(x)

Therefore,

∆g(a) =
∑

x,x+a∈Supp(h)

(−1)1+1 +
∑

x∈Supp(h),
x+a/∈Supp(h)

(−1)1+f(x+a)

+
∑

x/∈Supp(h),
x+a∈Supp(h)

(−1)1+f(x) + ∆f (a) −
∑

x,x+a∈Supp(h)

1

−
∑

x∈Supp(h),
x+a/∈Supp(h)

(−1)f(x+a) −
∑

x/∈Supp(h),
x+a∈Supp(h)

(−1)f(x)

= ∆f (a) − 4
∑

x/∈Supp(h),
x+a∈Supp(h)

(−1)f(x)

Since w(h) = 2
n

2
−1 then result follows. �

It is obvious that Boolean functions constructed by Theorem
3.2 have absolute indicator at most 2

n

2
+1.

Corollary 4.3. By combining Proposition 2.5 and Proposition
4.2, we have the fact that autocorrelation function of quadratic
functions in the construction takes three values 0,±2

n

2
+1 and so

their absolute indicator is 2
n

2
+1.

5. Conclusion

We analyzed a method of constructing highly nonlinear bal-
anced Boolean functions which is a generalization of the Dob-
bertin’s construction. We reach to the conclusion that all of these
functions are 0-resilient and have absolute indicator at most 2

n

2
+1.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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COMPLEXITY OF VAPNIK-CHERVONENKIS

CLASSES OF SEQUENCES WITH LONG

REPETITIVE RUNS

Joel Ratsaby1

Abstract. The Vapnik-Chervonenkis (VC) dimension and
the Sauer-Shelah lemma have found applications in numer-
ous areas including set theory, combinatorial geometry,
graph theory and statistical learning theory. Estimation of
the complexity of discrete structures associated with the
search space of algorithms often amounts to estimating the
cardinality of a simpler class which is effectively induced
by some restrictive property of the search. In this paper we
study the complexity of Boolean-function classes of
finite VC-dimension which satisfy a local ‘smoothness’ prop-
erty expressed as having long runs of repeated values. As in
Sauer’s lemma, a bound is obtained on the cardinality of
such classes.

1. Introduction

Let [n] = {1, . . . , n} and denote by 2[n] the class of all 2n func-
tions h : [n] → {0, 1}. Let H be a class of functions and for a
set A = {x1, . . . , xk} ⊆ [n] denote by h|A = [h(x1), . . . , h(xk)]. A

class H is said to shatter A if
∣

∣{h|A : h ∈ H}
∣

∣ = 2k. The Vapnik-
Chervonenkis dimension of H, denoted as V C(H), is defined as
the cardinality of the largest set shattered by H. The following
well known result obtained by [18, 19, 21] states an upper bound
on the cardinality of classes H of VC-dimension d.

1 Ben Gurion University of the Negev, ISRAEL, email: ratsaby@bgu.ac.il
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14 J. RATSABY

Lemma 1.1. For any 1 ≤ d < n let

S(n, d) =
d
∑

k=0

(

n

k

)

.

Then
max

H⊂2[n]:VC(H)=d
|H| = S(n, d).

More generally, the lemma holds for classes of finite VC di-
mension on infinite domains. Aside of being an interesting com-
binatorial result in set theory (see Chapter 17 in [7]), Lemma 1.1
has been been extended in various directions notably [1, 2, 10, 13]
and found applications in numerous fields such as combinatorial
geometry [15], graph theory [4, 14], empirical processes [16] and
statistical learning theory [8, 20]. In such areas, the complexity of
analysis of algorithms on discrete structures, for instance, search-
ing for best approximation of Boolean functions, is typically re-
duced to the complexity of a simpler structure constrained by some
‘smoothness’ property which is induced by the search.

Consider Boolean functions h : [n] → {0, 1}. For x ∈ [n], y ∈
{0, 1} define by ωh(x, y) the largest 0 ≤ a ≤ n such that h(z) = y
for all x−a ≤ z ≤ x+a; if no such a exists then let ωh(x, y) = −1.
We call this the width of h at x with respect to y. Denote by
Ξ = [n] × {0, 1}. For a sample ζ = {(xi, yi)}

ℓ
i=1 ∈ Ξℓ, define by

ωζ(h) = min1≤i≤ℓ ωh(xi, yi) the width of h with respect to ζ. For
instance, Figure 1 displays a sample ζ = {(x1, y1), (x2, y2)} and

y y
1

1 y
2

0

h
1

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

h
2

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0

 [n] 1 2 . . x
1

. . . . . . . . x
2

. . . . . . n

Figure 1. ωζ(h1) = ωζ(h2) = 3

two functions h1, h2 which have a width of 3 with respect to ζ.
In [17] we studied classes of Boolean functions that have a large

width on a given fixed sample ζ. In this paper we study the com-
plexity of classes of Boolean functions constrained by the width as
follows:

HN (ℓ) = {h ∈ H : ∃ ζ ∈ Ξℓ, ωζ(h) > N}, ℓ ≥ 1, N ≥ 0 (1)
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where for brevity the dependence of HN on H is left implicit.
We obtain a bound (in the form of Lemma 1.1) for such classes.

The novelty of the paper is both in the results and in the bounding
technique. Realizing that Boolean functions on [n] can be repre-
sented both as finite binary sequences as well as finite sets in [n]
enables to rip the benefits of techniques from probability analysis
and set-theory.

The remainder of the paper is organized as follows: in the next
section we state the main result. Section 3 contains the proof.

2. Main Result

For a function h : [n] → {0, 1} let the difference function be
defined as

δh(x) =

{

1 if h(x − 1) = h(x)
0 otherwise

where we assume that any h satisfies h(0) = 0 (see Figure 2).

h 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0

δ
h

0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1

 [n] 1 2 . . . . . . . . . . . . . . . . . . . n

Figure 2. h and the corresponding δh

Define

DH ≡ {δh : h ∈ H},

or for brevity we write D. It is easy to see that the class D is in
one-to-one correspondence with H. It will be convenient to view
a function h : [n] → {0, 1} as a binary sequence x(n) of n bits
X1, . . . ,Xn, where Xi ∈ {0, 1}, 1 ≤ i ≤ n. Denote by a k-run
any subsequence in x(n) of k consecutive ones or consecutive zeros
(the runs may be overlapping). For instance, suppose k = 3 then

in the sequence x(n) = 01111100011 there are four k-runs. Let
ζ ∈ Ξℓ then for any h ∈ H with ωζ(h) > N , there exist ℓ runs
of length 2(N + 1) + 1 (of consecutive 0’s or consecutive 1’s) in

the corresponding sequence x(n). This implies that the sequence
corresponding to the difference function δh ∈ D has at least ℓ runs
of consecutive 1’s of length 2(N + 1). Letting

DN (ℓ) ≡ {δ ∈ D : ∃ ℓ 2(N + 1)-runs of 1’s } (2)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



16 J. RATSABY

for ℓ ≥ 1, N ≥ 0, then clearly

|HN (ℓ)| ≤ |DN (ℓ)|, (3)

where HN (ℓ) is defined in (1) and is based on the class H cor-
responding to D. Our approach will be to bound from above the
cardinality of the corresponding class DN (ℓ). We denote by

VC∆(H) ≡ VC(D),

the VC-dimension of the difference class D = {δh : h ∈ H} and
use it to characterize the complexity of H (it is easy to show that
VC(D) ≤ cVC(H) for some small absolute constant c > 1). Denote
by (n)k ≡ n(n − 1) · · · (n − k + 1) with (n)k = 0 if k > n. Let
(a)+ = a if a ≥ 0 and (a)+ = 0 otherwise. The following is the
main result of the paper.

Theorem 2.1. Let 1 ≤ d, ℓ ≤ n, N ≥ 0. Then

max
H⊂2[n],VC∆(H)=d

|HN (ℓ)| ≤ b
(ℓ,N)
d (n)

where HN is dependent on H by its definition (1),

b
(ℓ,N)
d (n) ≡

d
∑

i=0

(

n

i

)

η(n, 2(N + 1), ℓ, n − i) (4)

and

η(n, k, ℓ, r) =

(

(r − k + 1)+
n − k

)ℓ

eλ(γ−1)

+ (n − k + 1)
pk−1

q

(

2pk−1

q

(

p

q
+ k + 1

)

+ 1

)

+
(r)n/2

(n)n/2
, (5)

with p = r/n, q = 1 − p, λ = (n − r + 1)(r)k/(n)k and γ =
2(n − r)(n − k)(r − k + 1)/((n/2 + 1)(r − k)).

To understand this bound, first note that the form of b
(ℓ,N)
d (n)

in (4) is similar to S(n, d) (of Lemma 1.1) with an additional factor

of η. For any fixed value of n and ℓ the function b
(ℓ,N)
d (n) decreases

at an exponential rate with respect to the width parameter value

N . As an example, Figure 3 displays b
(ℓ,N)
d (n) versus S(n, d) for
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Figure 3. b
(ℓ,N)
d (n) for N = 0.39n, 0.36n, 0.33n,

0.29n, [x,+,�, ◦ traces] v.s. S(n, d), [♦ trace]

various values of N with d = n0.6, ℓ = 0.3n (on a logarithmic
scale).

We now proceed with the proof of the theorem.

3. Proof of Theorem 2.1

Due to limited space, in certain parts of the proof we provide
only a sketch. For clarity, we split the proof into several subsec-
tions. We start by considering a class which is defined as

D̂N (ℓ) ≡
{

δ : [n] → {0, 1} : #ones(δ) ≥ n − d,

∃ ℓ 2(N + 1)-runs of 1’s
}

(6)

where 1 ≤ d, ℓ ≤ n and N ≥ 0. We have the following result:

Lemma 3.1. Let 1 ≤ d ≤ n. Let D be any class of Boolean
functions on [n] with VC(D) = d and consider DN (ℓ) ⊂ D as

defined in (2). Then |DN (ℓ)| ≤ |D̂N (ℓ)|.

Proof. Complement each δ in D to obtain a new class D where
VC(D) = VC(D) = d. There is a one-to-one correspondence be-
tween elements δ of DN (ℓ) and elements of the class DN (ℓ) =
{δ ∈ D : ∃ ℓ 2(N + 1)-runs of 0’s} and clearly VC(DN (ℓ)) ≤ d.

So it suffices to show that |DN (ℓ)| ≤ |D̂N (ℓ)|. Let F be the set

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



18 J. RATSABY

system corresponding to DN (ℓ) which is defined as follows

F = {Aδ : δ ∈ DN (ℓ)}, Aδ = {x ∈ [n] : δ(x) = 1}.

Clearly, |F| = |DN (ℓ)|. Fix a δ ∈ DN (ℓ) and consider the comple-
ment set Ac

δ ≡ [n]\Aδ. Since δ, by definition, has at least ℓ 2(N+1)-
runs of 0’s then Aδ has the following property PN : there exist ℓ sub-
sets Ej ⊆ Ac

δ, of consecutive elements ij , ij+1, . . . , ij +2N+1 ∈ [n]
with |Ej | = 2(N + 1), 1 ≤ j ≤ ℓ. Hence for every element A ∈ F ,
A satisfies PN and this is denoted by A |= PN . Define GF (k) =
max{|{A∩E : A ∈ F}| : E ⊆ [n], |E| = k}. The corresponding no-
tion of VC-dimension for a class F of sets is the the so-called trace
number [7] which is defined as tr(F) = max{m : GF (m) = 2m}.
Clearly, tr(F) = V C(DN (ℓ)) ≤ d.

The proof proceeds as in the proof of Sauer’s lemma [3] which
is based on the shifting method [7,10–12]. The idea is to transform
F into F0 which is an ideal family of sets E, i.e., if E ∈ F0 then
S ∈ F0 for every S ⊂ E, and such that |F| = |F0| ≤ |D̂N (ℓ)|.

Start by defining the operator Tx on F which removes an ele-
ment x ∈ [n] from every set A ∈ F provided that this does not
duplicate any existing set. It is defined as follows:

Tx(F) = {A \ {x} : A ∈ F} ∪ {A ∈ F : A \ {x} ∈ F}.

Consider now
F0 = T1(T2(· · · Tn(F) · · · ))

and denote the corresponding function class by D0. Clearly, |D0| =
|F0|.

Now, |F0| = |F| since the only time that the operator Tx

changes an element A into a different set A∗ = Tx(A) is when
A∗ does not already exist in the class so no additional element in
the new class can be created.

It is also clear that for all x ∈ [n], Tx(F0) = F0 since for each
E ∈ F0 there exists a G that differs from it on exactly one element
hence it is not possible to remove any element x ∈ [n] from all sets
without creating a duplicate. Applying this repeatedly implies that
F0 is an ideal. Furthermore, since for all A ∈ F , A |= PN , then
removing an element x from A which is equivalent to adding it
to Ac, still leaves A \ {x} |= PN . Hence for all E ∈ F0 we have
E |= PN .

Now, from Lemma 3 [7] we have GF0(k) ≤ GF (k), for all 1 ≤
k ≤ n. Hence, since tr(F) ≤ d then tr(F0) ≤ d and since F0 is
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an ideal then it follows that for all E ∈ F0, |E| ≤ d. Combined
with the fact that for all E ∈ F0, E |= PN then it follows that
the corresponding function class D0 satisfies the following: for all
δ ∈ D0, δ has at most d 1’s and there exist ℓ 2(N + 1)-runs of 0’s.
It follows that the class D0 = {1 − δ : δ ∈ D0}, whose cardinality
equals that of D0, has every δ ∈ D0 with at least n − d 1’s and at
least ℓ 2(N + 1)-runs of 1’s. From the above, |DN (ℓ)| = |DN (ℓ)| =

|F| = |F0| = |D0| = |D0| and from (6) we have |D0| ≤ |D̂N (ℓ)|.
This proves the statement of the lemma. ⊓⊔

In order to prove Theorem 2.1 it suffices to show that |D̂N (ℓ)| ≤

b
(ℓ,N)
d (n). We proceed to obtain a bound on |D̂N (ℓ)|.

3.1. Fixing the number of ones

For a sequence x(n) let #runsk(x
(n)) denote the number of k-

runs of consecutive 1’s in x(n). Fix n and d and consider the set of
sequences

D̂k,ℓ = {x(n) : #runsk(x
(n)) ≥ ℓ,#ones(x(n)) ≥ n − d}. (7)

We proceed to derive an upper bound on |D̂k,ℓ|. For any 1 ≤ α ≤
n − k + 1, denote by

Wα =
α+k−1
∏

i=α

Xi.

Clearly, Wα equals 1 if and only if there is a k-run of 1′s starting
at Xα. Denote by

D̂(r) = {x(n) : #ones(x(n)) = r}

and let P be a uniform probability law on D̂(r) with

P(x(n)) =
1
(

n
r

) , x(n) ∈ D̂(r). (8)

It is clear that under this law the random variables Wα, 1 ≤ α ≤
n − k + 1, are dependent. The expected value of Wα is

EWα = P(Wα = 1) = P (Xα = · · · = Xα+k−1 = 1) . (9)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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The probability in (9) equals the number of sequences in D̂(r)

which have Xα = · · · = Xα+k−1 = 1, divided by |D̂(r)|. There are
(

n−k
r−k

)

such sequences hence the probability is

P (Xα = · · · = Xα+k−1 = 1) =

(n−k
r−k

)

(n
r

) , k ≤ r

and the probability is zero otherwise. We have

(

n − k

r − k

)

/

(

n

r

)

=
(r)k
(n)k

≡ πk

where (a)k denotes a(a − 1) · · · (a − (k − 1)). The sum

#runsk(x
(n)) =

n−k+1
∑

α=1

Wα

may be approximated by a Poisson random variable Zλ with a
mean of (n − k + 1)πk. The Chen-Stein method [5] may be used
to upper bound the approximation error. Unfortunately, for our
use, the bound does not decrease fast enough with respect to the
run-length k.

3.2. Compound Poisson

A more accurate approximation of #runsk(x
(n)) is by a com-

pound Poisson random variable [6].

Definition 3.2. Let M be a Poisson random variable with mean
λ. Let Xi, 1 ≤ i ≤ M , be mutually independent random variables
defined on N, independent of M and identically distributed accord-
ing to a probability distribution µ. Then the sum

∑M
i=1 Xi is dis-

tributed according to a compound Poisson distribution CP (λ, µ).

The idea now is to represent #runsk(x
(n)) as a sum of a ran-

dom number of clumps where a clump starting at α has a con-
secutive run of at least k 1′s followed by a zero, for instance,
000111110101111 has a clump of length 6 starting at the 4th bit.

In order to pick out the start of a clump at α we define

Yα =

{

(1 − Xα−1)Wα, α = 2, . . . , n − k + 1,
Wα, α = 1,
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i.e., Yα indicates that a run of 1′s of length at least k starts at
α where there is no need to consider α > n − k + 1 since such a
clump cannot exist there. Define

R =

n−k+1
∑

α=1

Yα

which counts the number of such clumps. Its expected value is

ER =

(

(n − k)

(

n − k − 1

r − k

)

+

(

n − k

r − k

))

/

(

n

r

)

= πk (n − r + 1) . (10)

Since Yα are (dependent) Bernoulli with small P (Yα = 1) ≤ πk,
then with increasing n, if k and r increase at a rate such that
ER → λ then it easy to show using the Stein-Chen method [5]
that R may be approximated by a Poisson random variable with
mean λ. Next define

Yα,l =







(1 − Xα−1)Xα · · ·Xα+k+l−2(1 − Xα+k+l−1),
2 ≤ α ≤ n − k + 1

Xα · · ·Xα+k+l−2(1 − Xα+k+l−1), α = 1.

We may now express the number of k-runs as

#runsk(x
(n)) =

n−k+1
∑

α=1

∑

l≥1

lYα,l (11)

where the inner sum equals the size of a clump starting at α since
every clump has only one unique indicator Yα,l which equals 1 only
when l is the size of the clump at α.

3.3. Truncating the sum

We continue now to estimate the cardinality of the set D̂k,ℓ

defined in (7). Let

D̂
(r)
k,ℓ ≡ {x(n) : #runsk(x

(n)) ≥ ℓ,#ones(x(n)) = r} (12)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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where D̂
(r)
k,ℓ = ∅ if r < k + ℓ − 1. Then

|D̂k,ℓ| =

n
∑

r=n−d

|D̂
(r)
k,ℓ |.

Clearly, by (8), the cardinality of D̂
(r)
k,ℓ can be expressed as

|D̂
(r)
k,ℓ | =

(

n

r

)

P
(

#runsk(x
(n)) ≥ ℓ

)

. (13)

Let us simplify and limit the range of the clump size detected by
the indicators Yα,l to be 1 ≤ l ≤ n/2−k−1. The sum of (11) thus
becomes a restricted sum which we denote by

W ∗ =

n−k+1
∑

α=1

n/2−k−1
∑

l=1

lYα,l (14)

and, writing the dependence on x(n) explicitly, we have

W ∗(x(n)) = #runsk(x
(n)) −

n−k+1
∑

α=1

n−k
∑

l=n/2−k

lYα,l.

For two random variables X,Y defined on a discrete space Ω, the
total variation distance between the probability distribution of X
and Y is defined as

dist(X,Y ) = sup
A∈Ω

|PX(A) − PY (A)|

which for non-negative random variables X,Y with Ω = {0, 1, . . .}
amounts to dist(X,Y ) = 1

2

∑∞
j=0 |PX(j) − PY (j)| . Denote by B =

{x(n) ∈ D̂(r) : ∄ clump of size > n/2 − k − 1}. Conditioning on B
and on its complement, simple manipulation then yields

dist(W ∗(x(n)),#runsk(x
(n))) ≤ πn/2.

We may therefore continue and bound (13) from above as

|D̂
(r)
k,ℓ | ≤

(

n

r

)

(

P
(

W ∗(x(n)) ≥ ℓ
)

+ πn/2

)

. (15)
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3.4. Stein-Chen bound

Let N denote the positive integers. The following result is based
on Stein’s method for Poisson process approximation [6].

Lemma 3.3. Let Γ be an index set. Let Iγ,l be an indicator of a
clump of l events which occurs at γ ∈ Γ, l ≥ 1. Let B(γ, l) ⊂ Γ×N
be a set containing {γ} × N and let

b1 =
∑

(γ,l)∈Γ×N

∑

(β,j)∈B(γ,l)

EIγ,lEIβ,j

b2 =
∑

(γ,l)∈Γ×N

∑

(β, j) ∈ B(γ, l)
(β, j) 6= (γ, l)

E (Iγ,lIβ,j)

and

b3 =
∑

(γ,l)∈Γ×N

E
∣

∣E
(

Iγ,l − E
(

Iγ,l

∣

∣σ (Iβ,j; (β, j) 6∈ B(γ, l))
))
∣

∣

where σ (Iβ,j; (β, j) 6∈ B(γ, l)) denotes the σ-field of events gener-
ated by the random variables Iβ,j outside B(γ, l). Let W =
∑

γ∈Γ

∑

l≥1 lIγ,l and let M =
∑

γ∈Γ

∑

l≥1 Iγ,l be the total number
of clumps. Let λ ≡ EM and define the probability distribution µ on
N as µ(l) ≡ λ−1

∑

γ∈Γ EIγ,l, l ≥ 1. Then dist(W,Zλ,µ) ≤ b1+b2+b3

where Zλ,µ is a Compound Poisson random variable distributed as
CP (λ, µ).

We now use this lemma by letting Γ = {1, . . . , n− k + 1}, con-
sidering the variables Yα,l as the indicators Iγ,l, the total number
of clumps R as M and W ∗ as W . Thus from (10) we have

λ = ER = πk(n − r + 1). (16)
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For 1 ≤ l ≤ r − k + 1 we have

µ(l) =
1

πk(n − r + 1)

n−k+1
∑

α=1

EYα,l

=
(n)k

(r)k(n − r + 1)

(

(r)k+l

(n)k+l

n − r

r − k − l + 1

+
(r)k+l+1

(n)k+l+1

(n − k)(n − r)(n − r − 1)

(r − k − l + 1)(r − k − l)

)

=

(

(r − k)l−1

(n − k)l−1

)

n − r

(n − r + 1)(n − k − (l − 1))
(

1 +
(n − r − 1)(n − k)

n − (k + l)

)

. (17)

3.5. Approximation error

By its definition (14), the sum W ∗ may be approximated by
a compound Poisson random variable. Applying Lemma 3.3 we
obtain

P(W ∗(x(n)) ≥ ℓ) ≤ P(Zλ,µ ≥ ℓ) + ǫ(n, k, r) (18)

where Zλ,µ is a compound Poisson random variable with λ and µ
as in (16) and (17), respectively, and ǫ(n, k, r) = b1 + b2 + b3 as
in Lemma 3.3. Let us now explicitly express ǫ(n, k, r). Let L =
{1, 2, . . . , n/2 − k − 1} and

B(γ, l) = {(β, j) : j ∈ L, γ − k − j ≤ β ≤ γ + k + l}.

After some simple algebra we obtain:

b1 ≤ 2(n − k + 1)
p2(k−1)

q2

(

p

q
+ k +

1

2

)

,

b2 ≤ (n − k + 1)
p2(k−1)

q2
.

and

b3 ≤ (n − k + 1)
pk−1

q
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where p = (1 − q) = r/n. It follows that

P(W ∗(x(n)) ≥ ℓ) ≤ P(Zλ,µ ≥ ℓ) + ǫ(n, k, r)

≤ P(Zλ,µ ≥ ℓ)

+ (n − k + 1)
pk−1

q

(

pk−1

q

(

2

(

p

q
+ k +

1

2

)

+ 1

)

+ 1

)

.

(19)

Next, we upper bound the probability P(Zλ,µ ≥ ℓ).

3.6. Tail probability

We have the following bound on the tail probability of a com-
pound Poisson random variable:

Lemma 3.4. Let λ be as defined in (16), m > 0. Let M be a
Poisson random variable with mean λ. Let Yi, 1 ≤ i ≤ M , be i.i.d.
random variables taking positive integer values with a probability
distribution µ (defined in (17)). Then the tail probability of their
sum is

P

(

M
∑

i=1

Yi ≥ m

)

≤

(

r − k + 1

n − k

)m

eλ(γ−1)

where γ = 2(n − r)(n − k)(r − k + 1)/((n/2 + 1)(r − k)).

Proof sketch: First, we have

P

(

M
∑

i=1

Yi ≥ m

)

=
∞
∑

s=1

P

(

s
∑

i=1

Yi ≥ m
∣

∣

∣
M = s

)

P(M = s).

We then obtain an upper bound on the tail probability of

P

(

s
∑

i=1

Yi ≥ m
∣

∣

∣
M = s

)

, s ≥ 1

based on Chernoff’s method [9]. ⊓⊔
By Lemma 3.4 it follows that the tail probability for Zλ,µ in

(18) satisfies

P(Zλ,µ ≥ ℓ) ≤

(

r − k + 1

n − k

)ℓ

eλ(γ−1) (20)

with γ and λ as defined in Lemma 3.4.
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3.7. Combining

From (15), (19) and (20) it follows that as a bound on |D̂
(r)
k,ℓ |

(defined in (12)) we have

|D̂
(r)
k,ℓ | ≤

(

n

r

)

η(n, k, ℓ, r)

where η(n, k, ℓ, r) is defined in (5). Hence the set D̂k,ℓ defined in
(7) has cardinality

|D̂k,ℓ| ≤
n
∑

r=n−d

(

n

r

)

η(n, k, ℓ, r)

=

d
∑

i=0

(

n

i

)

η(n, k, ℓ, n − i).

The set D̂k,ℓ (defined in (7)) with k = 2(N + 1), is equivalent to

the class D̂N (ℓ) defined in (6). Thus

|D̂N (ℓ)| ≤
d
∑

i=0

(

n

i

)

η(n, 2(N + 1), ℓ, n − i) ≡ b
(ℓ,N)
d (n).

Together with (3) and Lemma 3.1 it follows that for any H with
VC∆(H) = d, the corresponding class (see (1)) satisfies

|HN (ℓ)| ≤ b
(ℓ,N)
d (n)

which completes the proof of Theorem 2.1.

4. Conclusion

The width of a Boolean function at x is defined as the degree
to which it is smooth, i.e., constant around x. The paper extends
the classical Sauer’s lemma to classes of Boolean functions which
are wide around a sample. An upper bound on the cardinality of
any such class is obtained by counting binary sequences with long-
runs using the Stein-Chen method of approximation. The result
indicates that the cardinality decreases at an exponential rate with
respect to the width parameter. The novelty of the paper is both in
the results and in the bounding technique where Boolean functions
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on [n] are represented both as finite binary sequences and as finite
sets in [n]. This enables to use techniques from probability analysis
and set-theory.

References

[1] N. Alon. On the density of sets of vectors. Discrete Math., 46:199–202,
1983.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-
sensitive dimensions, uniform convergence, and learnability. J. ACM,
44(4):616–631, 1997.

[3] M. Anthony and P. L. Bartlett. Neural Network Learning:Theoretical
Foundations. Cambridge University Press, 1999.

[4] M. Anthony, G. Brightwell, and C. Cooper. The Vapnik-Chervonenkis
dimension of a random graph. pages 616–631, 1995.

[5] R. Arratia, L. Goldstein, and L. Gordon. Poisson approximation and the
chen-stein method. Statistical Science, 5:403–434, 1990.

[6] A. D. Barbour and O. Chryssaphinou. Compound poisson approximation:
A user’s guide. The Annals of Applied Probability, 11(3):964–1002, 2001.

[7] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of
vectors, and combinatorial probability. Cambridge University Press, 1986.

[8] S. Boucheron, O. Bousquet, and G. Lugosi. Introduction to Statistical
Learning Theory, In , O. Bousquet, U.v. Luxburg, and G. Rsch (Editors),
pages 169–207. Springer, 2004.

[9] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Ann. Math. Stat., 23:493–507, 1952.

[10] P. Frankl. On the trace of finite sets. Journal of Combinatorial Theory(A),
34:41–45, 1983.

[11] P. Frankl. The shifting technique in extremal set theory. In C. Whitehead,
editor, Surveys in Combinatorics, pages 81–110. Cambridge University
Press, 1987.

[12] D. Haussler. Sphere packing numbers for subsets of the boolean n-cube
with bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial
Theory, Series A, 69:217–232, 1995.

[13] D. Haussler and P.M. Long. A generalization of Sauer’s lemma. Journal
of Combinatorial Theory (A), 71(2):219–240, 1995.

[14] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete
Computational Geometry, 2:127–151, 1987.
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EFFICIENT SEARCH FOR SYMMETRIC BOOLEAN
FUNCTIONS UNDER CONSTRAINTS ON WALSH

SPECTRA VALUES

Sumanta Sarkar1 and Subhamoy Maitra1

Abstract. In this paper we present an efficient search
strategy on symmetric Boolean functions having the Walsh
spectra values constrained in a range at certain points.
Exploiting the structure in Walsh spectra of a symmetric
Boolean function, we extend the concept of folded vectors of
a symmetric Boolean function introduced by von zur Gathen
and Roche in 1997. We consider separate folding strategy at
odd and even weight points and then use these folded vectors
to get the exact functions. In application towards enumerat-
ing symmetric correlation immune functions (either balanced
or unbalanced), we show that our method is more efficient
than what had been proposed by von zur Gathen and Roche.
We could experimentally check that there is no nonlinear
symmetric 3 (or more) resilient function up to 256 variables
and we could also enumerate all the nonlinear symmetric
unbalanced 3rd order correlation immune functions up to
128 variables.

1. Introduction

A standard model of stream cipher, called Nonlinear Com-
biner Model [7,22,23], combines LFSR sequences using a nonlinear
Boolean function. While using that Boolean function we have to
maintain some constraints, e.g., the function should be balanced to

1 Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, INDIA,
email: sumanta r@isical.ac.in, email: subho@isical.ac.in
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retain the pseudo-randomness of the generated key-stream. More-
over, the function should be highly nonlinear. A function with
low nonlinearity is weak with respect to linear approximation
attack [7]. Linear approximation means approximating the com-
bining function by a linear function. Also to reduce the vulnera-
bility to the correlation attack we have to choose the combining
function with correlation immunity of high order [22, 23]. High
algebraic degree is one of the necessary conditions for high linear
complexity [7,19]. So far there have been lots of research to achieve
Boolean functions having good cryptographic properties together.

The advantage of studying symmetric Boolean functions is that
the size of this class is much lesser as compared to the general
Boolean function. The total number of distinct n-variable sym-
metric Boolean functions is 2n+1, whereas that of general Boolean
functions is 22n

. Moreover, an n variable symmetric Boolean
function can be expressed by an (n + 1) length vector called its
simplified value vector which requires less amount of memory to
be stored. However, symmetric function with good cryptographic
properties have not yet been exhibited and its use in stream cipher
is still not encouraging. Even then, the study on symmetric func-
tions with certain cryptographic properties is continuing mainly
due to their nice combinatorial properties [1, 4–6, 9, 10, 12, 13, 17,
18, 20, 21, 24, 25] related to binomial coefficients and Krawtchouk
polynomials.

One very interesting question was raised in [4] on the existence
of nonlinear, resilient, symmetric Boolean functions. The existence
was later shown in [10] giving the example of nonlinear 1-resilient
symmetric functions on even number of input variables 4t2 − 2 as
well as 2-resilient nonlinear symmetric functions on odd number
of input variables 4t2 − 1 (t ≥ 2, integer). Later in [9] the problem
has been studied independently. They have experimented up to
128 variables with a nice search technique that we will generalize
here. Apart from the classes presented in [10], they have identified
another class of 2-resilient nonlinear symmetric functions for input
variables n = F2i+2F2i+3+1 where i ≥ 2 and i 6≡ 1 mod 3 and {Fi}
is the Fibonacci sequence (F0 = 0, F1 = 1 and Fi+2 = Fi + Fi+1,
i ≥ 0). Clearly this will provide 1-resilient nonlinear symmetric
functions on n−1 many input variables. In [25], it has been claimed
that new classes of nonlinear resilient symmetric functions have
been discovered. However, we find that these are nothing but the
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classes presented in [10]. The correspondence of the work [9] and
the resiliency of symmetric Boolean functions can be found in good
details in [3].

In this paper we extend the algorithm, that von zur Gathen and
Roche exploited to search balanced nonlinear symmetric Boolean
function, in order to find nonlinear symmetric Boolean functions
having Walsh spectra values in some given range at certain in-
put points. Since resiliency and nonlinearity directly depend on
Walsh spectra values, by choosing the range of the Walsh spectra
values properly, the algorithm can be exploited to search resilient
or correlation immune symmetric functions with some specific non-
linearity.

We start with some preliminary discussion in the next section.
Our contribution related to finding symmetric Boolean functions
with constrained Walsh spectra values are presented in Section 3.
In Section 4 we compare our results with the existing works in
terms of searching symmetric nonlinear correlation immune (bal-
anced and unbalanced) functions.

2. Preliminaries

Denote the set of n-variable Boolean functions f : {0, 1}n →
{0, 1} by Bn. A Boolean function is called symmetric [16] if its out-
put depends only on the Hamming weight (the number of 1’s in the
input vectors) of the input vectors. So a Boolean function f ∈ Bn is
symmetric if f(α) = f(β), where wt(α) = wt(β) for α, β ∈ {0, 1}n.
It is clear that one can represent an n-variable symmetric Boolean
function f(x1, . . . , xn) in a reduced form by n + 1 bits string ref

such that ref (i) = f(x1, . . . , xn) when wt(x1, . . . , xn) = i. The
notation ref is well known as the value vector of a symmetric
Boolean function.

Walsh transform is a very useful tool in analyzing Boolean func-
tions.

Definition 2.1. Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both
belonging to {0, 1}n and x · ω = x1ω1 + . . . + xnωn. Let f(x) be
a Boolean function on n variables. Then the Walsh transform of
f(x) is an integer valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n(−1)f(x)+x·ω .

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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A Boolean function f is balanced iff Wf (0) = 0. A Boolean
function f is m-th order correlation immune iff Wf (ω) = 0, for
all ω having 1 ≤ wt(ω) ≤ m. Further a Boolean function f

is m-resilient (balanced and m-th order correlation immune) iff
Wf (ω) = 0, for all ω having 0 ≤ wt(ω) ≤ m. The nonlinearity of

f is given by nl(f) = 2n−1 − 1
2 maxω∈{0,1}n |Wf (ω)|.

The Walsh spectra of symmetric Boolean functions have very nice
combinatorial properties related to Krawtchouk’s polynomial [21].
Krawtchouk’s polynomial [14,15] of degree i is given by Ki(x, n) =
∑i

j=0(−1)j
(

x
j

)(

n−x
i−j

)

. It is known that for a fixed ω, such that

wt(ω) = k,
∑

wt(x)=i(−1)ω·x = Ki(k, n). Thus it can be checked

that if f = (f0, . . . , fn) ∈ Bn is symmetric, then for wt(ω) = k,
Wf (ω) =

∑n
i=0(−1)fiKi(k, n). It is also known that for a sym-

metric function f ∈ Bn and α, β ∈ {0, 1}n, Wf (α) = Wf (β), if
wt(α) = wt(β). Thus it is enough to calculate the Walsh spectra
for the inputs of n + 1 different weights. Keeping this in mind,
given a symmetric Boolean function f ∈ Bn, we denote rwf (i) =
Wf (ω), such that wt(ω) = i. Thus rwf can be seen as a map-
ping from {0, . . . , n} to Z. It is clear that if we want to deter-
mine all the Walsh spectra values for f it is enough to multi-
ply ((−1)f0 , . . . , (−1)fn) with the matrix K(n), where the (i, k)-th
element is Ki(k, n). The matrix K(n) is referred as Krawtchouk
matrix [8].

Let us now revisit a few important existing results in this
area [14,15].

Proposition 2.2.

(1) K0(k, n) = 1,K1(k, n) = n − 2k,

(2) (i+1)Ki+1(k, n) = (n−2k)Ki(k, n)−(n−i+1)Ki−1,n(k, n),

(3) Ki(k, n) = (−1)kKn−i(k, n),
(4)

(

n
k

)

Ki(k, n) =
(

n
i

)

Kk(i, n),

(5) Ki(k, n) = (−1)iKi(n − k, n),
(6) (n − k)Ki(k + 1, n) = (n − 2i)Ki(k, n) − kKi(k − 1, n),
(7) (n− i+1)Ki(k, n+1) = (3n−2i−2k +1)Ki(k, n)−2(n−

k)Ki(k, n − 1).

For example, let us present the Krawtchouk matrix for n =
14, 15. For brevity, we write the top-left 1

4 -th part of the matrix,
the rest can be obtained using property 3 and 5 of Proposition 2.2.
The matrix for n = 14 is as follows.
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























1 1 1 1 1 1 1 1
14 12 10 8 6 4 2 0
91 65 43 25 11 1 −5 −7

364 208 100 32 −4 −16 −12 0
1001 429 121 −11 −39 −19 9 21
2002 572 22 −88 −38 20 30 0
3003 429 −165 −99 27 45 −5 −35
3432 0 −264 0 72 0 −40 0

























Here is the matrix for n = 15.
























1 1 1 1 1 1 1 1
15 13 11 9 7 5 3 1

105 77 53 33 17 5 −3 −7
455 273 143 57 7 −15 −17 −7

1365 637 221 21 −43 −35 −3 21
3003 1001 143 −99 −77 1 39 21
5005 1001 −143 −187 −11 65 25 −35
6435 429 −429 −99 99 45 −45 −35

























Detailed discussion on Krawtchouk Polynomial and Walsh Spectra
of a symmetric function can be found in [6]. We now present the
following known technical result that will be used thoroughly in
our technique.

Proposition 2.3. Let lin = (lin0, . . . , linn) = (0, 1, 0, 1, . . .) be

the n-variable linear symmetric function and add = (add0, . . .,

addn) be another n-variable symmetric function. Then the func-

tion f = (lin ⊕ add) follows the inequality, |Wf (w)| ≤ W where

wt(w) = k < n iff

|
n

∑

i=0

(−1)iaddiKi(k, n)| ≤
W

2
(1)

Proof. We have

|
n

∑

i=0

(−1)(lini⊕addi)Ki(k, n)| ≤ W

iff |
∑n

i=0{(−1)lini(1 − 2addi)}Ki(k, n)| ≤ W , (since (−1)a = 1 −

2a, for a ∈ {0, 1}) iff |
∑n

i=0 2(−1)liniaddiKi(k, n)| ≤ W (since
∑n

i=0(−1)liniKi(k, n) = 0 for k < n)

iff |
∑n

i=0(−1)iaddiKi(k, n)| ≤ W
2 . �
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Corollary 2.4. The function f = (lin ⊕ add) is balanced iff
∑n

i=0(−1)iaddiKi(0, n) = 0.

Proof. This follows easily by putting k = 0 and W = 0 in (1). �

3. Search for symmetric functions with constrained Walsh
spectra

We start this section with the idea presented in [9] towards
searching balanced symmetric Boolean functions on n variables.
Then we extend the idea towards the search of symmetric Boolean
functions where there are constraints at certain Walsh spectra
points.

3.1. Method proposed in [9]

In [9], von zur Gathen and Roche made an exhaustive search
for n-variable nonlinear balanced symmetric Boolean functions f

up to n = 128. Since the search was for n-variable nonlinear sym-
metric balanced functions f , they concentrated on searching n-
variable symmetric functions add = (add0, . . . , addn) such that
f = (lin ⊕ add) becomes balanced where lin = (lin0, . . . , linn) =
(0, 1, 0, 1, . . .) is the n variable linear symmetric Boolean function.
From Corollary 2.4, it is clear that the search for the balanced
symmetric functions in [9] was the search for the patterns add

satisfying
∑n

i=0(−1)iaddiKi(0, n) = 0, i.e.,

n
∑

i=0

(−1)iaddi

(

n

i

)

= 0. (2)

The trivial search space consisting of all the symmetric functions
would be 2n (not considering the complements). The concept of
searching over the folded symmetric functions [9] reduced the search

space down to ≈ 3
n
2 for the initial search. This is described below.

First consider the n odd case. Due to the fact that Ki(0, n) =
Kn−i(0, n) (by Proposition 2.2 property 3), Equation (2) can be

written as
∑

n−1

2

i=0 (−1)i(addi − addn−i)
(

n
i

)

= 0, i.e.,

n−1

2
∑

i=0

(−1)iMi

(

n

i

)

= 0 (3)
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where Mi = addi −addn−i. So in this case instead of searching the
full pattern add, initial search can be done over the folded pat-
terns M = (M0, . . . ,Mn−1

2

). Note that the options for each Mi are

{−1, 0, 1}. Hence the size of the search space over all folded pat-

terns is 3
n+1

2 . It is worth noting that 3
n+1

2 << 2n (asymptotically
smaller).

Similarly if we consider n even and addn
2

= 0, then equation

(2) can be written as

n
2
−1

∑

i=0

(−1)iPi

(

n

i

)

= 0 (4)

where Pi = addi +addn−i. Also in this case the search can be exe-
cuted over the folded patterns P = (P0, . . . , Pn

2
−1). Here options

for each Pi are {0, 1, 2}. That means the search space is 3
n
2 .

Remark 1. For n even, we generally consider addn
2

= 0 in search

and also addn
2

will not be considered for the folded vector. This

means when we construct f = (lin ⊕ add), then the value fn
2

will

be the same as linn
2
.

For even n and odd k, Kn
2
(k, n) = 0 and hence the value of

addn
2

does not participate in Walsh spectra computation. However,

for even n and even k, Kn
2
(k, n) 6= 0 in general. Thus we need to

study this case carefully. If addn
2

= 1, then the value of fn
2

will be

the complement of linn
2
. However, we do not consider this as the

patterns with addn
2

= 1 will be taken care of by the complement

patterns of the cases when addn
2

= 0. We only search for the pat-

terns which are complement free and then their complements will

provide the whole space of required functions.

After getting the folded pattern the actual symmetric function
can be obtained by unfolding the folded pattern. When we un-
fold pattern M , the number of symmetric functions obtained is 2u

where u = # of 0’s in M . Similarly, when unfolding the folded pat-
tern P , the number of symmetric functions obtained is 2t where t

is the number of 1’s in P . In [9, Algorithm 5.1], the search was for
all folded patterns for odd n, satisfying 3.

The search in [9] has been made more efficient by an interesting
pruning idea. The search is initiated from Mn−1

2

. At the j-th step

down one needs to check whether
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∑

n−1

2

i=j (−1)iMi

(

n
i

)

= −
[

∑j−1
i=0 (−1)iMi

(

n
i

)

]

,

i.e, |
∑

n−1

2

i=j (−1)iMi

(

n
i

)

| ≤
∑j−1

i=0 |(−1)iMi

(

n
i

)

|, i.e,

|

n−1

2
∑

i=j

(−1)iMi

(

n

i

)

| ≤

j−1
∑

i=0

(

n

i

)

, (5)

since the maximum value that |Mi| can take is 1. So if (5) is not
satisfied then, the sub pattern (Mj , . . . ,Mn−1

2

) can not be a part

of the folded pattern (M0, . . . ,Mn−1

2

) satisfying (3), in which case

the remaining 3j possibilities (M0, . . . ,Mj−1) can be pruned from
the search tree. The algorithm for even n is quite similar, there
the necessary condition for the sub pattern (Pj , . . . , Pn

2
−1) to be

part of a pattern (P0, . . . , Pn
2
−1) satisfying 4 is

|

n
2
−1

∑

i=j

(−1)iPi

(

n

i

)

| ≤ 2

j−1
∑

i=o

(

n

i

)

. (6)

For this search, this idea of pruning worked efficiently. By empir-
ical evidence in [9], it was claimed that the number of operations

required is of the order 2
n
4 which is more efficient than 3

n
2 .

In each case after getting the required folded patterns, they are
unfolded and XORed with the linear function to yield the balanced
function. Note that we only count the functions in complement
free manner, i.e., if we count a symmetric function then we will
not count its complement.

During the search (with pruning), one can keep track with the
number of steps it requires to yield the folded patterns (some
steps will not really produce a feasible folded pattern as they may
die without reaching a complete folded pattern). One can set a
COUNTER initialized to 0, and each time during the search the
counter is increased by 1 as one component of the folded vector
chooses one option from 3

n
2 possible options. Thus the COUNTER

value at the end of the search will reveal the search effort given
for a particular n.

Example 3.1. As an example, for n = 34, we can find following
folded vectors P for the add patterns: 0 0 0 0 0 0 2 2 0 1 2 1 1 2
1 0 0 (four 1’s),
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0 0 0 0 0 0 2 2 0 1 0 2 2 2 1 0 0 (two 1’s), 0 0 0 0 0 0 2 2 0 1 2 1 1
0 1 1 0 (five 1’s),
0 0 0 0 0 0 2 2 0 1 0 2 2 0 1 1 0 (three 1’s), 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 1 0 (two 1’s).

For each of the patterns we can get 2t many unfolded vectors
where t = #of1′s in P . Thus we can get (24+22+25+23+22) = 64
many add patterns that when XORed with lin, will provide the
total class of nonlinear balanced symmetric functions for n = 34.
The total search required to find the folded patterns is COUNTER
= 4221 ≈ 212.

For n = 35, as it is odd we always get the trivial folded pattern
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
that provides 217 many (complement free) nonlinear balanced sym-
metric functions. In addition to that, we get two more folded pat-
terns: 1 1 1 1 1 1 1 1 1 1 1 -1 0 1 -1 -1 0 0 (three 0’s),
1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 0 0 (two 0’s).

Thus we will get 23 + 22 = 12 more such functions. The total
search required to find the folded patterns is COUNTER = 886 ≈
210. Once again note that we enumerate the symmetric functions
in complement free manner.

3.2. Searching nonlinear symmetric functions with constrained

value at a single point in the Walsh spectra

The idea of [9] can be extended beyond finding balanced func-
tion. Suppose we want to search some nonlinear symmetric func-
tion on n variable with some constraint at a point ω with wt(ω) =
k that its Walsh spectra value lies in the range [−W,W ], W > 0.
Thus we concentrate on searching nonlinear symmetric functions
add such that f = (lin ⊕ add) and which satisfies inequality (1).

Now instead of searching for the full pattern add, we can search
on the folded pattern of add to reduce the search space.
CASE 1a. n odd, k even.

By Proposition 2.2 property (3), Ki(k, n) = Kn−i(k, n). Thus,
|
∑n

i=0(−1)iaddiKi(k, n)| ≤ W
2 is equivalent to

|

n−1

2
∑

i=0

(−1)iMiKi(k, n)| ≤
W

2
, (7)

where Mi = addi − addn−i for i = 0 to n−1
2 . For each addi we

had options 0 or 1. So the size of search space in this case is
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2n. However, for each Mi we have three options {−1, 0, 1}, in

which case the search space becomes 3
n+1

2 . It is worth noting that

3
n+1

2 << 2n.
CASE 1b. n odd, k odd.

By Proposition 2.2(3), Ki(k, n) = −Kn−i(k, n). Therefore,
|
∑n

i=0(−1)iaddiKi(k, n)| ≤ W
2 is equivalent to

|

n−1

2
∑

i=0

(−1)iPiKi(k, n)| ≤
W

2
, (8)

where Pi = addi + addn−i for i = 0 to n−1
2 . Here the options for

each Pi are {0, 1, 2} and the search space is also 3
n+1

2 .
CASE 2a. n even, k even.

Consider addn
2

= 0. By Proposition 2.2 property 3, Ki(k, n) =

Kn−i(k, n). Therefore, |
∑n

i=0(−1)iaddiKi(k, n)| ≤ W
2 is equiva-

lent to |
∑

n
2
−1

i=0 (−1)iPiKi(k, n)| ≤ W
2 , where Pi = (addi + addn−i)

for i = 0 to n
2 − 1.

CASE 2b. n even, k odd.
Consider addn

2
= 0.

By Proposition 2.2(3), Ki(k, n) = −Kn−i(k, n).
Therefore, |

∑n
i=0(−1)iaddiKi(k, n)| ≤ W

2 , is equivalent to

|
∑

n
2
−1

i=0 (−1)iMiKi(k, n)| ≤ W
2 , where Mi = (addi −addn−i) for

i = 0 to n
2 − 1. In these situations also the search space is 3

n
2 . We

consider the complement free cases as mentioned in Remark 1.
After getting the folded patterns of add, the exact functions

can be obtained by unfolding. Now Mi = 1 means addi = 1 and
addn−i = 0. Similarly, addi = 0 and addn−i = 1, when Mi = −1.
However, for Mi = 0 we have two choices addi = 0, addn−i = 0
and addi = 1, addn−i = 1. Thus, while unfolding a pattern M

having 0 at m many places, we can obtain 2m many symmetric
patterns.

Again only when Pi = 1 we have 2 choices, i.e., addi = 1,
addn−i = 0 and addi = 0, addn−i = 1. Otherwise we have a single
choice. That means from the folded pattern P having m many 1’s
we can obtain 2m many symmetric patterns.

So far we have seen the initial search space being reduced to
3

n
2 . Slightly modified idea of pruning introduced in [9] can be used



SEARCH FOR SYMMETRIC FUNCTIONS 39

to prune the folded patterns which do not correspond to any of
the symmetric functions satisfying the inequality (2).

Let us discuss this idea for odd n. For k even, we have to search
for the folded pattern M = (M0, . . . .Mn−1

2

) satisfying (3), i.e.,

|
∑

n−1

2

i=0 (−1)iMiKi(k, n)| ≤ W
2 , i.e.,

|
∑

n−1

2

i=j (−1)iMiKi(k, n)| − |
∑j−1

i=0 (−1)iMiKi(k, n)| ≤ W
2 , i.e.,

|
∑

n−1

2

i=j (−1)iMiKi(k, n)| ≤ W
2 + |

∑j−1
i=0 (−1)iMiKi(k, n)|, i.e.,

|
∑

n−1

2

i=j (−1)iMiKi(k, n)| ≤ W
2 +

∑j−1
i=0 |(−1)iMiKi(k, n)|, i.e.,

|

n−1

2
∑

i=j

(−1)iMiKi(k, n)| ≤
W

2
+

j−1
∑

i=0

|Ki(k, n)|, (9)

since the maximum value that |Mi| can take is 1. Clearly, if the sub
pattern Mj , . . . ,Mn−1

2

does not satisfy (9), then it cannot be in any

of the folded pattern M0, . . . ,Mn−1

2

. So at once we can prune all

the 3j patterns from the search space which contain Mj, . . . ,Mn−1

2

as a sub pattern.
For k odd, we have to search for the pattern P = (P0, . . . , Pn−1

2

)

satisfying (4). Necessary condition for sub pattern Pj , . . . , Pn−1

2

to

be a part of these pattern P would be

|

n−1

2
∑

i=j

(−1)iPiKi(k, n)| ≤
W

2
+ 2

j−1
∑

i=0

|Ki(k, n)|. (10)

So the same idea of pruning can be applied. The even variable case
is very much similar.

Example 3.2. Here we consider n = 35 and W = 0.
First for k = 0, we get the folded patterns

1 1 1 1 1 1 1 1 1 1 1 -1 0 1 -1 -1 0 0, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, and COUNTER = 886 < 210 which
provides the search effort.

For k = 1 we get the folded patterns
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 2 1 1 2 1 0 0 0 0,

0 0 0 0 0 0 0 2 0 0 1 1 0 1 1 0 0 0, 0 0 0 0 0 0 0 2 0 2 2 2 2 2 1 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0, 0 0 0 0 0 0 0 0 0 2 1 1 2 1 1 1 0 0,

0 0 0 0 0 0 0 2 0 0 1 1 0 1 2 1 0 0, 0 0 0 0 0 0 0 2 0 2 2 2 2 2 2 1 0 0,
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0, 0 0 0 0 0 0 0 0 0 2 1 1 2 1 2 2 0 0,

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 2 0, 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 2 2 0,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1, 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 1 1,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, and COUNTER = 6915 < 213.
For k = 2 we get the folded patterns

1 0 1 0 1 -1 -1 -1 0 -1 0 0 -1 -1 1 0 -1 -1, 1 -1 1 -1 1 -1 1 1 0 -1 0 0 0 0 1 0 -1 -1,

1 -1 1 -1 1 -1 1 0 -1 0 1 -1 0 1 1 0 -1 -1, 1 0 1 0 1 -1 -1 -1 0 -1 0 0 -1 -1 0 1 -1 -1,

1 -1 1 -1 1 -1 1 1 0 -1 0 0 0 0 0 1 -1 -1, 1 -1 1 -1 1 -1 1 0 -1 0 1 -1 0 1 0 1 -1 -1,

-1 1 -1 1 -1 1 -1 0 1 0 -1 1 0 -1 1 1 -1 -1, -1 1 -1 1 -1 1 -1 -1 0 1 0 0 0 0 1 1 -1 -1,

-1 0 -1 0 -1 1 1 1 0 1 0 0 1 1 1 1 -1 -1, 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1,

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0 0 1 -1, 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1,

1 1 0 0 -1 0 0 -1 1 1 1 0 0 1 -1 -1 -1 0, 1 1 0 0 -1 0 0 1 0 0 -1 0 0 1 1 -1 -1 0,

1 1 0 0 -1 0 0 1 0 0 -1 0 0 1 0 0 -1 0, -1 -1 0 0 1 0 0 1 -1 0 0 1 -1 0 1 0 -1 0,

1 1 0 0 -1 0 0 1 0 0 -1 0 0 1 -1 1 -1 0, -1 -1 0 0 1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0,

0 0 0 0 0 0 0 1 1 -1 -1 1 0 -1 1 -1 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0,

0 0 0 0 0 0 0 -1 -1 1 1 -1 0 1 1 -1 0 0, 0 0 0 0 0 0 0 1 1 -1 -1 1 0 -1 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, and COUNTER = 8314 < 214.

Following Example 3.2, one can check that the values of the
COUNTER (i.e., search effort) differs according to different val-
ues of k, which is clear as the efficiency of pruning depends on
the values we are considering and that is different for different
columns. It will be clearer if one looks at the Krawtchouk matrix.
The distribution of the numbers in the column k = 0 is nicely
set, the bigger numbers are in the middle of that column. As we
are considering the folded vectors, those bigger numbers will be
associated with the values at the end of the folded vectors. That
is why starting the search method by growing the folded vector
from the end provides a good chance to prune early on. Pruning in
the other columns (say k = 1, 2) is not as good as the case k = 0.
However, note that the pruning is always very effective as in this
case the exhaustive search space for folded patterns is as large as
318 > 228.

Example 3.3. Now we present a practical example for large n =
101, k = 2 and W = 0. We find four folded patterns as follows:
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1,
-1 -1 0 0 1 0 0 -1 0 0 1 0 0 -1 0 0 1 0 0 -1 0 0 1 0 0 -1 0 0 1 0 0 -1
0 0 1 0 0 -1 0 0 1 0 0 -1 0 0 1 0 0 -1 0,
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0,
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
The search effort is COUNTER = 431044816 < 229 which is much
less than 351(> 280), which highlights the advantage of pruning.
The exact time taken by a C program in Redhat Linux 8.0 operat-
ing system is 22 minutes and 40 seconds on a 2.8 Ghz PC having
1 GB RAM.

3.3. Searching nonlinear symmetric function with constrained

Walsh spectra values at more than one points

From the earlier discussions we found that we need to concen-
trate on the cases n even or odd and k even or odd, i.e., four cases.
Since the treatment is more or less similar for all the cases, let us
now discuss the case when n is odd and k is even.

Suppose we are searching for a nonlinear symmetric function
f = (lin+add) such that Wf (ωj) ∈ [−Wj,Wj ], where wt(ωj) = kj ,
1 ≤ j ≤ s and all the kj ’s are even. By Proposition 2.3, it is enough
to search the symmetric function add such that

|

n
∑

i=0

(−1)iaddiKi(kj , n)| ≤
Wj

2
. (11)

We search for the folded pattern M = (M0, . . . ,Mn−1

2

) such that

|

n−1

2
∑

i=0

(−1)iMiKi(kj , n)| ≤
Wj

2
(12)

for all j such that 1 ≤ j ≤ s. Note that the search space is 3
n+1

2 . We
can also apply the pruning as described in the previous subsection
to expedite the search process.

Example 3.4. As an example, we consider n = 101, k1 = 2,
k2 = 4,W = 0. We get the patterns:
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

The search effort is COUNTER = 5076601 < 223 which takes
17 seconds on the same platform as explained in Example 3.3.
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The folded patterns that we find from this search need to be
unfolded to get the exact function and there may be many options
corresponding to a folded pattern. This is to note that for odd
n, the symmetric functions generated from all zero folded pattern
will have Walsh spectra values zero at even weight input points.

3.4. Searching nonlinear symmetric function with constrained

Walsh spectra values at both odd and even weight points

Suppose we are searching for a nonlinear symmetric function on
n (odd) variables f = (lin + add) such that Wf (ωj) ∈ [−Wj,Wj ],
where wt(ωj) = kj , 1 ≤ j ≤ s. Let ke1

, . . . , kel
be even and

ko1
, . . . , kop be odd (l + p = s). Then at even weights ke1

, . . . , kel
,

we search for the folded pattern M = (M0, . . . ,Mn−1

2

) such that

|

n−1

2
∑

i=0

(−1)iMiKi(kej
, n)| ≤

Wej

2
, (13)

for all j, 1 ≤ j ≤ l. Similarly at the odd weights ko1
, . . . , kop we

search for the folded pattern P such that

|

n−1

2
∑

i=0

(−1)iPiKi(koj
, n)| ≤

Woj

2
(14)

for all j, 1 ≤ j ≤ p. So our desired symmetric functions satisfy
both (13) and (14) in two different kind of foldings.

The most interesting issue here is that one can find the exact
functions add not by unfolding but by solving the patterns M =
(M0, . . . ,Mn−1

2

) and P = (P0, . . . , Pn−1

2

). For this we present the

following technical result.

Proposition 3.5. Let a0, a1 ∈ {0, 1}. The equations a0 + a1 = x,

a0 − a1 = y are solvable iff (x + y) is 0 mod 2.

Proof. Solutions of these two equations are a0 = x+y
2 and a1 =

x−y
2 . Now a0 and a1 belong to {0, 1}, iff (x + y) and (x − y) are

either 0 or 2. �

Based on Proposition 3.5, we consider the folded patterns M =
(M0, . . . ,Mn−1

2

) and P = (P0, . . . , Pn−1

2

) and directly solve them

(when possible) to get the exact function add.
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Here also the same idea of pruning can be applied. Following the
same argument we can say that if the sub pattern Mr, . . . ,Mn−1

2

does not satisfy

|

n−1

2
∑

i=r

(−1)iMiKi(kej
, n)| ≤

Wej

2
+

r−1
∑

i=0

|Ki(kej
, n)|, (15)

for 1 ≤ j ≤ l, then it cannot be a part of any M = M0, . . . ,Mn−1

2

which satisfies (13). So all 3r patterns containing Mr, . . . ,Mn−1

2

as a sub pattern can be pruned from the search tree. Similarly if
the sub pattern Pr, . . . , Pn−1

2

does not satisfy

|

n−1

2
∑

i=r

(−1)iPiKi(koj
, n)| ≤

Woj

2
+ 2

r−1
∑

i=0

|Ki(koj
, n)|, (16)

for 1 ≤ j ≤ l, then it cannot be a part of any P = P0, . . . , Pn−1

2

which satisfies (14). So all the 3r patterns containing Pr, . . . , Pn−1

2

as a sub pattern can be pruned from the search tree.

Example 3.6. We now apply our strategy to search for balanced

nonlinear symmetric functions on 101 variables having some
constraints on the Walsh spectra values. The constraints are at
the input points of weights 1, 2, 3, 4 in the ranges [−220, 220],
[−26, 26], [−220, 220], [−29, 29] respectively. We could find only all
zero folded pattern M for the constraints on even weight points.
The search effort is COUNTER = 60220 < 216. For the con-
straint on odd weights, we get 202 folded patterns of the type P .
The required search effort is COUNTER = 4591342 < 223. Then
after solving the patterns of the type M and P we could find
11 nonlinear symmetric functions. While solving these patterns
we require 2 × 202 × 1 × 51 < 215 more addition/subtraction
operations. As a whole it requires < 224 steps to produce the
required functions.

Furthermore these functions can be tested for their nonlinearity.
Varying the range of the Walsh values we can find more functions
and finding functions with good nonlinearity among them can be
an interesting problem.
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4. Application of our scheme towards finding nonlinear
correlation immune (balanced or unbalanced) symmet-
ric functions

In [4], it was conjectured that nonlinear, resilient, symmetric
Boolean functions do not exist. This conjecture was disproved
in [10]. In [10], construction of nonlinear 1-resilient symmetric
functions on an even number of input variables 4t2 − 2 as well
as 2-resilient nonlinear symmetric functions on an odd number of
input variables 4t2 − 1 (t ≥ 2, integer) have been provided.

When n is even, the 1-resilient nonlinear symmetric function is
the symmetric linear function complemented at the places k, k +
1, n − k, n − k + 1 where k = 2t2 − t − 1, for t ≥ 2 in the value
vector and rest of the positions are kept unchanged. The smallest
member of this class is available for n = 14 when k = 5 and the
value vector is (0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0). When n is odd,
the 2 resilient nonlinear symmetric function is given by the sym-
metric linear function complemented at the places k, k + 1, n −
k − 1, n − k where k = 2t2 − t − 1 for t ≥ 2 in the value vector
and rest of the places are kept unchanged. The smallest mem-
ber of this class is for n = 15 when k = 5 and the value vector
(0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1).

Recently, in [25], it has been claimed that new classes of non-
linear resilient symmetric functions have been discovered. How-
ever, we find that these are nothing but the classes presented
in [10]. In [25], the same class as in [10] has been provided. In
fact there was a minor typographical error in [10], which has been
clearly written in [11, Pages 144–146]. Furthermore, in [25], a class
(claimed to be new) of 1-resilient function has been presented. This
1-resilient nonlinear symmetric function is the symmetric linear
function complemented at the places k − 1, k, n − k − 1, n − k

where k = 2t2 − t− 1, for t ≥ 2 in the value vector and the rest of
the positions remains unchanged. If one considers the value vector
of the 2-resilient functions given in [10] for n odd and then by
removing the first element considers the value vector of (n − 1)-
variable (even) function, then the nonlinear, symmetric, 1-resilient
function available in [25] is immediately available.

In [9] the problem has been studied independently. They have
experimented up to 128 variables. Apart from the classes presented
in [10], they have identified another class of 2-resilient nonlinear
symmetric functions for input variables n = F2i+2F2i+3 + 1 where
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i ≥ 2 and i 6≡ 1 mod 3 and {Fi} is the Fibonacci sequence (F0 = 0,
F1 = 1 and Fi+2 = Fi + Fi+1, i ≥ 0). Clearly this will provide 1-
resilient nonlinear symmetric functions on n − 1 input variables.
The first minimum n in this series is 105.

4.1. Improvement in complexity over [9] in finding 2-resilient

functions

In [9], first the folded patterns corresponding to add = (add0,
. . . , addn) have been considered such that

∑n
i=0(−1)iaddi

(

n
i

)

=
0. That is, from such a pattern add (neither all zero nor all 1)
one can get a balanced nonlinear symmetric function f = (lin ⊕
add) where lin = (lin0, . . . , linn) = (0, 1, 0, 1, . . .) is the n-variable
symmetric linear function. In [9] each nonlinear symmetric value
vector add = (add0, . . . , addn) has been studied to calculate a
term called “gap” [9, Theorem 2.2]. One can check that if gap ≥
m + 1, (m ≥ 1) then f = (lin ⊕ add) is a nonlinear symmetric
m-resilient function. One should also refer to [2, Proposition 1] for
the relationship between degree in Numerical Normal Form (NNF)
and the order of resiliency.

To understand the actual complexity, we consider the case for
n = 105 where we like to search for a 2-resilient function. Here the
trivial all zero folded pattern for add is found. The search effort
for this is COUNTER = 26926322. Note that 26926322 < 225.
However, this is not the dominant term in the complexity. One
needs to unfold this which gives 253 many unfolded choices for
add and each of them need to be studied to calculate gap.

Now, we would like to compare our strategy in finding 2-resilient
nonlinear symmetric functions on n (odd) variables. As explained
in Subsection 3.4, we find folded patterns M for ke1

= 0 and
ke2

= 2 with We1
= 0 and We2

= 0 and folded patterns P for
ko1

= 1 with Wo1
= 0 and then solve them according to Propo-

sition 3.5 to get such a symmetric function, if it exists at all. For
n = 105 finding M patterns for ke1

= 0 and ke2
= 2 with We1

= 0
and We2

= 0 requires the search effort COUNTER = 202757 < 218

steps. To find P for ko1
= 1 with Wo1

= 0 the search effort re-
quired is COUNTER = 392151639 < 229. We could find only the
all zero folded M pattern and 8 folded P patterns. Then solving
them we find one 2-resilient nonlinear symmetric function. The
solution step requires 8× 53× 2 < 210 addition/subtraction steps.
Thus the total search effort is < 230 which is much better than
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analysing 253 many unfolded choices to calculate gap as explained
in [9].

4.2. Nonexistence of m-resilient (m ≥ 3) Nonlinear Symmetric

Function till 256 input variables

By application of our strategy, we can attempt a search for
nonlinear 3-resilient (or more) symmetric functions. From [9], it
is found that there is no nonlinear 3-resilient symmetric functions
up to n = 128.

We now extend this till n = 256. This is only possible due to
some clever approach that we present now. Note that it will be
computationally infeasible with current hardware if one likes to
use the approach of [9].

The search can be executed by putting Wj = 0 for j = 0, . . . , 3
in the inequality (11). For n even, P and M are the types of
folded pattern which we find for k even and odd respectively. After
solving patterns of the type P and M , we can get the 3-resilient
nonlinear symmetric function on n variables, if it exists at all. It
should be noted that if there is no m-resilient nonlinear symmetric
function on n (even) variables, there cannot be any (m+1)-resilient
nonlinear symmetric function on n + 1 (odd) variables.

Thus we searched only over even variable (n ≤ 256) symmetric
functions for ke1

= 0 and ke2
= 2 with We1

= 0 and We2
= 0 and

found only all zero folded patterns for add. This implies that there
is no nonlinear 2-resilient symmetric function for even n ≤ 256.
Thus there is no nonlinear 3-resilient symmetric function for n ≤
256 (both even and odd).

Note that it has been mentioned in [9, Theorem 2.6] that there
is no nonlinear symmetric balanced functions for n (even) variables
when n is one less than some odd prime number. Thus in the above
search we could easily exclude certain cases without any search.

To give an idea of the computational effort, we present the case
for n = 202, for ke1

= 0 and ke2
= 2 with We1

= 0 and We2
= 0.

The search effort is COUNTER = 2791808208 < 232. The time
taken by a C program in Redhat Linux 8.0 operating system is 6
hours 12 minutes and 39 seconds on a 2.4 Ghz PC having 1 GB
RAM.
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4.3. Finding unbalanced 3-rd order Correlation Immune Nonlin-

ear Symmetric Functions till 128 input variables

The question of discovering 3-rd order unbalanced correlation
immune nonlinear symmetric Boolean functions has been raised
in [20] and this has been studied only up to 30 variables in that
paper. Here we use our technique to extend this till 128 variables.
We first search for each n ≤ 128 with the constraint W = 0 and
k = 1, 3. Then we search for patterns having W = 0 and k = 2.
The patterns obtained from these two searches are then solved to
find 3-CI nonlinear symmetric functions. We mention here only
the number of 3-CI functions starting from 10 variables, by the
pair (n, c) where n means the number of variables and c means
the number of 3-CI functions (up to complementation). The list
is as follows: (10, 1), (14, 1), (15, 1), (16, 4), (20, 2), (21, 2), (22,
2), (24, 1), (26, 3), (27, 1), (28, 1), (32, 3), (33, 2), (34, 2), (35, 1),
(36, 2), (38, 1), (39, 2), (40, 3), (44, 4), (45, 1), (48, 1), (49, 1),
(50, 2), (51, 1), (52, 1), (56, 3), (57, 1), (58, 1), (62, 1), (63, 3),
(64, 6), (68, 1), (69, 1), (70, 1), (74, 1), (75, 2), (76, 1), (80, 4),
(81, 3), (82, 2), (86, 1), (87, 1), (88, 1), (92, 1), (93, 1), (94, 1),
(96, 1), (98, 1), (99, 2), (100, 4), (104, 1), (105, 1), (106, 1), (110,
1), (111, 1), (116, 1), (117, 1), (118, 1), (120, 2), (121, 1), (122, 1),
(123, 1), (124, 1), (128, 1).

We have also checked that none of these functions are 4-CI. So
there is no 4-CI symmetric functions till 128 variables.

5. Conclusion

In this paper we make a systematic study in searching nonlin-
ear symmetric functions with constraints on Walsh spectra values.
We concentrate on the folded structure of the value vectors of
symmetric functions that have been exploited in [9] and explore it
further using the relationship between Walsh spectra of a symmet-
ric Boolean function and Krawtchouk polynomial. Experimental
results reveal the advantage of our technique over the method pre-
sented in [9]. The experiments are continuing and we will come up
with more results in full version of this paper.

The authors like to acknowledge the anonymous reviewers for their
comments that substantially improved the technical and editorial qual-
ity of the paper. The first author, Sumanta Sarkar, likes to acknowledge
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2003, published by Birkhäuser Verlag, K. Feng, H. Niederreiter and
C. Xing Eds., pp. 153–168, 2004.

[13] N. Jefferies. Sporadic partitions of binomial coefficients Electronics Let-
ters 27 (1991), 1334–1336.

[14] I. Krasikov. On Integral Zeros of Krawtchouk Polynomials. Journal of
Combinatorial Theory, Series A, 74:71–99, 1996.

[15] F. J. MacWillams and N. J. A. Sloane. The Theory of Error Correcting

Codes. North Holland, 1977.



SEARCH FOR SYMMETRIC FUNCTIONS 49

[16] S. Maitra and P. Sarkar. Characterization of symmetric bent functions –
An elementary proof. Journal of Combinatorial Mathematics and Com-

binatorial Computing, Volume 43, Pages 227–230, 2002.
[17] S. Maitra and P. Sarkar. Maximum Nonlinearity of Symmetric Boolean

Functions on Odd Number of Variables. IEEE Transactions on Informa-
tion Theory, 48(9):2626–2630, September 2002.

[18] C. J. Mitchell. Enumerating Boolean functions of cryptographic signifi-
cance. Journal of Cryptology, 2(3):155–170, 1990.

[19] R. A. Rueppel and O. J. Staffelbach. Products of Linear Recurring Se-

quences with Maximum Complexity. IEEE transaction on Information
Theory, IT-33:124-131, January 1987.

[20] P. Sarkar and S. Maitra. Balancedness and Correlation Immu-
nity of Symmetric Boolean Functions. In R. C. Bose Cente-

nary Symposium on Discrete Mathematics and Applications,
Electronic Notes in Discrete Mathematics, Electronics Notes
in Discrete Mathematics, volume 15, pp 178-183, Elsevier,
December 2002. Available at: http://www1.elsevier.com/gej-
ng/31/29/24/75/23/show/Products/notes/index.htt.

[21] P. Savicky. On the Bent Boolean Functions that are Symmetric. Euro-
pean Journal of Combinatorics, 15:407–410, 1994.

[22] T. Siegenthaler. Correlation-Immunity of Nonlinear Combining Func-

tions for Cryptographic Applications. IEEE Transactions on Information
theory,IT-30(5):776-780, September 1984.

[23] T. Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext

Only. IEEE Transaction on Computers, C-34(1):81-85, January 1985.
[24] Y. X. Yang and B. Guo. Further enumerating Boolean functions of cryp-

tographic significance. Journal of Cryptology, 8(3):115–122, 1995.
[25] C. K. Wu and E. Dawson. Correlation Immunity and Resiliency of Sym-

metric Boolean Functions. Theoretical Computer Science 312 (2004),pp.
321–335.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06





Boolean Functions: Cryptography and Applications BFCA’06

Fonctions Booléennes : Cryptographie & Applications

NONLINEARITY OF SOME BOOLEAN FUNCTIONS

Eric Férard1 and François Rodier2

Abstract. We study the nonlinearity of functions defined
on F2m of the form f : x → Tr G(x) when G is a polynomial
of degree 7.

1. Introduction

The nonlinearity of a Boolean function f : Fm
2 −→ F2 is the

distance from f to the set of affine functions with m variables
(see § 2.2). It is an important concept. It occurs in cryptography
(cf. [2,3,6]) to construct strong cryptosystems (symmetric ciphers),
and in coding theory with the old problem of the covering radius
of the first order Reed-Muller codes (cf. [4, 12]).

The nonlinearity is bounded above by 2m−1 − 2m/2−1. This
bound is reached by bent functions (cf. the book of MacWillams
and Sloane [10] and other references therein) which exist only if
the number of variables m of the Boolean functions is even. For
security reasons in cryptography, and also because Boolean func-
tions need also to have other properties such as balancedness or
high algebraic degree, it is important to have the possibility of
choosing among many Boolean functions, not only bent functions,
but also functions which are close to be bent in the sense that their
nonlinearity is close to the nonlinearity of bent functions. For m

odd, it would be particularly interesting to find functions with
nonlinearity larger than the one of quadratic Boolean functions

1 Université de Polynésie française, Tahiti; email: ferard@upf.pf
2 Institut de Mathématiques de Luminy – C.N.R.S. 163 avenue de Luminy,
Case 907, Marseille Cedex 9, France; email: rodier@iml.univ-mrs.fr
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(called almost optimal in [1]). This has been done in the work of
Patterson and Wiedemann [12] and also of Langevin-Zanotti [8].

Let q = 2m and k = F2m assimilated as a vector space to Fm
2 .

Here, we want to study functions of the form Tr G(x), where G is
a polynomial and Tr the trace of F2m over F2.

For m even, many people got interested in finding bent func-
tions of this form. To only mention the case of monomials, one can
get the known cases (Gold, Dillon/Dobbertin, Niho exponents) in
the paper of Leander [9].

For m odd, one might have expected that for the functions
f : x −→ Tr G(x) where G is a polynomial of degree 7, there are
some functions which are close to being bent in the previous sense.
This happens not to be the case, but we will show that for m odd
such functions have rather good nonlinearity properties. We use
for that recent results of Maisner and Nart about zeta functions
of supersingular curves of genus 2.

2. Preliminaries

2.1. Boolean functions

Let m be a positive integer and q = 2m.

Definition 2.1. A Boolean function with m variables is a map
from the space Vm = Fm

2 into F2.

A Boolean function is linear if it is a linear form on the vector
space Vm. It is affine if it is equal to a linear function up to addition
of a constant.

2.2. Nonlinearity

Definition 2.2. We call nonlinearity of a Boolean function f :
Vm −→ F2 the distance from f to the set of affine functions with
m variables:

nl(f) = min
h affine

d(f, h)

where d is the Hamming distance.

One can show that the nonlinearity is equal to

nl(f) = 2m−1 − 1

2
‖f̂‖∞
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where

‖f̂‖∞ = sup
v∈Vm

∣∣∣
∑

x∈Vm

(−1)(f(x)+v·x)
∣∣∣

and v ·x denote the usual scalar product in Vm. It is the maximum
of the Fourier transform of (−1)f (the Walsh transform of f):

f̂(v) =
∑

x∈Vm

(−1)f(x)+v·x.

Then the inversion formula is given by

(−1)f(x) =
1

q

∑

v∈Vm

f̂(v)(−1)v.x

where we note that the dual of Vm is isomorphic to Vm itself, where
the measure of each point is 1

q . Parseval identity can be written

‖f̂‖2
2 =

1

q

∑

v∈Vm

f̂(v)2 = q

and we get, for f a Boolean function on Vm:

√
q ≤ ‖f̂‖∞ ≤ q.

2.3. The sum-of-square indicator

Let f be a Boolean function on Vm. Zhang and Zheng intro-
duced the sum-of-square indicator [18], as a measure of the global

avalanche criterion:

σf =
1

q

∑

x∈Vm

f̂(x)4 = ‖f̂‖4
4.

We remark that

‖f̂‖2 ≤ ‖f̂‖4 ≤ ‖f̂‖∞. (1)

Hence the values of ‖f̂‖4 may be considered as a first approxima-

tion of ‖f̂‖∞ and in some cases they may be easier to compute.
The relationship of this function with the non-linearity was studied
by A. Canteaut et al. [1].
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3. The functions f : x −→ Tr G(x) where G is a polynomial

of degree 7

Let G = a7x
7 + a5x

5 + a3x
3 + a1x with a7 6= 0 be a polynomial

of degree 7 with coefficients in k. We would like to evaluate ‖f̂‖4

on F2m , for f(x) = TrG(x). One obtains the following simple

expression for ‖f̂‖4 (cf. [13,14]):

‖f̂‖4
4 =

∑

x1+x2+x3+x4=0

f(x1)f(x2)f(x3)f(x4) = q2 +
∑

α6=0
α∈Vm

S2
α

with Sα =
∑

x∈k(−1)Tr(G(x)+G(x+α)). One can check that

G(x + α) + G(x) = G(α) + a3α
2x + a5α

4x + a7α
6x + a3αx2+

a7α
5x2 + a7α

4x3 + a5αx4 + a7α
3x4 + a7α

2x5 + a7αx6.

By Hilbert’s theorem 90, Sα is linked to the number of points N

of the curve of equation y2 + y = G(x + α) + G(x) by

Sα = N − 1 − q.

This curve is isomorphic to

y2 + y = G(α) + (a3α
2 + a5α

4 + a7α
6)x + (a3α + a7α

5)x2+
a7α

4x3 + (a5α + a7α
3)x4 + a7α

2x5 + a7αx6

hence (by a change of the variable y) to

y2 + y = G(α) + (a3α
2 + a5α

4 + a7α
6+

+a
1/4
5 α1/4 + a

1/4
7 α3/4 + a

1/2
3 α1/2 + a

1/2
7 α5/2)x+

(a7α
4 + a

1/2
7 α1/2)x3 + a7α

2x5

which is a curve of genus 2. If a7α
7 6= 1 this curve is isomorphic

also to

y2 + y = ax5 + ax3 + cx + d

with a = λ5a7α
2 = λ3(a7α

4 + a
1/2
7 α1/2) and λ = α + a

−1/4
7 α−3/4.

One has

a = 1 + a
−1/4
7 α−7/4 + a

3/4
7 α21/4 + a7α

7
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and

c = 1 +

√
a3

a
1/4
7 α1/4

+
a3α

5/4

a
1/4
7

+
√

a3α
3/2 + a3α

3 +
a

1/4
5

a
1/4
7

√
α

+

a
1/4
5 α5/4 +

a5α
13/4

a
1/4
7

+ a5α
5 +

√
a7α

7/2 + a
3/4
7 α21/4 + a7α

7.

To compute Sα, we will need results of Van der Geer - van der
Vlugt and of Maisner - Nart.

3.1. Van der Geer and van der Vlugt theory

Let C1 the curve with affine equation:

C1 : y2 + y = ax5 + bx3 + cx + d

with a 6= 0. Let R be the linearized polynomial ax4 + bx2 + c2x.
The map

Q : k → F2

x 7→ Tr(xR(x))

is the quadratic form associated to the symplectic form

k × k −→ F2

(x, y) 7→ < x, y >R= Tr(xR(y) + yR(x)).

The number of zeros of Q determines the number of points of C1:

#C1(k) = 1 + 2#Q−1(0).

Let W be the radical of the symplectic form <,>R, and w be its
dimension over F2. The codimension of the kernel V of Q in W is
equal to 0 or 1.

Theorem 3.1. (van der Geer - van der Vlugt [16])
If V 6= W , then #C1(k) = 1 + q.

If V = W , then #C1(k) = 1 + q ±√
2wq.

Moreover the set of zeros in k of the F2-linearized polynomial

Ea,b = a4x16 + b4x8 + b2x2 + ax
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is equal to W and the polynomial Ea,b factorizes in k[x] (cf. [16],
Theorem 3.4):

Ea,b(x) = xP (x)(1 + x5P (x))

with P (x) = a2x5 + b2x + a.

3.2. Values of S2
α

Proposition 3.2. Suppose that m is odd. Then

S2
α = 0 or 2q or 8q.

Let ℓ = a
−1/3
7 α−7/3. Then

S2
α = 8q if and only if

Tr ℓ = 0 , ℓ = v + v4 with Tr v = 0 ,

Tr

(
(a + c)α

λ
v3

)
= 1 , Tr

(
(a + c)α

λ
(v + v2)

)
= 1 ;

S2
α = 2q if and only if Tr ℓ = 1 ;

S2
α = 0 in the remaining cases.

Proof. In [5], we study the factorization of P which determines V

and W (see Maisner-Nart). Thanks to the work of van der Geer -
van der Vlugt, we can compute the number of points of the curves
y2 + y = G(x + α) + G(x). �

4. Evaluation of ‖f̂‖4
4

Theorem 4.1. Let G be a polynomial of degree 7 on F2m . The

value of ‖f̂‖4
4 when m is odd and f(x) = Tr G(x) is such that

|‖f̂‖4
4 − 3q2| ≤ 712q3/2.

Proof. One can evaluate the number of α which gives each case
of the preceding proposition. The proves of these evaluations are
linked with the computations of exponential sums over the curve

v + v4 = γx7.
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We get

∣∣∣#{α | S2
α = 8q} − 1

8

∣∣∣ ≤ 88q1/2

∣∣∣#{α | S2
α = 2q} − 1

2

∣∣∣ ≤ 3q1/2 + 1

One deduce easily the evaluation of ‖f̂‖4
4. �

The details of the proof will appear in [5].

Remark 4.1. This result is to be compared with proposition 5.6

in [13] where one gives a result for the distribution of ‖f̂‖4
4 for all

Boolean function.

5. Bound for ‖f̂‖∞

From the theorem, we can deduce some lower bounds for ‖f̂‖∞.

Proposition 5.1. For the functions f : x −→ Tr G(x) on F2m

where G is a polynomial of degree 7 and m is odd, one has, for
m ≤ 17: √

2q ≤ ‖f̂‖∞
and, for m ≥ 19 √

2q < ‖f̂‖∞.

Proof. The evaluation of the number of α such that Tr ℓ = 1 in
proposition 3.2 gives:

2q2 − 6q3/2 ≤ ‖f̂‖4
4.

As it is easy to show that

‖f̂‖4
4 ≤ q‖f̂‖2

∞

we get 2q − 6q1/2 ≤ ‖f̂‖2
∞ whence the result, as ‖f̂‖∞ is divisible

by 2⌈m/3⌉.
The second inequality is a consequence of theorem 4.1. �

Remark 5.1. So f is not almost optimal (in the sense of [1]), for
m ≥ 19.
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RANDOM GENERATION OF HIGHLY NONLINEAR

RESILIENT BOOLEAN FUNCTIONS ∗

Anna Grocholewska-Czury lo1

Abstract. In recent years a cryptographic community is
paying a lot of attention to the constructions of so called
resilient functions for use mainly in stream cipher systems.
Very little work however has been devoted to random gener-
ation of such functions. This paper tries to fill that gap and
presents an algorithm that can generate at random highly
nonlinear resilient functions. Generated functions are ana-
lyzed and compared to the results obtained from the best
know constructions and some upper bounds on nonlinearity
and resiliency. It is shown that randomly generated func-
tions achieve in most cases results equal to the best known
designs, while in other cases fall just behind such constructs.
It is argued that the algorithm can perhaps be used to prove
the existence of some resilient functions for which no math-
ematical prove has been given so far.

1. Introduction

Boolean functions play an important role in virtually any mod-
ern cryptographic system - be it block or stream ciphers, private or
public key systems, authentication algorithms, etc. As security of
these systems relies on Boolean functions these functions should
posses some specific criteria that would protect a cryptographic
system from any existing cryptanalytic attacks, and preferably
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make it also immune against any attacks that might be designed
in the future. These criteria are called cryptographic criteria.

It is widely accepted among cryptologists that most impor-
tant criteria are balancedness, high nonlinearity, propagation cri-
teria, correlation immunity, high algebraic degree. Unfortunately
no Boolean function exists that would fulfil all of these criteria
to the maximum, so finding a cryptographically strong Boolean
functions is always a trade-off between these criteria and is not a
trivial task.

In particular, a function whose output leaks no information
about its input values is of great importance. Such functions are
called correlation immune Boolean functions and were introduced
by T. Siegenthaler in 1984 [14] and ever since then have been a
topic of active research. A balanced correlation immune function
is called a resilient function. As balancedness is one criterion that
should be fulfilled under any circumstances, resilience is a criterion
most often mentioned in the scientific literature when one talks
about correlation immunity.

Most of the cryptographic criteria is in one way or another
related to nonlinearity of the Boolean function. Highest nonlin-
earity is very desirable so most of the research concentrates on
fulfilling the cryptographic criteria while maintaining a highest
possible nonlinearity, which very often (virtually always) has to
be sacrificed to some extent.

The approach to finding a good cryptographic functions is most
often based on specific algebraic constructions of Boolean func-
tions with desirable properties - like highly nonlinear Boolean func-
tion with high order of resiliency. Or constructing bent functions
(functions with highest possible nonlinearity) and then modifying
them to fulfil other cryptographic criteria.

In the article the author argues that the use of randomly cho-
sen Boolean functions with good cryptographic properties (if we
are able to find such functions) is probably better than the use
of functions with similar parameters which are obtained by ex-
plicit constructions. The main reason is that explicit constructions
usually lead to functions which have very particular (algebraic or
combinatorial) structures, which may induce weaknesses regard-
ing existing or future attacks. Therefore, author considered finding
and studying randomly generated Boolean functions (at least with
a few inputs and outputs) with good cryptographic properties, to
be of high interest.
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Based on an algorithm designed by the author which can gen-
erate highly nonlinear functions at random, some comparative
results are presented that give an insight to differences between
constructed and generated Boolean function with good crypto-
graphic properties.

Particular emphasis of the paper is on resiliency of highly non-
linear functions. The random generation algorithm manages to
output balanced functions which in some cases have the highest
achievable nonlinearity for a particular number of variables and/or
have higher nonlinearity than some of the modern methods for ob-
taining cryptographically strong Boolean functions.

The paper is organized as follows. Section 2 provides some ba-
sic definitions and notations that are used throughout the remain-
der of the article. In Section 3 a random function generator is
described, which is used as a foundation for obtaining highly non-
linear resilient functions. Experimental results and comparisons to
other research are given in Section 4. Then conclusions follow in
Section 5.

2. Preliminaries

We use square brackets to denote vectors like [a1, . . . , an] and
round brackets to denote functions like f(x1, . . . , xn).

2.1. Boolean function

Let GF (2) = 〈
∑

,⊕, •〉 be two-element Galois field, where
∑

= {0, 1}, ⊕ and • denotes the sum and multiplication mod
2, respectively. A function f :

∑n 7→
∑

is an n-argument Boolean
function. Let z = x1 · 2

n−1 +x2 · 2
n−2 + . . .+xn · 2

0 be the decimal
representation of arguments (x1, x2, . . . , xn) of the function f . Let
us denote f(x1, x2, . . . , xn) as yz. Then [y0, y1, . . . , y2n−1] is called
a truth table of the function f .

2.2. Linear and nonlinear Boolean functions

An n-argument Boolean function f is linear if it can be repre-
sented in the following form: f(x1, x2, . . . , xn) = a1x1 ⊕ a2x2 ⊕
. . . ⊕ anxn. Let Ln be a set of all n-argument linear Boolean
functions. Let Mn = {g :

∑n 7→
∑

| g(x1, x2, . . . , xn) = 1 ⊕
f(x1, x2, . . . , xn) and f ∈ Ln}. A set An = Ln ∪ Mn is called a
set of n-argument affine Boolean functions. A Boolean function

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



64 A. GROCHOLEWSKA-CZURY LO

f :
∑n 7→

∑

that is not affine is called a nonlinear Boolean func-
tion.

2.3. Balance

Let N0[y0, y1, . . . , y2n−1] be a number of zeros (0’s) in the truth
table [y0, y1, . . . , y2n−1] of function f , and N1[y0, y1, . . . , y2n−1] be
a number of ones (1’s). A Boolean function is balanced if

N0[y0, y1, . . . , y2n−1] = N1[y0, y1, . . . , y2n−1]

2.4. Algebraic Normal Form

A Boolean function can also be represented as a maximum of
2n coefficients of the Algebraic Normal Form. These coefficients
provide a formula for the evaluation of the function for any given
input x = [x1, x2, . . . , xn]:

f(x) = a0 ⊕

n
∑

i=1

aixi ⊕
∑

1≤i<j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn

where
∑

, ⊕ denote modulo 2 summation.
The order of nonlinearity of a Boolean function f(x) is a

maximum number of variables in a product term with non-zero
coefficient aJ , where J is a subset of {1, 2, 3, . . . , n}. In the case
where J is an empty set the coefficient is denoted as a0 and is called
a zero order coefficient. Coefficients of order 1 are a1, a2, . . . , an,
coefficients of order 2 are a12, a13, . . . , a(n−1)n, coefficient of order
n is a12...n. The number of all ANF coefficients equals 2n.

Let us denote the number of all (zero and non-zero) coefficients
of order i of function f as σi(f). For n-argument function f there
are as many coefficients of a given order as there are i-element
combinations in n-element set, i.e. σi(f) =

(

n
i

)

.

2.5. Hamming distance

Hamming weight of a binary vector x ∈
∑n, denoted as hwt(x),

is the number of ones in that vector.
Hamming distance between two Boolean functions f, g :

∑n 7→
∑

is denoted by d(f, g) and is defined as follows:

d(f, g) =
∑

x∈
P

n

f(x) ⊕ g(x)
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The distance of a Boolean function f from a set of n-argument
Boolean functions Xn is defined as follows:

δ(f) = min
g∈Xn

d(f, g)

where d(f, g) is the Hamming distance between functions f and
g. The distance of a function f from a set of affine functions An

is the distance of function f from the nearest function g ∈ An.
The distance of function f from a set of all affine functions is

called the nonlinearity of function f and is denoted by Nf .

2.6. Bent functions

A Boolean function f :
∑n 7→

∑

is perfectly nonlinear if and
only if f(x) ⊕ f(x ⊕ α) is balanced for any α ∈

∑n such that
1 ≤ hwt(α) ≤ n.

For a perfectly nonlinear Boolean function, any change of inputs
causes the change of the output with probability of 0.5.

Meier and Staffelbach [10] proved that the set of perfectly non-
linear Boolean functions is the same as the set of Boolean bent
functions defined by Rothaus [11].

Perfectly nonlinear functions (or bent functions) have the same,
and the maximum possible distance to all affine functions.

Bent functions are not balanced. Hamming weight of a bent
function equals 2n−1 ± 2

n

2
−1.

2.7. Walsh transform

Let x = (x1, x2, . . . , xn) and ω = (ω1, ω2, . . . , ωn) both belong
to {0, 1}n and x•ω = x1ω1, x2ω2, . . . , xnωn. Let f(x) be a Boolean
functions on n variables. Then the Walsh transform of f(x) is a
real valued function over {0, 1}n that can be defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕xω

The Walsh transform is sometimes called the spectral distribution
or simply the spectra of a Boolean function. It is an important
tool for the analysis of Boolean functions.
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2.8. Correlation immunity and resilience

Xiao and Massey [5] have provided a spectral characterisation
of correlation immune functions using Walsh transform. We can
use that as a definition of correlation immunity:

A function f(x1, x2, . . . , xn) is m-order correlation immune (CI)
iff its Walsh transform Wf satisfies Wf = 0, for 1 ≤ hwt(ω) ≤
m. Note that balanced m-order correlation immune functions are
called m-resilient functions and if f is balanced then Wf (0) =
0. Thus, a function f(x1, x2, . . . , xn) is m-resilient iff its Walsh
transform Wf satisfies Wf (ω) = 0, for 0 ≤ hwt(ω) ≤ m.

By an (n,m, d, x) function we mean an n-variable, m-resilient
(balanced m-order CI) function with degree d and nonlinearity x.
In the above notation the degree component is replaced by a ’-’
(i.e. (n,m,−, x)), if we do not want to specify a degree.

3. Random generation of highly nonlinear functions

As already mentioned earlier, so called bent Boolean functions
achieve the highest possible nonlinearity. There exists a number
of algorithms for constructing bent Boolean functions. Such con-
structions have been given by Rothaus [11], Kam and Davida [6],
Maiorana [7], Adams and Tavares [1], and others.

Most of the known bent function constructions take bent func-
tions of n arguments as their input and generate bent functions of
n+2 arguments. One major drawback of these methods is the fact
that they are deterministic. Only short bent functions (n = 4 or 6)
are selected at random and the resulting function is obtained using
the same, deterministic formula every time. The possible drawback
of such approach (constructions) were stated in the beginning of
this paper.

Drawing bent functions at random is not feasible already for a
small number of arguments (n > 6). To make such generation pos-
sible, an algorithm was designed that generates random Boolean
functions in Algebraic Normal Form thus making use of some ba-
sic properties of bent functions to considerably narrow the search
space. This makes the generation of bent functions feasible for
n > 6.

The algorithm for the generation of bent functions in ANF do-
main takes as its input the minimum and maximum number of
ANF coefficients of every order that the resulting functions are
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allowed to have. Since the nonlinear order of bent functions is less
than or equal to n/2, clearly in ANF of a bent function can not
be any ANF coefficient of order higher than n/2. This restriction
is the major reason for random generation feasibility, since it con-
siderably reduces the possible search space.

However the fact that bent functions are not balanced prohibits
their direct application in the cipher system. Still, as bent func-
tions achieve maximum possible nonlinearity they are often used as
a foundation for constructing highly nonlinear balanced functions.
In recent years some methods have been proposed that transform
bent functions to balanced Boolean functions with minimal loss in
nonlinearity. Examples of such methods are given in [8] and [9].
Still, balancing bent function can lead to low order of resiliency.

In a quest for a randomly generated, highly nonlinear function
with higher order resiliency the above mentioned random bent
function generation algorithm has been modified to generate such
functions. Here again some specific properties of resilient functions
are crucial.

As already stated there are certain trade-offs involved among
the parameters of a cryptographically sound Boolean function. As
it has been showed by Siegenthaler [14] for an n-variable function,
of degree d and order of correlation immunity m the following
holds m + d ≤ n. Furthermore, if the function is balanced then
m + d ≤ n − 1.

The generating algorithm is used basically in the same way
as when generating bent functions. Still it operates in the ANF
domain and it takes as its input the number minimal and maximal
numbers of coefficients of every order. Nonlinear order is restricted
according to Siegenthalter’s findings and some more precise upper
bounds on resilient order given by Maitra and Sarkar in [12].

Maitra and Sarkar in [12] present some construction methods
for highly nonlinear resilient functions and give upper bounds on
nonlinearity of resilient functions.

For the sake of completeness a Maiorana-McFarland-like con-
struction technique will now be briefly discussed. This technique
is perhaps the most important of all resilient Boolean functions
construction methods and has been investigated in a number of
papers [2–4, 13]. This construction has been used by Maitra and
Sarkar as a basis for their work.

Let π be a map from {0, 1}r to {0, 1}k , where for any x ∈
{0, 1}r , hwt(π(x)) ≥ m+1. Let f : {0, 1}r+k 7→ {0, 1} be a Boolean
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5 6 7 8 9 10

1 12 24 56 116* 244* 492*
2 8 24 56* 112 240 480
3 0 16 48 112 240* 480
4 0 32 96 224 480*
5 0 64 192 448
6 0 128 384
7 0 256
8 0

Table 1. Upper bounds on nonlinearity of re-
silient functions

function defined as f(x, y) = y • π(x) ⊕ g(x), where x ∈ {0, 1}r ,
y ∈ {0, 1}k and y • π(x) is the inner product of y and π(x). Then
f is m-resilient.

Table 1 summarises the results obtained in [12] and gives upper
bounds on nonlinearity of resilient functions for number of argu-
ments ranging from 5 to 10. The rows represent the resiliency and
the columns represent the number of variables. Entries with * in-
dicate bounds which have not yet been achieved. Functions can be
constructed with parameters satisfying the other entries.

Table 1 can be used as a benchmark for assessing the efficacy
of resilient functions construction methods.

4. Experimental results

Now let’s see the results from above mentioned random resilient
function generator against the upper bounds presented in Table 1.

The maximum nonlinearity is known for all Boolean functions
on even number of variables – it is achieved by bent functions.
The maximum nonlinearity for odd variable Boolean functions is
known for n ≤ 7. Also, maximum nonlinearity question is solved
for balanced and resilient functions on n variables for n ≤ 5 (which
is easy to do by exhaustive computer search). Let’s consider cases
for 6 ≤ n ≤ 10.

n = 6: Maximum nonlinearity for n = 6 is 28 (for bent func-
tions). Maximum nonlinearity of a balanced function is 26 and
construction of such functions is known. Maximum nonlinearities
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for 1, 2 and 3-resilient functions were shown (be computer search)
to be 24, 24 and 16. Random resilient function generator presented
in this paper is able to generate 1, 2 and 3-resilient functions.

n = 7: Maximum nonlinearity of a balanced Boolean functions
for n = 7 is 56. As shown in [12] the maximum nonlinearities for
1, 2, 3 and 4-resilient functions are respectively 56, 56, 48, 32.
However 2-resilient function with nonlinearity of 56 is not known.
Random generator is able to generate all these resilient functions
except for (7,2,-,56).

n = 8: Nonlinearity of 8 arguments bent function is 120. Max-
imum (theoretical) nonlinearity for a balanced function is 118,
however such function is not known. Maximum possible nonlin-
earities for 1, 2, 3, 4 and 5-resilient functions are 116, 112, 112, 96,
and 64. The existence of (8,1,-,116) function is an open problem.
Constructions for other functions are known. The random gener-
ator can output all the functions except the not known (8,1,-,116)
and (8,3,-,112).

n = 9: Maximum nonlinearity of such functions is an open
problem. The known upper bound is 244. It is easy to construct
a function with nonlinearity of 240. Maximum nonlinearities of
resilient functions are 244, 240, 240, 224, 192, 128 for 1, 2, 3, 4,
5, 6-resilient functions respectively. The generator is capable of
generating (9,1,-,240), (9,2,-,224), (9,5,-,192) and (9,6,-,128) func-
tions.

n = 10: The nonlinearity of a bent function is 496. Maximum
nonlinearity of a balanced function is 494, best known function
has linearity of 492. 492, 488, 480, 480, 448, 384, 256 are the non-
linearities of 1,2, 3, 4, 5, 6, 7-resilient functions. Constructions of
the following functions are not known: (10,1,-,492), (10,1,-,488),
(10,2,-,488), (10,4,-,480). The random generator can generate the
following: (10,1,-,480), (10,3,-,448), (10,5,-,384), (10,7,-,256).

5. Conclusions

As shown in the previous paragraph, the random resilient func-
tion generator is capable of generating Boolean functions having
some very promising cryptographic qualities. In many cases these
functions are on par with the best known constructions. In other
cases they fall slightly short of best achievable results. In any case
they have the advantage of being truly random and not being
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restricted by specific constraints associated with each specific de-
sign. One can suspect that such constraints may render the func-
tion (or a cipher system based on it) vulnerable to some future
cryptographic attack.

Also, results presented in this article are the very first results
from the resilient function generator. Its output relies heavily on
the parameter setting, mainly on the number of higher order ANF
coefficients in the resulting function. As this dependencies are in-
vestigated we might expect still better results from the generator.

As with generated bent functions, also generated resilient func-
tions can have a very compact (small) Algebraic Normal Form
which can be utilized for efficient storage and fast cryptographic
routines.
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AUTOCORRELATION SPECTRA OF BALANCED

BOOLEAN FUNCTIONS ON AN ODD NUMBER OF

INPUT VARIABLES WITH MAXIMUM ABSOLUTE

VALUE < 2
n+1

2

Selçuk Kavut1, Subhamoy Maitra2 and Melek D. Yücel1

Abstract. Constructing a balanced Boolean function on an
odd number of variables n with maximum absolute value
in the autocorrelation spectrum strictly less than 2

n+1

2 is
an important open question and such functions are known
only for n = 15, 21. For the first time we make a system-
atic study for these functions and could discover 9 and 11
variable balanced Boolean functions with maximum absolute
value in the autocorrelation spectrum < 2

n+1

2 , in particular
24 for the 9-variable case and 56 for the 11-variable case.
The nonlinearity of the 9-variable function is 240, the best
known for 9-variable functions and its algebraic degree is 7.
Further, this function can be transformed to 1-resilient or
PC(1) functions. This is the first time a resilient function
with maximum absolute value in the autocorrelation spec-

trum < 2
n+1

2 is demonstrated for any variable. The nonlin-
earity of the 11-variable function is 988; its algebraic degree
is 10 and it can be transformed to a PC(1) function. Such
functions are discovered using properly modified steepest-
descent based iterative heuristic search in the class of rota-
tion symmetric Boolean functions. We strongly believe that
it is elusive to get a construction technique to match such
functions.
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1. Introduction

Boolean functions with very high nonlinearity and very low au-
tocorrelation (for better confusion and diffusion) are important
building blocks in both stream and block cipher implementations.
This means that one needs Boolean functions such that the max-
imum absolute value in both the Walsh and autocorrelation spec-
tra are low. The maximum absolute value in the autocorrelation
spectrum of a Boolean function f is denoted by ∆f . It has been
conjectured in [34] that for any balanced function f on an odd

number of variables n, ∆f ≥ 2
n+1

2 . However, the conjecture has
been disproved for n = 15 in [16] and n = 21 in [7] by modifying
the Patterson-Wiedemann type functions [26,27] and so far there
is no evidence of such functions for odd n < 15, which we present
here.

Construction of important Boolean functions has for some time
used combinatorial techniques and search methods together. Pat-
terson and Wiedemann [26, 27] proposed a construction of highly
nonlinear Boolean functions on n variables (n odd) using such a
hybrid approach. These functions were later modified using heuris-
tic search once again [16], to get balanced functions with very high
nonlinearity and very low autocorrelation. Recent results on highly
nonlinear, balanced, correlation immune functions show that com-
puter search is very effective after some initial pruning on the
search domain. In fact, most of the best functions on small num-
ber of variables (7–10) are available in this way [18,24,30].

A lot of hard optimization problems have been attacked in var-
ious other domains using general purpose heuristic strategies like
simulated annealing, genetic algorithms, tabu search and various
forms of hill-climbing. For Boolean functions such attempts were
initially made in [21–23]. These attempts provided good but sub-
optimal results. Subsequently, simulated annealing [13] was used
to provide competitive results [1, 11, 12] in terms of nonlinearity
and autocorrelation values together for small functions (n ≤ 8).
In [2], it was observed that some of the functions obtained by an-
nealing could be transformed using simple linear change of basis
to obtain resilient functions with excellent profiles (i.e., the best
possible trade-offs). Supplementing optimization with theory al-
lows the best possible trade-offs between nonlinearity, algebraic
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degree and correlation immunity for balanced functions on n ≤ 8
variables.

However, for n ≥ 9, optimization based techniques are not com-
petitive since the search space increases super exponentially as n
increases. Thus we need some initial pruning before attempting
some heuristic search. The set of Rotational Symmetric Boolean
Functions (RSBFs) is interesting to look into as the space is much

smaller (≈ 2
2
n

n ) than the total space of Boolean functions (22n

)
and the set contains functions with very good cryptographic prop-
erties. These functions have been analyzed in [6], where the au-
thors studied the nonlinearity of these Boolean functions up to
9 variables and found encouraging results. This study has been
extended in [3, 5, 9, 19, 20, 31–33], where it has been justified the-
oretically and experimentally that the RSBF class is extremely
important in terms of Boolean functions with good cryptographic
properties. On the other hand, in [28], Pieprzyk and Qu studied
these functions as components in the rounds of a hashing algo-
rithm and research in this direction was later continued in [4].

In this paper we suitably modify the steepest-descent like it-
erative algorithm that appeared in [12] so that it can be applied
for a search in the class of rotational symmetric Boolean functions
and found functions which are very good in terms of their Walsh
and autocorrelation spectra. The strategy presented in [12] have
been applied for the complete space of Boolean functions and it
performs much better when applied to a much smaller (but rich)
space of RSBFs.

In the following section we present basic definitions related to
Boolean functions. In Section 3, we present our search strategy.
The results are presented in Section 4.

2. Preliminaries on Boolean Functions

A Boolean function on n variables may be viewed as a mapping
from Vn = {0, 1}n into {0, 1}. The truth table of a Boolean function
f(x1, . . . , xn) is a binary string of length 2n, f = [f(0, 0, · · · , 0),
f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . ., f(1, 1, · · · , 1)]. The Hamming

weight of a binary string S is the number of 1’s in S denoted
by wt(S). An n-variable function f is said to be balanced if its
truth table contains an equal number of 0’s and 1’s, i.e., wt(f) =
2n−1. Also, the Hamming distance between equidimensional binary

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



76 S. KAVUT, S. MAITRA, M. D. YÜCEL

strings S1 and S2 is defined by d(S1, S2) = wt(S1⊕S2), where ⊕
denotes the addition over GF (2).

An n-variable Boolean function f(x1, . . . , xn) can be considered
to be a multivariate polynomial over GF (2). This polynomial can
be expressed as a sum of products representation of all distinct
k-th order products (0 ≤ k ≤ n) of the variables. More precisely,
f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representa-
tion of f is called the algebraic normal form (ANF) of f . The num-
ber of variables in the highest order product term with nonzero
coefficient is called the algebraic degree, or simply the degree of f
and denoted by deg(f).

Functions of degree at most one are called affine functions.
An affine function with constant term equal to zero is called a
linear function. The set of all n-variable affine (respectively linear)
functions is denoted by A(n) (respectively L(n)). The nonlinearity
of an n-variable function f is

nl(f) = ming∈A(n)(d(f, g)),

i.e., the distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to

{0, 1}n and x · ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be a Boolean
function on n variables. Then the Walsh transform of f(x) is a
real valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

In terms of Walsh spectrum, the nonlinearity of f is given by

nl(f) = 2n−1 −
1

2
max

ω∈{0,1}n
|Wf (ω)|.

In [8], an important characterization of correlation immune
functions has been presented, which we use as the definition here.
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A function f(x1, . . . , xn) is m-th order correlation immune (re-
spectively m-resilient) iff its Walsh transform satisfies

Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m (respectively 0 ≤ wt(ω) ≤ m).

Propagation Characteristics (PC) and Strict Avalanche Crite-
ria (SAC) [29] are important properties of Boolean functions to be
used in S-boxes. Further, Zhang and Zheng [34] identified related
cryptographic measures called Global Avalanche Characteristics
(GAC).

Let α ∈ {0, 1}n and f be an n-variable Boolean function. The
autocorrelation value of the Boolean function f with respect to
the vector α is

∆f (α) =
∑

x∈{0,1}n

(−1)f(x)⊕f(x⊕α),

and the absolute indicator is

∆f = max
α∈{0,1}n,α6=(0,...,0)

|∆f (α)|.

A function is said to satisfy PC(k), if

∆f (α) = 0 for 1 ≤ wt(α) ≤ k.

Adding the last entry ∆ to the notation used in [30], by an
(n,m, d, σ,∆) function we denote an n-variable, m-resilient func-
tion with degree d, nonlinearity σ and absolute indicator ∆.

2.1. Rotation Symmetric Boolean Functions

Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define

ρk
n(xi) = xi+k, if i + k ≤ n, and

= xi+k−n, if i + k > n.

Let (x1, x2, . . . , xn−1, xn) ∈ Vn. We can extend the definition of ρk
n

to n-tuples as

ρk
n(x1, x2, . . . , xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn)).

Definition 2.1. A Boolean function f is called Rotation Symmet-

ric if for each input
(x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn)) = f(x1, . . . , xn) for
1 ≤ k ≤ n.
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Following [31], let us consider the set of vectors

Gn(x1, . . . , xn) = {ρk
n(x1, . . . , xn), for 1 ≤ k ≤ n}.

Note that Gn(x1, . . . , xn) generates an orbit in the set Vn. Let gn

be the number of such orbits. Using Burnside’s lemma, it can be
shown (see also [31]) that

gn =
1

n

∑

k|n

φ(k) 2
n
k ,

φ being Euler’s phi−function. It can be easily checked that gn ≈
2n

n
. Since 2gn << 22n

, the number of n-variable RSBFs is much
smaller than the total space of Boolean functions.

An orbit is completely determined by its representative element

Λn,i, which is the lexicographically first element belonging to the
orbit [33]. The rotation symmetric truth table (RSTT) is defined
as the gn-bit string

[f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)],

where the representative elements are again arranged lexicograph-
ically.

The Walsh transform of a rotation symmetric Boolean func-
tion takes the same value for all elements belonging to the same
orbit, i.e., Wf (u) = Wf (v) if u ∈ Gn(v). In analyzing the Walsh
spectrum of RSBFs, the nA matrix of size gn × gn has been in-
troduced [33]. The (i, j)th entry of the matrix nA is defined as

nAi,j =
∑

x∈Gn(Λn,i)
(−1)x·Λn,j , for an n-variable RSBF. The Walsh

spectrum for an RSBF can then be calculated from the RSTT as
Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j.

3. Search Strategy

Our search strategy uses a steepest-descent like iterative algo-
rithm, where each iteration step has the input Boolean function
f and the output Boolean function fmin. At each iteration step,
a cost function is calculated within a pre-defined neighborhood of
f and the Boolean function having the smallest cost is chosen as
the iteration output fmin. We use the sum of squared errors as the
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cost function, which is defined as:

Cost =
∑

α6=0

∆2
f (α).

In some rare cases, the cost of fmin may be larger than or equal to
the cost of f . This is the crucial part of the search strategy, which
provides the ability to escape from local minima and its distinction
from the steepest-descent algorithm. The 2-neighborhood of f is
obtained by swapping any two dissimilar values of its truth table.
For an n variable balanced Boolean function, the 2-neighborhood
consists of 2n−1 × 2n−1 many distinct Boolean functions, each be-
ing at the Hamming distance 2 to the original Boolean function.
However, when the search space is restricted to RSBFs, the 2-
neighborhood is either an empty set or contains a single RSBF.
If a bit in the truth table of a RSBF is changed, all entries cor-
responding to an orbit (a rotationally symmetric partition, which
is composed of vectors that are equivalent under rotational shifts)
should be changed to obtain another RSBF. The closest rotation-
ally symmetric neighbors of RSBFs can be found by swapping
truth table entries corresponding to equal-size orbits. So, at each
step of the algorithm, we constitute the neighborhood of f by
swapping truth table entries corresponding to possible pairs of
equal-size orbits having dissimilar values.

Our steepest-descent based search technique minimizes the cost
until a local minimum is attained, then it takes a step in the direc-
tion of non-decreasing cost. That is, whenever possible, the cost is
minimized; otherwise, a step in the reverse direction is taken. The
deterministic step in the reverse direction corresponds to the small-
est possible cost increase within the pre-defined neighborhood of
the preceding Boolean function, which also makes it possible to
escape from the local minima. The basic algorithm is presented in
Algorithm 3.1.

The search starts with a randomly chosen RSBF, finitial. In
Algorithm 3.1, the number of iteration steps is shown by N, i.e.,
the algorithm stops after a fixed number of steps, say N = 40000
for n = 9. At each iteration, M distinct Boolean functions within
the pre-defined neighborhood, each of which is shown by fswapped,
are visited by storing the cost value costswapped in COST , and
the corresponding Boolean function itself in SETf . Among the
stored cost values, the minimum one, costmin, is chosen, and the
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respective Boolean function, fmin, is obtained from SETf as the
candidate of the step output. If the candidate fmin is already in
STORE, which stores all previous iteration outputs, then this
candidate fmin and its cost are removed from SETf and COST
respectively. The minimum cost value is searched again in COST
among the remaining cost values to find the respective new can-
didate for fmin.

Algorithm 3.1.

f = finitial;
for(int k = 0; k < N; k + +){

for(int i = 0; i < M; i + +){
Swap equal-size orbits of f
SETf [ i ] = fswapped

COST [ i ] = costswapped

}
Find costmin (minimum costswapped in COST ), and fmin

(respective fswapped in SETf )
while(fmin is already in STORE){

Remove costmin from COST , and fmin from SETf

Find costmin in COST , and fmin in SETf

}
STORE[k] = fmin

f = fmin

}

The Basic Algorithm.

For instance, 9 variable RSBFs contain 2 orbits of size 1, 2
orbits of size 3, and 56 orbits of size 9. Therefore, half of the truth
table consists of 28 orbits of size 9, one orbit of size 3, and one
orbit of size 1 (256 bits = 28×9+3+1). In order to constitute the
neighborhood, two dissimilar orbits of size 9, size 3, and size 1 are
swapped. Also, some of the combinations are taken into account
such as swapping two dissimilar orbits from all sizes. As a result,
calling a ”swap of two size 9 orbits” sw9-9 in short, sw9-9 yields
RSBFs at the 18-neighborhood, sw1-1 and sw3-3 yield RSBFs at
the 2 and 6-neighborhoods, combinations such as sw9-9+sw1-1,
sw9-9+sw3-3 and sw9-9+sw1-1+sw3-3 yield RSBFs at the 20, 24
and 26-neighborhoods respectively, resulting in a total of M= 28×
28×4+1+1+1 = 3139 RSBFs within the 26-neighborhood chosen
for a single step of the algorithm. Optionally, one can enlarge this
set, for instance taking sw9-9+sw9-9 combinations into account to
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obtain a 36-neighborhood or sw9-9+sw9-9+sw1-1 combinations
to get a 38-neighborhood at each step.

4. Results

The following function φ is a 9-variable balanced RSBF having

nl(φ) = 240 and ∆φ = 24 < 32 = 2
9+1

2 and algebraic degree 7.

005473257A0E49676BDD10E864D3287F399BB2E30214BC916865E70B58853BBE

0ED3C29B9F48AD0F554906658BB1C3562D857833F92B159E33C5D1765BDEDEE9

Given an n-variable Boolean function f , let us define

Sf = {ω ∈ {0, 1}n | Wf (ω) = 0}.

If there exist n linearly independent vectors in Sf , then one can
construct a nonsingular n × n matrix Bf whose rows are linearly

independent vectors from Sf . Let, Cf = B−1
f . Now one can define

f ′(x) = f(Cfx). Both f ′ and f have the same weight, nonlinearity

and algebraic degree [14]. Moreover, Wf ′(ω) = 0 for wt(ω) = 1.
This ensures that f ′ is correlation immune of order 1. Further if
f is balanced then f ′ is 1-resilient. This technique has been used
in [2, 17,25].

The following function is obtained by a linear transformation
on the input variables of φ above, which is 1-resilient.

1C969EEC0B5B87307EB530AD3C365AD32A6771C130CBA71435798C8B6A9DE615

ECF9D05D64E8987F8414D1018621E7EEE05FD4E1AF403F05BF2226AEE2B36D0E

Similar technique can be used to construct PC(1) functions.
Given an n-variable Boolean function f , let us define Tf = {α |
∆f (α) = 0}. If there exist n linearly independent vectors in Tf ,
then one can construct a nonsingular n × n matrix Df whose
rows are linearly independent vectors from Tf . Now one can define
f ′(x) = f(xDf ). Both f ′ and f have the same weight, nonlinearity

and algebraic degree [14]. Moreover, ∆f ′(α) = 0 for wt(α) = 1.
This ensures that f ′ is PC(1). This technique has been used in [16].

The following function is obtained by a linear transformation
on the input variables of φ above, which is PC(1).

2C317F8130464E9D30EA0A95556F8EAAE108188979AC48E9F23AA6793CBBE526

F0DA686073CFD3D6ABE78F641FEB34DD64ED3721BCE0C6CA0CB8E5FCA6655004

It would be interesting to get a transformation on input vari-
ables such that 1-resiliency and PC(1) can both be achieved at the
same time.
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The following function φ is an 11-variable balanced RSBF hav-

ing nl(φ) = 988 and ∆φ = 56 < 64 = 2
11+1

2 and algebraic degree
10.
7BCAF58CEA37C0A4E88C1B2AB5419D74F8C1D1A0169A09CD9E22250687A36E20

EA85E102A213DD00173897D90592E4E7C7E81C594977117D913E8D0E28BD1805

AD999067A843454C980C464FE6B31511432F1FC4976BF2D644779359FD35BC6B

A42BAC8006F437C660872B7E06177BB7C7565EBC91E615BD59C5DFB206D05177

D8F287828250797EC9D0641B603231A0839005F0747D34ABB86D9F5F56320743

354B09BA42ABA575937A79CEAF5DF76921202E7A831E27D7BEE65A77DBF42CDF

CC300CDE9CA58450143CEF614B7FE4397914813F5CDA3FF9102C163F6ACFDE2F

A42E632C66B99FA5D617EC7D42678BE32292A573E7AF8B19043DB31527573F7F

This function can be transformed to a PC(1) function as fol-
lows.
16284CC175F5A4577A22AE62DD64373B6A9C1D5889ED680DF3F379601F6A0EDF

3D9C96F516E67280D1D6EDB33DC545A7AB4EFA4B2E876D0057BA2D8810B9B6AA

4EF786F49639AA675778BC7D3A5CC404F743E73DEDE28B5A4AA3F0673526D87B

8D8B70E9FAD820CE5CFC912B2CE31454236E8F9C08F284C04615CA928E7CC8CD

60A9FF2FC028FA75867C1B83DDD8782F766F6AC0DEB57BB31AC923B0F4304560

AF2E650BFC6F4EA2F9B7B81C81CB72CD31C9CC0AEE51296E1A360C28A7842E8B

81F380CF2E51FCC3EB88E7D54914E4B832B1EBA0D74619CB59A0AD1A46203221

1D0B2DE990BF96A44590FA59D034A04171394762B4CDC609D5B86BA1F491E5B7

Since the above function is of degree 10, it cannot be 1-resilient
after linear transformation. We are trying to get such functions of
degree 9 so that we may try for 1-resiliency by linear transforma-
tion on input variables.

As for the time consumption of the algorithm, we have found 9
functions with nl(φ) = 240 and ∆φ = 24 for n = 9, in 25 runs. The
number of iteration steps N = 40,000 and the average search time
required for each run was 27 minutes on a computer with Pentium
IV 2.8 GHz processor and 248 MB RAM using Windows XP op-
erating system. For n = 11, there are 2 successes with nl(φ) = 988
and ∆φ = 56 within 50 runs, where N = 100,000 and due to the
super exponential increase of the space, each run takes 29,5 hours
on the average with the same computer system. The iteration step
for each success is as shown in Table 1.

n = 9 12309 17434 18631 21450 24216 25952 29029 31538 38462

n = 11 55369 95671 - - - - - - -

Table 1. Iteration step at which the function with
low-autocorrelation is found.

Since each column of Table 1 corresponds to a different run,

the frequency of encountering an RSBF with ∆φ < 2
n+1

2 in our
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experiments is found as 9/(25×4×104) ∼= 9×10−6 for n = 9 and
2/(50×105) ∼= 4×10−7 for n = 11. So, approximately 22n iteration
steps are used and the number of neighbors that we use at each
step is approximately g2

n
∼= 22n/n2.

Johansson and Pasalic [10] (9, 1, −, 240, −), (11, 1, −, 992, −)

Maximov et. al. [19] (11, 1, 6, 992, 240)

Maitra [15] (9, −, −, 240, 32), (11, −, −, 992, 64)

Clark et. al. [2] (9, 1, 7, 236, 40), (11, 1, 9, 984, 96)

Ours (9, 1, 7, 240, 24), (9, 0, 7, 240, 24)*,
(11, 1, 8, 992, 64), (11, 0, 10, 988, 56)*

(*) Table elements marked by * has the additional property of PC(1).

Table 2. Comparison of (n,m, d, σ,∆) values
with the previous results.

Table 2 compares our results to those in the literature in terms
of (n,m, d, σ,∆), i.e., number of variables, resiliency, degree, non-
linearity and absolute indicator.

Though we have not concentrated on the balanced functions
over even number of variables here, we like to mention the state of
the art results in brief. In [15], a construction has been proposed

having ∆f ≤ 2
n
2 + ∆g, where f is an n-variable (n even) bal-

anced function and g is an n
2 -variable one. Experimental results

are available in [1, 11, 12] for 8-variable balanced functions hav-
ing maximum absolute value in the autocorrelation spectrum as
low as 16 which are better than the construction of [15]. It seems
encouraging to extend our strategy for even n too.

5. Conclusion

In this paper we have attempted a properly tuned search for
balanced Boolean functions on an odd number of variables towards
achieving the best possible autocorrelation spectrum. Encourag-
ing results could be achieved when we tried a modified steepest-
descent based iterative heuristic search in the class of rotation sym-
metric Boolean functions. We could find balanced Boolean func-
tions on 9, 11 variables with maximum absolute value in the auto-

correlation spectrum < 2
n+1

2 with other cryptographic properties
like good nonlinearity and algebraic degree. Further the functions
could be transformed linearly to 1-resilient or PC(1) functions for
9-variables and PC(1) functions for 11-variables.
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The search effort is continuing and in May 2006 (while prepar-
ing this proceedings version) we solved a long standing (around
three decades) open question by discovering 9-variable functions
with nonlinearity 241 in the RSBF class. With proper affine trans-
formations, we could also find 10-variable balanced functions f ,
with ∆f = 24 and this is the first result to show that there
exist balanced functions on even number of variables n having
∆f < 2

n
2 ; the 10-variable 1-resilient functions with nonlinearity

492 have been found too, which was an open question since Crypto
2000 [30]. We are expecting to come up with still more interesting
results in the full journal version of this paper.

The authors like to acknowledge the anonymous reviewers for their
comments that substantially improved the technical and editorial quality
of the paper.
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ANOTHER CLASS OF NON-NORMAL BENT

FUNCTIONS

Nils Gregor Leander1

Abstract. This paper deals with ”the other bent function
of the Kasami-type” from [6]. This function is constructed
using the support of the function x → (x+1)d+x

d, where d is
a Kasami Exponent. We give an explicit trace representation
of the dual of these bent functions. Furthermore we note
that computer experiments have shown, that these functions
are non-weakly normal for n = 14 (in the non-quadratic
case). Therefore these bent functions are non equivalent to
known classes and, to our best knowledge, the only non-
weakly normal functions up to the functions discussed in
[1,2,4].

1. Introduction

Bent functions are maximally nonlinear Boolean functions with
an even number of variables and were introduced by Rothaus [8]
in 1976. More precisely given a function f : F

n
2 → F2, the function

a ∈ F
n
2 7→ f̂(a) = 2−n/2

∑

x∈Fn

(−1)f(x)+〈a,x〉

is called the (normalized) Walsh transformation of f . Moreover,

the f̂(a), a ∈ F
n
2 are called the Walsh coefficients of f . A function

is called bent if f̂(y) = ±1 for all y ∈ F
n
2 . Bent functions always

1 Department of Mathematics, Ruhr-University Bochum, 44780 Bochum,
Germany.
email: gregor.leander@ruhr-uni-bochum.de
Fon: +49-(0)234-32-23259
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occur in pairs. In fact, given a bent function f : F
n
2 → F

n
2 , we

define the dual f∗ of f by the equation

(−1)f
∗(a) = f̂(a),

i.e. we consider the signs of the Walsh-coefficients of f .
A Boolean function for which an affine space of dimension n/2

exists such that the restriction of f to this space is constant (resp.
affine) is called normal (resp. weakly-normal). The notion of nor-
mality was introduced for the first time in [5]. While for increasing
dimension n a counting argument (see [3]) can be used to prove
that nearly all Boolean functions are non-normal, the situation
for bent functions is different. Most of the well studied families of
bent functions are obviously normal and furthermore, unlike for
arbitrary Boolean functions, normality has strong consequences
for the structure of the function outside the affine space where it
is constant. One of the consequences is, that if a bent function
f is constant on an n

2 -dimensional affine subspace, then f is bal-
anced on each of the other cosets of this affine subspace. In other
words, a normal bent function can be understood as a collection of
balanced functions and the search for non-normal bent functions is
therefore an important question towards a characterization of bent
functions in general. Only a few non weakly-normal bent functions
are known so far, see [1, 2, 4] for details.

In this paper we identify the vector space F
n
2 with the Galois

field L = F2n . As the notion of a Walsh transform refers to a scalar
product, it is convenient to choose the isomorphism such that the
canonical scalar product 〈·, ·〉 in F

n
2 coincides with the canonical

scalar product in L, which is the trace of the product:

〈x, y〉 =
n∑

i=1

xiyi = Tr(xy), x, y ∈ L

where

Tr : L 7→ L

Tr(x) =
n−1∑

i=0

x2i

.
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Thus the Walsh transform of f : L → F2 is defined as

f̂(c) = 2−n/2
∑

x∈L

(−1)f(x)χL(cx), c ∈ L,

where

χL(x) := (−1)TrL(x)

is the canonical additive character on L.
We will make extensively use of the following well known prop-

erty of the trace function

TrL(x) = TrL(x2).

1.1. The Kasami-Type Bent Function

In [6] it was proven, using the very powerful concept of Hada-
mard equivalence, that certain Boolean functions constructed via
the derivative of the Kasami Power function are bent. In this sec-
tion we mainly recall the construction of these functions, for a
proof of the bent property see Theorem A in [6].

Let L = F2n be a finite field of characteristic 2 where n = 2k
denotes an even integer. For any integer r coprime to n the Kasami
exponent is defined as

d = 22r − 2r + 1.

Furthermore we denote the derivative of the corresponding power
function on L that maps x → xd as

∆r(x) = (x + 1)d + xd + 1.

Let

br = L \ ∆r(L)

be the complement of the support of ∆r, and finally the boolean
function

cα
r (x) = Br(αx2r+1).

where we identify the set br ⊂ L with the boolean function Br

whose support is br.
It was proven in [6] that for the Walsh-transformation of cr we

have

ĉα
r (y) = f̂α(y

2r+1
3 )
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where

fα(x) = Tr(αx3).

is the Gold function. As f is bent whenever α ∈ L is a non-cube,
it follows that for these α the functions cα

r are bent. The main goal
of this paper is to compute an explicit trace representation of the
dual of these functions. The main step therefore is to compute a
trace representation of the dual of the function fα.

Note that instead of working with the complement of the set
∆r(L) we could also use the set ∆r(L) directly, but for compliance
with [6] we decided to use the complement as well.

2. The Dual of the cr Bent Function

In this section we briefly recall the well known Gold-type bent
function. We recall a proof of the Gold Case which will allow us
to derive a trace representation of the dual, see [7].

The monomial bent function belonging to the Gold Exponent is
probably the best understood bent function. As it is a quadratic
bent function, the dual is quadratic again, and in particular is
linear equivalent to the function itself. For the purpose of this
paper it is important to compute the corresponding linear mapping
(in the special case d = 3), as it is done in Lemma 2.2.

Theorem 2.1. Let α ∈ F2n, r ∈ N and d = 2r + 1. The function

f : L → F2

with

f(x) = Tr(αxd),

is bent if and only if

α /∈ {xd | x ∈ F2n}

Proof. “⇐”: Assume that α is not a d.th power. We will prove
that f is bent by computing the dual of f.

f̂(a) = 2−n/2
∑

x∈Fn
2

χL(αxd + ax)

= 2−n/2
∑

x∈F
n
2

χL(α(x + γ)d + αγd + αγ2r

x + αγx2r

+ ax)
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for any γ ∈ F
n
2 . Assume we could choose γ, such that for every

x ∈ F2n we have Tr(αγ2r

x + αγx2r

+ ax) = 0. In this case

f̂(a) = 2−n/2
∑

x∈Fn
2

χL(α(x + γ)d + αγd)

= 2−n/2(−1)Tr(αγd)
∑

x∈Fn
2

χL(α(x + γ)d)

= 2−n/2(−1)Tr(αγd)f̂(0).

So in order to prove that f is bent, we have to consider the linear
equation

0 = Tr(αγ2r

x + αγx2r

+ ax)

= Tr(x2r

(α2r

γ22r

+ αγ + a2r

))

This can only be true for all x ∈ F2n if

α2r

γ22r

+ αγ + a2r

= 0.

In order to be able to choose γ appropriately, we have to prove
that the linear mapping

H(γ) = α2r

γ22r

+ αγ

is bijective, i.e. the mapping has a trivial kernel if α /∈ {xd | x ∈
F2n}. For γ 6= 0 we compute

H(γ) = 0

γ22r−1 = α1−2r

(
γd
)2r−1

=
(
α−1

)2r−1

but as gcd(2r − 1, d) = 1 the left-hand side is a d.th power, while
the right-hand side is a d.th power iff α is a d.th power. Thus
whenever α is not a d.th power the function is bent.
“⇒”: On the other hand this immediately implies, that if α is a
d.th power, than f is not bent. Otherwise the function would be
bent for every α ∈ L∗ which is not possible. �

If f is bent H−1 exists and with γ = H−1(a2r

) we get

f̂(a) = (−1)f(H−1(a))f̂(0).
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Next we concentrate on the special case r = 3 and n not di-
visible by 3. In this case we can without loss of generality choose
α ∈ F22 \F2 and explicitly compute the inverse of the linear map-
ping H.

Lemma 2.2. Let gcd(n, 3) = 1 and α ∈ F22 \F2. Then the inverse

of the linear mapping

L(x) = αx4 + x

is given by

L−1(x) = αk
k−1∑

i=0

αix22i

Proof. The proof is straightforward. We have to show that for all
x ∈ F2n it holds that

L(L−1(x)) = x.

We have:

L(L−1(x)) = αL−1(x4) + L−1(x)

= αk+1
k−1∑

i=0

αix22(i+1)
+ αk

k−1∑

i=0

αix22i

= αk
k−1∑

i=1

(αi + αi)x22i

+ (αk+1αk−1 + αkα0)x

= ((αk)2 + (αk))x

= x,

where the last identity comes from the fact that 3 does not divide
k and thus αk ∈ F4 \ F2. �

Note that H(x) = αL(x) and so

H−1(x) = L(α2x) = α2L−1(x)

where the last identity follows because L is actually GF (4) linear.
We are now in a position to compute the trace representation

of

gr(x) = (cα
r )∗(x) = (fα)∗

(
x

2r+1
3

)
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As the following computations are indeed independent of r we
are going to consider the case r = 1 only. We denote g1 simply by
g and with the discussion above we get

g(x) = Tr(α
(
L−1(α2x)

)3
).

Remember that
Tr(x) = Tr(x2),

i.e. we can choose a representant of the cyclotomic equivalence
class for each exponent. It turns out that this reduced trace rep-
resentation of these functions has only a few non-zero coefficients.

g(x) = Tr(α
(
L−1(α2x)

)3
)

= Tr(α
(
α2L−1(x)

)3
)

= Tr(α
(
L−1(x)

)3
)

= Tr
(
α
(
L−1(x)

) (
L−1(x)

)2)

= Tr

(
ααk

(
k−1∑

i=0

αix22i

)
α2k

(
k−1∑

i=0

α2ix22i+1

))

= Tr

(
α

(
k−1∑

i=0

αix22i

)(
k−1∑

i=0

α2ix22i+1

))

We continue by multiplying out the two sums.

g(x) = Tr



α

k−1∑

i,j=0

α2i+jx22i+1+22j





= Tr



α

k−1∑

i,j=0

α2i+jx22(i−j)+1+1





= Tr



α

k−1∑

t=−k+1

t∑

j=−k+1

α2t+3jx22t+1+1





= Tr

(
α

k−1∑

t=−k+1

(t + (k − 1) − 1)α2tx22t+1+1

)

Next we have to collect cyclotomic equivalent exponents as we are
interested in a reduced trace representation. For this purpose we
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first split the sum into two parts.

g(x) = Tr

(
α

k−1∑

t=−k+1

(t + (k − 1) − 1)α2tx22t+1+1

)

= Tr

(
α

0∑

t=−k+1

(t + (k − 1) − 1)α2tx22t+1+1

)
+

Tr

(
+α

k−1∑

t=1

(t + (k − 1) − 1)α2tx22t+1+1

)

= Tr

(
α

k−1∑

t=0

(t − 1)α2(t−k+1)x22t+1+1+1

)
+

Tr

(
+α

k−2∑

t=0

(t + k − 1)α2(t+1)x22(t+1)+1+1

)

= Tr

(
k−1∑

t=0

α2t
(
tα−n + (t + k)

)
x22t+1+1

)

As Tr(x2e+1) = Tr(x2n−e+1) this is still not the final reduced form.
We have to ensure that 2t + 1 ≤ k in order to get a reduced
representation. For this define

u = ⌊
k − 1

2
⌋

and again split the sum.

g(x) = Tr

(
α

u∑

t=0

α2t
(
tα−n + (t + k)

)
x22t+1+1

)

+ Tr

(
α

k−1∑

t=u+1

α2t
(
tα−n + (t + k)

)
x22t+1+1

)

= Tr

(
α

u∑

t=0

α2t
(
tα−n + (t + k)

)
x22t+1+1

)

+ Tr




(

α

k−1∑

t=u+1

α2t
(
tα−n + (t + k)

)
x22t+1+1

)2n−2t−1


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We continue by simplifying the second term.

g(x) = Tr

(
α

u∑

t=0

α2t
(
tα−n + (t + k)

)
x22t+1+1

)
+

Tr

(
k−1∑

t=u+1

α(2t+1)2n−2t−1
(
t + k + tα−n2n−2t−1

)
x22t+1+1

)

= Tr

(
α

u∑

t=0

α2t
(
tα−n + (t + k)

)
x22t+1+1

)

+ Tr

(
k−u−2∑

t=0

αk−t+1(t + 1 + (k + 1 + t)α−k)x22t+1+1

)

We are now going to consider two cases separately, depending on
the value of k mod 2.
Case 1 (k = 0 mod 2). If k = 0 mod 2, we have u = (k − 2)/2 and
thus k − u − 2 = u. Putting things together again we get.

g(x) = Tr

(
u∑

t=0

(
α2t+1t(α−n + 1)x22t+1+1

))
+

Tr

(
u∑

t=0

(
αk−t+1(t + 1)(1 + α−k)

)
x22t+1+1

)

= Tr

(
u∑

t=0

(
α2t+1αn + αk−t+1αk(t + 1)

)
x22t+1+1

)

= Tr

(
u∑

t=0

α2t+1+nx22t+1+1

)

Case 2 (k = 1 mod 2). In this case u = (k − 1)/2 and k − u − 2 =
u − 1. In particular that means, that only the first sum will con-

tribute a coefficient to the highest order term x2k+1. Preforming
a similar computation as in the first case, we get the following

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06
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reduced representation.

g(x) = Tr

((
u−1∑

t=0

α2t+1+nx22t+1+1

))
+

Tr
(
α2u+1u(α−n + 1)x2u+1+1

)

= Tr

((
u−1∑

t=0

α2t+1+nx22t+1+1

)
+ (αkαnu + αk)x2k+1

)

= Tr

((
u−1∑

t=0

α2t+1+nx22t+1+1

)
+ (u + αk)x2k+1

)

We finally have proven the following theorem (which, as men-
tioned in the introduction, is stated in a less explicit form in [6]).

Theorem 2.3. Let n = 2k, d = (2r + 1)/3, where gcd(r, n) = 1.
Furthermore let α be a primitive element in GF (4) and u = ⌊k−1

2 ⌋.

(1) If k is odd then

gr(x) = Tr

((
u−1∑

t=0

α2t+1+n(xd)2
2t+1+1

)
+ (u + αk)x2k+1

)

is bent.

(2) If k is even then

gr(x) = Tr

(
u∑

t=0

α2t+1+n(xd)2
2t+1+1

)

is bent.

The dual of these functions is the function derived from the deriv-

ative of the Kasami power function cr. �

Using computer algorithms like described in [4] it turns out
that, just like for the monomial bent function corresponding to
the Kasami exponent (see [1,2,4]), at least some of these functions
are non-weakly normal. Note that these algorithms could also be
applied to the functions cα

r directly.

Fact 2.4. For n = 14 and r 6= 1 the corresponding function is

non-weakly normal.
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As a consequence of this fact, these bent functions do not belong
to the Maiorana-McFarland and, due to degree reasons, nor to
the Partial-Spread class of bent functions. Moreover, as a bent
function is weakly normal if and only if the dual is weakly normal,
the same holds for the functions cα

r . This observation is based
on computer algorithms and we want to stress that proving non-
normality for indeed any function remains still an open challenge.
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A NOTE ON LINEARITY AND HOMOMORPHICITY

Ali Doğanaksoy3,2, 1, Serhat Sağdiçoğlu3, 2, Zülfükar Saygi3 and

Muhiddin Uğuz3,1

Abstract. One of the most important criterion that a sym-
metric cipher should satisfy is nonlinearity. The most com-
mon nonlinearity measure used in cryptography is the min-
imum distance to affine functions. The main tool in calcu-
lating the nonlinearity of a Boolean function is the Walsh
transform. In this correspondence we first present results
about the Walsh spectrum powers of a Boolean function
which relate them with the homomorphicity of the function.
These results are presented in Selected Areas in Cryptogra-

phy, X. Zhang and Y. Zheng, The Nonhomomorphicity of
Boolean Functions, pp. 280-295, 1998. We give the same re-
sults with different and much simple proofs. Our main con-
tribution is the relation between the Walsh spectrum powers
of a Boolean function and structure of the set on which the
Boolean function differs from a linear function.

1. Introduction

Boolean functions are fundamental tools in the design of various
cryptographic algorithms including block and stream ciphers. One
of the most important criterion that a Boolean function should sat-
isfy is high nonlinearity. The nonlinearity of a function is defined
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to be the minimum distance to the set of affine functions which
can be calculated by using the Walsh transform. The fastest known
algorithm calculating the nonlinearity is the fast-Walsh algorithm
and its complexity is O(n2n) where n is the number of variables
of the Boolean function. Therefore, calculating the nonlinearity of
Boolean functions defined on large number of variables is compu-
tationally infeasible. Due to the definition of nonlinearity, there is
no known statistical method to approximate the nonlinearity. For
this reason, one possible way is to determine the relation between
nonlinearity and a random variable, which can be sampled and
easy to approximate. Attempts had been made in [3] and [4]. The
latter approach defines the concept of nonhomomorphicity (as an
alternative criterion to forecast the nonlinearity) which can be esti-
mated efficiently. Furthermore, they demonstrate a fast statistical
method to estimate nonhomomorphicity.

Our paper is organized as follows: in the first two sections we
give a short introduction and some necessary notations and defini-
tions. In section 3 we give the relation between the Walsh spectrum
powers of a Boolean function and structure of the set on which the
Boolean function differs from a linear function.

2. Preliminaries

In this section we fix some notations. A Boolean function of n

variables is a function from GF (2)n into GF (2), and the set of all
n variable Boolean functions is denoted by Fn. The support of a
Boolean function f ∈ Fn is defined as,

Supp(f) = {x ∈ GF (2)n | f(x) = 1} .

The weight of f is w(f) = |Supp(f)|. A Boolean function is called
balanced if w(f) = 2n−1. In other words f(x) takes an equal num-
ber of 0’s and 1’s for all x ∈ GF (2)n.

An affine function is a Boolean function f : GF (2)n → GF (2),
of the form:

f(x) = a · x ⊕ ǫ,

where a ∈ GF (2)n, and ǫ ∈ GF (2). It is clear that a nonconstant
affine function is balanced. A class of affine Boolean functions with
ǫ = 0 are called linear functions. The set of all n variable affine
(resp. linear) Boolean functions is denoted by An (resp. Ln).
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The Walsh transform of f ∈ Fn is defined as:

Wf (a) =
∑

x∈GF (2)n

(−1)f(x)⊕a·x.

For f ∈ Fn the vector [Wf (a0), . . . ,Wf (a2n−1)] is called the Walsh

spectrum of f . For any nonnegative integer k by W k
f (or just W k

if f is clear for the given context) we denote

W k
f = W k =

∑

a∈GF (2)n

[Wf (a)]k.

It is well known that for an arbitrary f ∈ Fn, W 1
f = (−1)f(0)2n

and W 2
f = 22n known as “Parseval identity”. In this paper we

concentrate on W 3 and W 4.
Nonlinearity of f ∈ Fn, Nf , is the minimum distance of f to

affine functions, by means of the Walsh transform:

Nf = 2n−1 −
1

2
maxa∈GF (2)n{|Wf (a)|}.

Functions with maximum distance to the set of affine functions,
with respect to the above nonlinearity measure, are called bent

(cf. [1], [2]); they exist for even n, and they can be characterized by
means of the Walsh transform. A Boolean function f ∈ Fn is bent
if and only if Wf (a) = ±2

n

2 , (i.e., Nf = 2n−1 − 2
n

2
−1). The weight

of bent functions can only take two values: w(f) = 2n−1 ± 2
n

2
−1.

For any f ∈ Fn, we define the following:

Pk = |{(x1, . . . , xk)|f(x1) ⊕ · · · ⊕ f(xk) ⊕ f(x1 ⊕ · · · ⊕ xk) = 0}|

for k = 1, 2, . . . . It can be easily seen by the definition that

Pk = 2knprob(f(x1) ⊕ · · · ⊕ f(xk) ⊕ f(x1 ⊕ · · · ⊕ xk) = 0).

Now we can set P0 = prob{f(0) = 0}. Pk corresponds to the
(k + 1)-st order homomorphicity as defined by Zhang and Zheng
in [4].
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3. Properties Obtained from the Sums of Walsh Spectrum

Powers of Boolean Functions

In this section the facts stated up to Proposition 3.6 were also
obtained in [4] where the language of nonhomomorphicity has been
used. For the sake of completeness we give different (yet much
simple) proofs for these results. Our main results are given in
Propositions 3.6 and 3.7 . We show the relation between the Walsh
spectrum powers of a Boolean function and structure of the set on
which the Boolean function differs from a linear function.

The following theorem shows the relation between W k and Pk−1

for k ≥ 1. Since the relations for W 1 and W 2 given in the previous
section are known, this theorem generalizes these relations for an
arbitrary k.

Theorem 3.1. For f ∈ Fn, we have W k = 2n+1Pk−1 − 2kn for

k ≥ 1.

Proof. If k = 1, we have

W 1 = (−1)f(0)2n = P02
n + (1 − P0)(−2n) = 2n+1P0 − 2n.

Assume k > 1 and let f ∈ Fn, then

W k =
∑

a

[Wf (a)]k

=
∑

a

k
∏

i=1

(
∑

xi

(−1)f(xi)⊕a·xi)

=
∑

x1,...,xk

(−1)f(x1)⊕···⊕f(xk)
∑

a

(−1)a·(x1⊕···⊕xk)

= 2n
∑

x1,...,xk−1

(−1)f(x1)⊕···⊕f(xk−1)⊕f(x1⊕···⊕xk−1)

= 2n
∑

x1,...,xk−1

[1 − 2(f(x1) ⊕ · · · ⊕ f(xk−1)

⊕f(x1 ⊕ · · · ⊕ xk−1))]

= 2(k−1)n+n − 2n+1[2(k−1)n − Pk−1]

= 2kn − 2nk+1 + 2n+1Pk−1.

Therefore, W k = 2n+1Pk−1 − 2kn. �
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As we have noted previously W 1
f = (−1)f(0)2n and the “Parse-

val identity” W 2
f = 22n are special cases of the above theorem.

Corollary 3.2. For f ∈ Fn, we have

i: P2 = 22n−1 + W 3

2n+1 ,

ii: P3 = 23n−1 + W 4

2n+1 .

Lemma 3.3. f ∈ An if and only if P2 ∈ {0, 22n}.

Proof. Suppose that P2 ∈ {0, 22n}. If P2 = 22n then for all x, y ∈
GF (2)n, we have f(x)⊕f(y)⊕f(x⊕y) = 0, and if P2 = 0 then for
all x, y ∈ GF (2)n, we have f(x) ⊕ f(y) ⊕ f(x ⊕ y) = 1. Therefore
if P2 ∈ {0, 22n}, then f ∈ An.

Conversely, if f ∈ An, then f(x ⊕ y) = f(x) ⊕ f(y) ⊕ ǫ for all
x, y ∈ GF (2)n. Therefore, if ǫ = 0 then P2 = 22n or if ǫ = 1 then
P2 = 0. �

Lemma 3.4. f ∈ An if and only if P3 = 23n.

Proof. Suppose that P3 = 23n then, either f(0) = 0 or f(0) =
1. If f(0) = 0 then for any x, y ∈ GF (2)n, letting z = 0, we
have f(x) ⊕ f(y) ⊕ f(x ⊕ y) = 0, and if f(0) = 1 then for any
x, y ∈ GF (2)n, letting z = 0, we have f(x)⊕ f(y)⊕ f(x⊕ y) = 1.
Therefore f ∈ An.

Conversely, if f ∈ An, then f(x⊕y⊕z) = f(x)⊕f(y⊕z)⊕ ǫ =
f(x) ⊕ f(y) ⊕ f(z) for all x, y, z ∈ GF (2)n. �

Above lemmas can be generalized easily as follows:

Lemma 3.5. f ∈ An if and only if Pk =

{

0, 2kn, if k is even

2kn, if k is odd
.

Now we introduce two sets. Let f ∈ Fn be fixed and g ∈ Fn,

R2(g) = |{(x, y)|x, y, x ⊕ y ∈ A}|,

R3(g) = |{(x, y, z)|x, y, z, x ⊕ y ⊕ z ∈ A}|

where A is the complement of the support D of f⊕g. The following
proposition relates R2 and P2.

Proposition 3.6. For any fixed f ∈ Fn and g ∈ Ln, we have

4R2(g) + 3|A|(|D| − |A|) = P2.

Proof. It is clear that f(x) ⊕ f(y) ⊕ f(x ⊕ y) = 0 when only one
or all of x, y and x ⊕ y are in A.
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– If x, y ∈ A then x⊕y ∈ A for R2(g) cases. For |A|2−R2(g)
cases x ⊕ y ∈ D.

– If x ∈ A and y ∈ D then for |A|2 −R2(g) cases x⊕ y ∈ A.
Consequently, for |A||D| + R2(g) − |A|2 cases x ⊕ y ∈ D

(and f(x) ⊕ f(y) ⊕ f(x ⊕ y) = 0).
– The case y ∈ A and x ∈ D is similar to the above case.
– If x, y ∈ D then for 2n|A| − 2|A|2 + R2(g) cases x ⊕ y ∈ A

(and f(x) ⊕ f(y) ⊕ f(x ⊕ y) = 0).

Therefore, for 4R2(g)−4|A|2+2|A||D|+2n|A| cases we have f(x)⊕
f(y)⊕f(x⊕y) = 0, that is, P2 = 4R2(g)−4|A|2 +2|A||D|+2n|A|.
If we use the equality |A| + |D| = 2n, we have the desired result
4R2(g) + 3|A|(|D| − |A|) = P2. �

The following proposition relates R3 and P3.

Proposition 3.7. For any fixed f ∈ Fn and g ∈ Ln, we have

8R3(g) + (7|A|2 + |D|2)(|D| − |A|) = P3.

Proof. Similar to proof of Proposition 3.6. �

It is seen that, R2(g) (and also R3(g)) depends only on the
distance between f and g; it does not depend on the particular
choice of g. So we can write the above equations as

4R2(k) − 6(2n − k)(2n−1 − k) = P2

where k is the number of points where f differs from a linear
function.

Similarly,

8R3(k) − 2(7(2n − k)2 + k2)(2n−1 − k) = P3

where k is the number of points where f differs from an affine
function.

Combining Corollary 3.2 and Propositions 3.6 and 3.7 we obtain

4R2(k) − 6(2n − k)(2n−1 − k) = 22n−1 +
W 3

2n+1
,

8R3(k) − 2(7(2n − k)2 + k2)(2n−1 − k) = 23n−1 +
W 4

2n+1
.
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4. Conclusion and Future Studies

In this paper we revisit the sum of Walsh spectrum powers of a
Boolean function f to give an interpretation in terms of nonhomo-
morphicity and nonlinearity measures. Our main result combines
the following concepts:

– The sum of third (and also fourth) powers of Walsh spec-
trum entries of f ,

– The number of points at which f differs from an arbitrary
linear function g,

– The number R2 (and also R3) of certain ordered pairs
(triples) of points at which where f disagrees with g.

Investigating the relation between R2, R3 and possibly W 3, W 4,
the above mentioned relation seems quite promising to give some
bounds on the nonlinearity of certain classes of Boolean functions.
Although an explicit relation between nonlinearity and nonhomo-
morphicity is not still achieved, we will focus on obtaining such a
relation concentrating on the identities we have obtained.
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NOTION OF ALGEBRAIC IMMUNITY AND ITS
EVALUATION RELATED TO FAST ALGEBRAIC

ATTACKS

Deepak K. Dalai1, Kishan C. Gupta2 and Subhamoy Maitra1

Abstract. It has been noted recently that algebraic (annihi-
lator) immunity alone does not provide sufficient resistance
against algebraic attacks. In this regard, given a Boolean
function f , just checking the minimum degree annihilators
of f, 1 + f is not enough and one should check the rela-
tionships of the form fg = h, and a function f , even if it
has very good algebraic immunity, is not necessarily good
against fast algebraic attack, if the degree of g becomes very
low when the degree of h is equal to or little greater than
the algebraic immunity of f . In this paper we theoretically
study the two currently known constructions having max-
imum possible algebraic immunity from this viewpoint. To
the end, we also experimentally study some cryptographi-
cally significant functions having good algebraic immunity.

1. Introduction

Algebraic attack and fast algebraic attack have recently re-
ceived a lot of attention in cryptographic literature [3,4,13–17,22,
25]. The study on algebraic attack identified an important prop-
erty for Boolean functions to be used in crypto systems, which
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is called algebraic immunity [19, 25]. Using good algebraic immu-
nity one may achieve resistance against algebraic attacks done in a
particular way, i.e., using linearization. In fact, one may not need
linearization if algorithms using Gröbner bases can be properly
exploited. This is the reason in one of the recent papers [21], the
term annihilator immunity is used instead of algebraic immunity.
Further it should be noted that based on some recent works re-
lated to fast algebraic attacks [1, 2, 7, 17], one should concentrate
more carefully on the design parameters of Boolean functions for
proper resistance. The weakness of algebraic (annihilator) immu-
nity against fast algebraic attack has been demonstrated in [18]
by mounting an attack on SFINKS [6].

Let Bn be the set of all Boolean functions {0, 1}n → {0, 1}
on n input variables. One may refer to [19] for the definitions of
truth table, algebraic normal form (ANF), algebraic degree (deg),
weight (wt), nonlinearity (nl) and Walsh spectrum of a Boolean
function.

The ANF of a Boolean function can be considered as a mul-
tivariate polynomial over GF(2). It is shown in [16] that, given
any n-variable Boolean function f , it is always possible to get
a Boolean function g with degree at most ⌈n

2 ⌉ such that fg has
degree at most ⌈n

2 ⌉. Thus, while choosing a function f , the cryp-
tosystem designer should be careful that it should not happen that
the degree of fg falls much below ⌈n

2 ⌉ with a nonzero function g

whose degree is also much below ⌈n
2 ⌉.

Definition 1.1. Given f ∈ Bn, define AN(f) = {g ∈ Bn| fg =
0}. Any function g ∈ AN(f) is called an annihilator of f .

Note that we are mostly interested in the lowest degree nonzero
annihilator.

Definition 1.2. Given f ∈ Bn, its algebraic immunity is defined
as [19] the minimum degree of all nonzero annihilators of f or
f + 1, and it is denoted by AIn(f).

Note that AIn(f) ≤ deg(f), since f(1 + f) = 0. It can also
be deduced from [16] that AIn(f) ≤ ⌈n

2 ⌉. Boolean functions and
related results with algebraic (annihilator) immunity has currently
received serious attention [5, 8–10, 12, 19–21, 23, 25] and the first
two constructions of Boolean functions having maximum algebraic
(annihilator) immunity is presented in [20,21].
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Now consider a function f with maximum possible algebraic
immunity ⌈n

2 ⌉. It may very well happen that in that case fg = h,
where deg(h) = ⌈n

2 ⌉, but deg(g) < ⌈n
2 ⌉. In that case the lower

degree of g may be exploited to mount a fast attack (well known
as fast algebraic attack) even if the algebraic immunity of f is the
maximum possible. In fact, there are examples, where one can get a
linear g too. Initial study of Boolean functions in this area has been
started in [1, 7]. Since algebraic immunity is now understood as a
necessary (but not sufficient) condition against resisting algebraic
and fast algebraic attacks, we feel there is a need to consider the
functions with full algebraic immunity for their performance in
terms of fg = h relationship. That is for the functions f with
full algebraic immunity we consider deg(h) ≥ ⌈n

2 ⌉, and then after
fixing the degree of h, we try to get the minimum degree g. One
should be aware that checking these fg = h relationships is not
sufficient and there are numbers of scenarios to mount algebraic
and fast algebraic attacks which are available in details in [16,17].

It is always meaningful to consider fg = h only when deg(g) ≤
deg(h) as otherwise fg = h will imply fh = h. So for all the
discussion in this paper we will consider deg(g) ≤ deg(h) for a
relation fg = h unless mentioned otherwise.

In the next subsection we present a few preliminary technical
results. In Section 3, we study the construction presented in [20],
where we need to present mostly the technical changes (the strat-
egy of proof remains the same as given in [11]). In Section 4
we present the experimental results related to symmetric and ro-
tation symmetric functions. We also experiment on the (modi-
fied) balanced Patterson-Wiedemann type functions in this direc-
tion [24,26].

2. Algebraic immunity of f and the fg = h relationships

In this section we present some basic results.

Proposition 2.1. Consider an n-variable (n odd) function f hav-
ing AIn(f) = ⌈n

2 ⌉. Then there will always exist g, h, such that
fg = h, where deg(g) = ⌊n

2 ⌋ and deg(h) = ⌈n
2 ⌉.

Proof. By [17, Theorem 7.2.1], we know that there always exists
g, h, such that fg = h, with deg(g) + deg(h) = n. Thus, if we fix
deg(g) = ⌊n

2 ⌋ and deg(h) = ⌈n
2 ⌉, we get the required result. �
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Note that this always means that even if a function on odd
number of variables n has full algebraic immunity ⌈n

2 ⌉, one will
always get a g one degree lower than that. However, for even n,
this may or may not be true. In this paper we will show that given
a Boolean function on n variables with full algebraic immunity n

2 ,
one may or may not get a g having degree < n

2 such that fg = h

when deg(h) = n
2 .

Proposition 2.2. Consider an n-variable function f . Consider
the relationship fg = h, such that deg(h) = AIn(f). Then if
deg(g) < AIn(f) then both f, 1 + f have minimum degree annihi-
lators at degree AIn(f).

Proof. It is clear that at least one of f or 1 + f will have an
annihilator at degree AIn(f). Without loss of generality, consider
that f has the minimum degree annihilator at degree AIn(f) and
1 + f has the minimum degree annihilator at degree ν ≥ AIn(f).
Consider the relations of the form fg = h, when deg(g) < deg(h).
From [7, Lemma 1], fg = h iff f(g + h) = 0 and (1 + f)h = 0. As
deg(g) < deg(h), we have deg(g + h) = deg(h) = AIn(f). Thus
1 + f has an annihilator at degree AIn(f). �

The following corollary is immediate from Proposition 2.2.

Corollary 2.3. Let only one of f, 1 + f has minimum degree an-
nihilator at AIn(f) and the other one has minimum degree an-
nihilator at degree > AIn(f). Then there is no fg = h relation
having deg(h) = AIn(f) and deg(g) < AIn(f).

We also present the following result that can be used to find
minimum degree g in the relation fg = h, where deg(h) = AIn(f).

Proposition 2.4. Consider that f, 1 + f have minimum degree
annihilators at the same degree AIn(f). Let A be the set of an-
nihilators of f and B be the set of annihilators of 1 + f at de-
gree AIn(f). Then the minimum degree of g such that fg = h is

min
βA∈A,βB∈B

deg(βA + βB), where h is a function of degree AIn(f).

Also we present the following result relating g and h only.

Proposition 2.5. If fg = h, then gh = h, i.e., g is the annihilator
of 1 + h.

Proof. We have, fg = h, i.e., fgg = gh, i.e., fg = gh, i.e., h =
gh. �
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Consider two functions τ1, τ2 ∈ Bn having full algebraic im-
munity ⌈n

2 ⌉ when n is odd. If we consider the function τ = (1 +
xn+1)τ1 + xn+1τ2, on even number of variables, it can be checked
using [19, Proposition 1(2)] that this is again of full algebraic im-
munity n+1

2 which is actually ⌈n
2 ⌉.

However, the situation is not as simple when we take n even.
In such a situation we start with two functions τ1, τ2 ∈ Bn having
full algebraic immunity n

2 . In that case, τ = (1+xn+1)τ1 +xn+1τ2,
on odd number of variables may or may not have full algebraic
immunity ⌈n+1

2 ⌉ = n
2 + 1.

Consider τ1, τ2 have annihilators π1, π2 at degree n
2 and 1 +

τ1, 1 + τ2 have annihilators π′1, π
′
2 at degree n

2 . Then following [19,
Proposition 1(2)], τ will have algebraic immunity n

2 , iff deg(π1 +
π2) <

n
2 or deg(π′1 + π′2) <

n
2 .

Now consider that τ1, τ2 have minimum degree annihilators
π1, π2 at degree n

2 and n
2 + 1 respectively. Further 1 + τ1, 1 + τ2

have minimum degree annihilators π′1, π
′
2 at degree n

2 + 1 and n
2

respectively. Then one can check that τ has algebraic immunity
n
2 + 1. Note that the functions φ2k (in Section 3) and the func-
tions ψ2k (in Section 4) have the properties like τ1 and 1 + φ2k,
1+ψ2k have the properties like τ2. Thus the availability of the func-
tions φ2k, ψ2k having full algebraic immunity k presents a clear
construction using them to get functions with full algebraic im-
munity k + 1 on odd number of variables 2k + 1. As concrete
examples, x2k+1 +φ2k, x2k+1 +ψ2k, (1+xn+1)φ2k +xn+1(1+ψ2k),
(1 + xn+1)ψ2k + xn+1(1 + φ2k) are functions on odd number of
variables with full algebraic immunity.

Proposition 2.6. Suppose f ∈ B2k for k ≥ 0 such that f and
1 + f have no annihilator of degree < k and < k + 1 respectively.
Then wt(f) = 22k−1 −

(2k−1
k

)

.

Proof. Since f and 1 + f have no annihilator of degree < k and
< k + 1 respectively, following the proof of [19, Theorem 1] we

have wt(f) ≥
∑k−1

i=0

(2k
i

)

and wt(1 + f) ≥
∑k

i=0

(2k
i

)

. This implies

wt(f) is exactly
∑k−1

i=0

(2k
i

)

= 22k−1 −
(2k−1

k

)

. �

As a corollary of this result we can get exact weights 22k−1 −
(2k−1

k

)

of φ2k and ψ2k directly which is already given in [11,21].
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3. Study of the construction from [20]

In [20], for the first time functions with full algebraic immunity
have been constructed. The construction is as follows.

Construction 1. Denote by φ2k ∈ B2k the function defined by
the recursion:

φ2k+2 = φ2k||φ2k||φ2k||φ
1
2k, (1)

where || denotes the concatenation of the truth tables. In terms of
algebraic normal form, φ2k+2 = φ2k + x2k+1x2k+2(φ2k + φ1

2k), and
where φ1

2k is defined itself by a doubly indexed recursion

φi
2j = φi−1

2j−2||φ
i
2j−2||φ

i
2j−2||φ

i+1
2j−2, (2)

i.e., in terms of algebraic normal form, φi
2j = φi−1

2j−2 + (x2j−1 +

x2j)(φ
i−1
2j−2 + φi

2j−2) + x2j−1x2j(φ
i−1
2j−2 + φi+1

2j−2) for j > 0, i > 0,

with base step φ0
j = φj for j > 0, φi

0 = i mod 2 for i ≥ 0.

What we actually prove now is that the minimum degree anni-
hilators of φ2k are at the degree k and that the minimum degree
annihilators of 1 + φ2k are at the degree k + 1. Then using Corol-
lary 2.3, we get that there is no g having degree < k such that
φ2kg = h, where deg(h) = k. Note that the proof technique follows
the similar line as it has been presented in [11, 20], but there are
some necessary technical modifications to get the results.

Lemma 3.1. Assume that the function φ2i ∈ B2i has been gen-
erated by Construction 1 for 0 ≤ i ≤ k and f + φ2i has no an-
nihilator of degree < i + 1 for 0 ≤ i ≤ k and f is a nonzero
function of other variables. If, for some 0 ≤ i ≤ k and j ≥ 0,

there exists g ∈ AN(f + φ
j
2i) and h ∈ AN(f + φ

j+1
2i ) such that

deg(g + h) ≤ i− 1 − j then g = h.

Proof. We prove Lemma 3.1 by induction on i.
For the base step i = 0, deg(g + h) ≤ 0 − 1 − j ≤ −1 implies

that such a function cannot exist, i.e., g+h is identically 0, which
gives g = h.

Now we prove the inductive step. Assume that, for i < ℓ, the
induction assumption holds (for every j ≥ 0). We will show it
for i = ℓ (and for every j ≥ 0). Suppose that there exists g ∈

AN(f + φ
j
2ℓ) and h ∈ AN(f + φ

j+1
2ℓ ) with deg(g + h) ≤ ℓ− 1 − j.

By construction, if j > 0 then we have
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φ
j
2ℓ = φ

j−1
2(ℓ−1)||φ

j

2(ℓ−1)||φ
j

2(ℓ−1)||φ
j+1
2(ℓ−1),

φ
j+1
2ℓ = φ

j

2(ℓ−1)||φ
j+1
2(ℓ−1)||φ

j+1
2(ℓ−1)||φ

j+2
2(ℓ−1), and if j = 0 then

φ0
2ℓ = φ0

2(ℓ−1)||φ
0
2(ℓ−1)||φ

0
2(ℓ−1)||φ

1
2(ℓ−1). Let us denote

g = v1||v2||v3||v4, h = v5||v6||v7||v8.
Since deg(g+h) ≤ ℓ−1−j, from the ANF of g+h = (v1+v5)+

x2ℓ−1(v1+v5+v2+v6)+x2ℓ(v1+v5+v3+v7)+x2ℓ−1x2ℓ(v1+· · ·+v8)
we deduce the following.

• deg(v1 +v5) ≤ ℓ−1− j = (ℓ−1)−1− (j−1). If j > 0 then

v1 ∈ AN(f + φ
j−1
2(ℓ−1)), v5 ∈ AN(f + φ

j

2(ℓ−1)) implies that

v1 = v5, according to the induction assumption. If j = 0,
then we have v1, v5 ∈ AN(f +φ2(ℓ−1)), and therefore (v1 +
v5) ∈ AN(f +φ2(ℓ−1)), with deg(v1 + v5) ≤ ℓ− 1. Suppose
that v1 + v5 6= 0, then we would have deg(v1 + v5) ≥ ℓ,
since f + φ2(ℓ−1)) has no annihilator of degree ≤ ℓ− 1, by
hypothesis; a contradiction. Hence v1 + v5 = 0 i.e. v1 = v5.

• deg(v2+v6) ≤ (ℓ−1)−1−j and v2 ∈ AN(f+φj

2(ℓ−1)), v6 ∈

AN(f + φ
j+1
2(ℓ−1)), imply that v2 = v6, according to the

induction assumption.

• deg(v3+v7) ≤ (ℓ−1)−1−j and v3 ∈ AN(f+φj

2(ℓ−1)), v7 ∈

AN(f + φ
j+1
2(ℓ−1)), imply that v3 = v7, according to the

induction assumption.
• deg(v4 + v8) ≤ (ℓ − 1) − 1 − (j + 1) and v4 ∈ AN(f +

φ
j+1
2(ℓ−1)), v8 ∈ AN(f +φ

j+2
2(ℓ−1)), imply that v4 = v8, accord-

ing to the induction assumption.

Hence we get g = h. �

Lemma 3.2. Assume that the function φ2i ∈ B2i has been gener-
ated by Construction 1 for 0 ≤ i ≤ k and that f + φ2i where f is
a nonzero function other variables have no annihilator of degree
< i + 1 for 0 ≤ i ≤ k. If, for some 0 ≤ i ≤ k and j ≥ 0, there

exists g ∈ AN(f+φj
2i)∩AN(f+φj+1

2i ) such that deg(g) ≤ i+j+1,
then g = 0.

Proof. We prove Lemma 3.2 by induction on i− j.
For the base step (i.e., i− j ≤ 0), we have from Construction 1

f + φ
j+1
2i = 1 + f + φ

j
2i (this can easily be checked by induction).

Hence, g ∈ AN(f + φ
j
2i) ∩AN(f + φ

j
2i + 1), and g = 0.

Now we prove the inductive step. Assume that the induction
assumption holds for i − j ≤ ℓ, ℓ ≥ 0, and let us prove it for
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i − j = ℓ + 1. So let g ∈ AN(f + φ
j
2i) ∩ AN(f + φ

j+1
2i ) where

i− j = ℓ+ 1. If j > 0, we have

φ
j
2i = φ

j−1
2(i−1)||φ

j

2(i−1)||φ
j

2(i−1)||φ
j+1
2(i−1),

φ
j+1
2i = φ

j

2(i−1)||φ
j+1
2(i−1)||φ

j+1
2(i−1)||φ

j+2
2(i−1). Let us denote g =

v1||v2||v3||v4, where, v1 ∈ AN(f + φ
j−1
2(i−1)

) ∩ AN(f + φ
j

2(i−1)
),

v2, v3 ∈ AN(f + φ
j

2(i−1)) ∩ AN(f + φ
j+1
2(i−1)) and v4 ∈ AN(f +

φ
j+1
2(i−1)) ∩AN(f + φ

j+2
2(i−1)).

(1) Since deg(g) ≤ i+ j+1, we have deg(v4) ≤ i+ j+1 = (i−
1)+(j+1)+1. Since (i−1)−(j+1) = i−j−2 < ℓ, we have
v4 = 0, according to the induction assumption. So the ANF
of g is v1+x2i−1(v1+v2)+x2i(v1+v3)+x2i−1x2i(v1+v2+v3).
Then deg(v1 + v2),deg(v1 + v3),deg(v1 + v2 + v3) ≤ i+ j,
which implies deg(v1),deg(v2),deg(v3) ≤ i+ j.

(2) We have then deg(v2) ≤ i+j = (i−1)+j+1 and deg(v3) ≤
i+ j = (i− 1) + j + 1. Since (i− 1)− j = i− j − 1 ≤ ℓ, we
have v2 = v3 = 0, according to the induction assumption.

(3) Since v2 = v3 = v4 = 0, the ANF of g is (1 + x2i−1 + x2i +
x2i−1x2i)v1. So, deg(v1) ≤ i+ j − 1 = (i− 1) + (j − 1) + 1.
Here (i−1)−(j−1) = ℓ+1. So, we cannot use the induction
assumption directly. Now we break v1 again into four parts
as
φ

j−1
2(i−1) = φ

j−2
2(i−2)||φ

j−1
2(i−2)||φ

j−1
2(i−2)||φ

j

2(i−2),

φ
j

2(i−1) = φ
j−1
2(i−2)||φ

j

2(i−2)||φ
j

2(i−2)||φ
j+1
2(i−2),

v1 = v1,1||v1,2||v1,3||v1,4.
Using similar arguments as in Item 1,2, we have v1,2 =

v1,3 = v1,4 = 0. So, deg(v1,1) ≤ i + j − 3. Doing the
similar process j times, we will get some function v ∈
AN(f + φ2(i−j)) ∩ AN(f + φ1

2(i−j)). At every step of this

sub-induction, the degree decreases by 2, and we have then
deg(v) ≤ i+j+1−2j = i−j+1. Breaking v a last time into
four parts and using that v ∈ AN(f + φ2(i−j)) ∩ AN(f +

φ1
2(i−j)), we have

φ2(i−j) = φ2(i−j−1)||φ2(i−j−1)||φ2(i−j−1)||φ
1
2(i−j−1),

φ1
2(i−j) = φ2(i−j−1)||φ

1
2(i−j−1)||φ

1
2(i−j−1)||φ

2
2(i−j−1),

v = v′||v′′||v′′′||v′′′′.

Using similar arguments as in Item 1,2, we have v′′ = v′′′ =
v′′′′ = 0. So, deg(v′) ≤ i−j−1. And v′ ∈ AN(f+φ2(i−j−1))
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implies that, if v′ 6= 0, then deg(v) ≥ i−j, a contradiction.
Hence, v′ = 0 which implies g = 0.

If j = 0, then the proof is similar to the last step in Item 3 above.
�

Theorem 3.3. Let f ′ ∈ B2k+l = f + φ2k where f ∈ Bl is a non
zero function depend on variables {x2k+1, . . . , x2k+l} and φ2k ∈
B2k depend on variables {x1, . . . , x2k} for k, l ≥ 0. Then f ′ has no
annihilator of degree < k + 1.

Proof. We prove Theorem 3.3 by induction on k. For k = 0, we
have f ′ = f and hence there is no annihilator of degree < 1. In the
inductive step, we assume the hypothesis true until k and we have
to prove that any nonzero function g2k+2 such that g2k+2f

′ = 0
has degree at least k+ 2. Suppose that such a function g2k+2 with
degree ≤ k + 1 exists. Then, g2k+2 can be decomposed as

g2k+2 = g2k||g
′
2k||g

′′
2k||h2k,

where g2k, g
′
2k, g

′′
2k ∈ AN(f + φ2k), and h2k ∈ AN(f + φ1

2k). The
algebraic normal form of g2k+2 is then g2k+2(x1, . . . , x2k+2) = g2k+
x2k+1(g2k+g′2k)+x2k+2(g2k+g′′2k)+x2k+1x2k+2(g2k+g′2k+g′′2k+h2k).

If g2k+2 has degree ≤ k+1, then (g2k +g′2k) and (g2k +g′′2k) have
degrees ≤ k. Because both functions lie in AN(f + φ2k) and ac-
cording induction assumption f +φ2k has no annihilator of degree
< k+1, we deduce that g2k+g′2k = 0 and g2k +g′′2k = 0, which give,
g2k = g′2k = g′′2k. Therefore, g2k+2 = g2k + x2k+1x2k+2(g2k + h2k),
deg(g2k) ≤ k + 1 and deg(g2k + h2k) ≤ k − 1. According to
Lemma 3.1, we have g2k = h2k. According to Lemma 3.2, we have
then g2k = h2k = 0 that gives, g2k+2 = 0. This completes the
proof. �

Remark 1. If f ∈ Bl (in above theorem) has no annihilator of
degree < t where t ≥ 2, then the question is whether f + φ2k

has no annihilator < t+ k. In general, the answer is no. Because
in Lemma 3.1 we have to consider deg(g + h) ≤ i − 2 − j + t

and in the base step in the proof of the lemma, i.e., for i = 0,
deg(g + h) ≤ −2 − j + t. So for j = 0, deg(g + h) ≤ t− 2 where
t− 2 ≥ 0. So, we cannot tell that g + h = 0. So, it is always true
for the case t ≤ 1, but not for t ≥ 2.

Corollary 3.4. 1 + φ2k has no annihilator of degree < k + 1, but
has annihilator at degree k + 1.
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Proof. In Theorem 3.3, we take f ∈ B0 as the constant 1 function,
i.e., the truth table of f contains a single 1. As f is nonzero,
following Theorem 3.3, 1 + φ2k has no annihilator of degree ≤ k.

From [11], we have wt(φ2k) = 22k−1 −
(2k−1

k−1

)

. Thus, wt(1 +

φ2k) = 22k−1 +
(2k−1

k−1

)

. Then following the proof of [19, Theorem

1], we find that 1 + φ2k must have an annihilator at degree k + 1

as it has the weight 22k−1 +
(2k−1

k−1

)

. �

Theorem 3.5. Let f ∈ B2k such that the degree of minimum
degree annihilators of f and 1+f are d and e respectively, d, e > 0.
Suppose there exists g, h ∈ B2k such that fg = h, where g is a non
zero function. Then either h is zero or deg(h) ≥ e. If h is zero
then deg(g) ≥ d.

Proof. If possible, consider that there exists a nonzero h of degree
e1 < e. Then from the result [7, Lemma 1] that fg = h iff f(g +
h) = 0 and (1 + f)h = 0, we find h is an e1 degree annihilator of
1 + f which is a contradiction. Further if h is a zero function then
fg = 0. As f has no annihilator of degree less than d and g is a
non zero function, deg(g) ≥ d. �

Now consider any function f ∈ B2k such that the minimum
degree annihilators of f and 1 + f are at degree k and k + 1.
Then following Theorem 3.5, we cannot find any such nonzero h
of degree less than k+1. If we take h as a zero function then degree
of g has to be greater than or equal to k. Since φ2k has minimum
degree annihilator at degree k and 1 + φ2k has minimum degree
annihilator at degree k + 1, we get the following result.

Corollary 3.6. Consider g, h ∈ B2k such that φ2kg = h where
g 6= 0. Then either deg(h) > k or if h = 0 then deg(g) ≥ k.

Note that this means one cannot get a lower degree (than
AI2k(φ2k) = k) function g by fixing h at a degree k. Note that
in [1, Table 3], the functions on 2k variables are not φ2k, but the
functions [20, Example 1] of the form x1x2 + φ2k−2(x3, . . . , x2k)
which are also of full algebraic immunity k. That is why those
functions [20, Example 1] are weak against fast algebraic attack.
Further in case of deg(h) > k, we present the experimental results
in Table 1 for the φ2kg = h relationships for 6 ≤ 2k ≤ 14. We
present the minimum degree of g in the table till it becomes 1.

From Table 1, it is clear that with the increase of deg(h), the
degree of g decreases as expected, but the rate of decrease is not
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2k deg(g) deg(h)
6 1 4

8 1 5

2k deg(g) deg(h)
10 2 6
10 2 7
10 1 8

2k deg(g) deg(h)
12 3 7
12 3 8
12 1 9

2k deg(g) deg(h)
14 4 8
14 4 9
14 2 10
14 2 11
14 1 12

Table 1. Experimental results on φ2kg = h relationship.

sharp. In fact, if one uses φ14, then one gets a linear g only when h
is of degree 12. Thus we like to point out that though the function
φ2k is not good in terms of nonlinearity [11], its structure is good
for immunity against both algebraic and fast algebraic attacks.

4. Study on symmetric and rotation symmetric functions

The following construction for symmetric functions with max-
imum algebraic immunity has been presented in [8, 21]. Consider
ψn ∈ Bn, as follows:

ψn(x) =

{

1 for wt(x) < ⌈n
2 ⌉,

0 for wt(x) ≥ ⌈n
2 ⌉.

One can check using the proof technique in [21, Lemma 3] that
ψ2k has minimum degree annihilators at degree k and 1 +ψ2k has
minimum degree annihilators at degree k + 1. Thus, similar to
Corollary 3.6, we get the following result.

Corollary 4.1. Consider g, h ∈ B2k such that ψ2kg = h where
g 6= 0. Then either deg(h) > k or if h = 0 then deg(g) ≥ k.

Corollary 4.1, proves that for g, h ∈ B2k, there cannot be any
relation ψ2kg = h, where deg(h) = k. Similar interesting fg = h

relationship has been studied in [1, 7].

The algebraic degree of ψn is 2⌊log2 n⌋ [21] and we will always
get a constant 1 function g (i.e., of degree 0) such that ψng =
h, where deg(h) = 2⌊log2

n⌋, i.e., h = ψn. Similarly extending [7,
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2k deg(g) deg(h)
6 0 4

8 1 5

2k deg(g) deg(h)
12 3 7
12 0 8

2k deg(g) deg(h)
10 2 6
10 2 7
10 0 8

2k deg(g) deg(h)
14 0 8

Table 2. Experimental results on ψ2kg = h relationship.

Theorem 13], if 2t < n ≤ 2t+1, then there always exist ψng = h

relations having deg(g) = 1 and deg(h) = 2t + 1 (the result in [7,
Theorem 13] shows this only when n is a power of 2). Note that
the theoretical results given in [1, Table 4] are not tight due to this
reason. In Table 2, we present the results in tabular form and this
may be compared with Table 1. Based on these, it seems that the
ψ2k functions have a worse profile than φ2k. Note that the weight
and nonlinearity of ψ2k and φ2k are identical, but that the algebraic
degree of φ2k is in general greater than that of ψ2k [11, 21].

A more general class of functions with maximum possible alge-
braic immunity has been proposed in [21].

Construction 2. Consider ζ2k ∈ B2k, k ≥ 0, as follows:

ζ2k(x) =











1 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1},

0 for wt(x) > k.

Note that if the value of ax is the same for all the weight k
inputs x, then it is a symmetric function. However, we will now
specifically consider the case where the outputs corresponding to
weight k inputs take both the distinct values 0, 1 and the function
becomes non symmetric.

Proposition 4.2. Consider ζ2k as described in Construction 2.
Then both ζ2k and 1 + ζ2k have minimum degree annihilators at
degree k.

Proof. From [21] we already have AI2k(ζ2k) = k. That both ζ2k

and 1 + ζ2k have minimum degree annihilators at degree k can be
proved considering their weights of ζ2k, 1 + ζ2k and following the
same kind of argument as in the proof of [19, Theorem 1]. �
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2k nl(ζ2k) deg(ζ2k) deg(g) deg(h)
6 22 5 3 3

1 4
8 92 7 3 4

1 5
10 384 9 4 5

2 6
2 7
1 8

12 1584 11 5 6
3 7
3 8
1 9

14 6470 13 6 7
4 8
1 9

Table 3. Profiles for the functions ζ2k.

Based on Proposition 4.2, it is not clear whether there exists g
having deg(g) < k such that ζ2kg = h, where deg(h) = k. Thus
we go for the following experimentation. We use similar kind of
functions as described in [21] as follows.

G(x1, . . . , x2k) = 0 for wt(x1, . . . , x2k) < k,

= 1 for wt(x1, . . . , x2k) > k,

= b(x1, . . . , x2k) for wt(x1, . . . , x2k) = k,

where b(x1, . . . , x2k) is a Maiorana-McFarland type bent function.

(1) If wt(G) < 22k−1, then we choose 22k−1 − wt(G) points
randomly from the inputs having weight k and output 0
of G and toggle those outputs to 1 to get ζ2k.

(2) If wt(G) > 22k−1, then we choose wt(G) − 22k−1 points
randomly from the inputs having weight k and output 1
of G and toggle those outputs to 0 to get ζ2k.

Thus we get balanced ζ2k. As we have already described in
Proposition 4.2, the fg = h relationships for the functions of the
type of ζ2k may not be decided immediately. Thus we present some
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experimental results in Table 4 for this purpose for a randomly
chosen ζ2k for each 6 ≤ 2k ≤ 14.

4.1. Experimental Results on Rotation Symmetric Functions

We also consider the following rotation symmetric functions
with good cryptographic properties and full algebraic immunity
as they have been studied in [19].

First we consider the 7-variable, 2-resilient, nonlinearity 56 ro-
tation symmetric Boolean functions with algebraic immunity 4.
There are 12 such functions. For all these functions f , we got
fg = h relationship where g is a linear function and h has degree
4. Thus these functions are not good in resisting fast algebraic
attacks.

Next we consider the 8-variable, 1-resilient, nonlinearity 116
rotation symmetric Boolean functions with algebraic immunity 4.
There are 6976 such functions. Out of them there are 6080 many
functions f , for which we get good profile. For these functions, we
get the profile like deg(g) = 3,deg(h) = 4, deg(g) = 2,deg(h) = 5
and deg(g) = 1,deg(h) = 6. In all these cases we fix degree of h
and then find the minimum degree g. Thus there exist 8-variable,
1-resilient, nonlinearity 116 rotation symmetric Boolean functions
where we get good profile in terms of fast algebraic attack. Further
note that these functions are of degree 6 by itself. The truth table
of one of these functions is as below in hexadecimal format:

0005557337726F4A1E6E7B4C3CAB7598

03FD7CB86ADA61F41FE48C9E7A26C280

4.2. Experimental Results on (Modified) Balanced Patterson-

Wiedemann type Functions

Patterson and Wiedemann [26] considered the Boolean func-
tions on odd number of input variables n and succeeded to find

out functions having nonlinearity strictly greater than 2n−1−2
n−1

2

for odd n ≥ 15. This result is pioneering as this is the first in-
stance when such a high nonlinearity has been demonstrated and
further till date there is no other strategy to get such functions.
Later in [24] these functions have been changed heuristically to get
highly nonlinear balanced functions. We consider one of the func-
tions presented in [24], which is a balanced function on 15 variables
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having nonlinearity 16262 > 215−1 − 2
15−1

2 . We found that the al-
gebraic immunity of the function we have considered is 7 (not 8,
which is the maximum possible for 15-variable functions). Given
this function f , we experimented on the fg = h relationships fix-
ing deg(h) ≥ 7 and then finding out the minimum degree g. The
(deg(g),deg(h)) relationships for the function f is as follows: (6,
7), (6, 8), (3, 9), (3, 10), (2, 11), (2, 12), (1,13).

5. Conclusion

In this paper we have studied (in some cases theoretically, in
some other cases experimentally) a few existing constructions of
Boolean functions for their resistances against certain kinds of fast
algebraic attacks. Getting a primary construction of cryptographi-
cally significant Boolean functions (mainly with high nonlinearity)
having maximum possible algebraic immunity and good resistance
against fast algebraic attacks still remains unsolved.
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ON THE NUMBER OF BENT FUNCTIONS

WITH 8 VARIABLES

P. Langevin, P. Rabizzoni, P. Véron, J.-P. Zanotti1

Abstract. In this paper we give a new upper bound on the
number of bent functions in m = 8 variables which is at
most 2129.2. First, and this is the main work in this paper,
we find a partial classification of quartic forms in 8 variables
under the action of GL(8, 2), the general linear group over
F2. Once this partial classification is obtained, we are able
to estimate the number of possible lower degree terms we
can add to each representative by means of equations over
their binary coefficients.

1. Introduction

In symmetric cryptography, xoring a binary message with a
secret key with the same length is known to be a perfect secrecy
scheme, but the price to pay to get this security is obviously a seri-
ous issue. A graal in this context is to find secure cheap circuitries
to get such long secret keys with shorter ones. Linear Feedback
Shift Registers (in short lfsr) fit perfectly and short secret keys
are used to initialized the registers before the sequencing. Theory
shows that it is more efficient to use m short lfsrs than a sin-
gle long one but the m binary outputs must be combined with a
boolean function f : Fm

2 → F2 with some theoretical properties to
protect the scheme from efficient attacks.

One of these properties is that f must be at maximal Hamming
distance from affine functions. When dimension m is even, this
is achieved by bent functions (see [7] for a first extensive study).
Even if bent functions do not fulfill all the conditions for combining
lfsrs, their algebraic properties are of great interest in different

1
grim, Université du Sud, Toulon-Var
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areas such as algebraic coding theory, sequences, designs, etc. Ac-
tually we don’t know much about them, even how many they are,

as soon as m ≥ 8 (note that for m = 8 there are 228

≈ 1077 boolean
functions). One purpose of this paper is to give a new estimation
of this number of bent functions in dimension m = 8, but its main
target is to classify (partially) the space RM(k,m)/RM(k − 1,m)
of homogeneous forms of degree k under the action of the general
linear group GL(m, 2) for m = 2k = 8. The estimation of the
number of bent functions in 8 variables is a consequence of this
classification.

Indeed, it is well known that bent functions with m = 2k vari-
ables cannot be of degree greater than half the number of variables
(see [7]). Furthermore we know that for any affine one-to-one map-
ping A over Fm

2 and for any boolean functions f and g such that
g = fA (i.e. g(X) = f(X.A)), f is bent if and only if g is bent.
Hence it is natural to classify bent functions under affine equiva-
lence. If we restrict our attention on homogeneous parts of degree
k, we only have to consider the action of the general linear group
GL(m, 2) instead of GA(m, 2). Consequently, if we are able to
classify the quartic forms in 8 variables under linear equivalence,
each representative q is the quartic part of its related class of bent
functions which are obtained by adding lower degree terms to q
(homogenous quartic functions can not be bent, see [8]). The con-
ditions given in [6] on binary coefficients of monomials of bent
functions (in Algebraic Normal Form) must be fulfilled and this is
the tool we use to estimate their number.

The paper is organized as follows : section 2 contains the mini-
mal background about Reed-Muller codes and the main results we
need. In section 3, we explain how we classify (partially) the space
RM(4, 8)/RM(3, 8) under the action of GL(8, 2). We need a set of
representatives of the twelve GL(7, 2)-orbits of RM(4, 7)/RM(3, 7),
the stabilizers of these representatives and their derivative spaces.
Section 4 is concerned by the stabilizers, the spaces of derivatives
of the 12 representatives and concludes with the partial classifica-
tion. In the last section we estimate the number of bent functions
from the previous results.
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2. Toolbox

Most of the following material and proofs here can be found
in [5]. A boolean function is a mapping f : Fm

2 → F2 where
F2 is the finite field with two elements. Any boolean function
is associated to a unique representative polynomial in the alge-
bra F2[X1, . . . ,Xm]/(X2

1 − X1, . . . ,X
2
m − Xm) and each variable

Xi of this polynomial has degree at most 1. Consequently if S ⊆
{1, . . . ,m} and XS stands for the monomial Πi∈SXi, the following
expression is unique and is called the Algebraic Normal Form (in
short anf) of f :

f(X) =
∑

S⊆{1,...,m}

aSXS , aS ∈ F2 (1)

The degree of f is the total degree of its anf. A natural metric on
boolean functions is the Hamming distance,

d(f, g) := #{x ∈ Fm
2 | f(x) 6= g(x)}. (2)

The set of boolean functions of degree at most r ≤ m is a vector
space called the m-th order Reed-Muller code and is denoted by
RM(r,m) while RM∗(r,m) := RM(r,m)/RM(r− 1,m) stands for
the subspace of r-homogeneous forms. The

(

m
r

)

monomials XS

where S ⊆ {1, . . . ,m} and |S| = r form the standard basis of
RM∗(r,m). Any matrix A ∈ GL(m, 2) acts on boolean functions
with m variables :

fA(x) := f(x.A) where x = (x1, . . . , xm) ∈ Fm
2 . (3)

The action of A ∈ GL(m, 2) over the space RM∗(r,m) can be rep-
resented in the standard basis by the related

(

m
r

)

×
(

m
r

)

compound
matrix Ar defined by

Ar :=
(

det(AR,C)
)

, R,C ⊆ {1, . . . ,m}, |R| = |C| = r, (4)

where AR,C is the submatrix whose rows (resp. columns) are those

of A with indices in R (resp. in C). More clearly if g = fA and f =
(f1, . . . , fn) in the standard basis with n :=

(

m
r

)

, then gT = Arf
T

in the same basis, where fT and gT are the column vector of f
and g respectively. Hence A acts on the right while Ar acts on the
left. The complement mapping ( ) : RM∗(r,m) → RM∗(m− r,m)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’06



128 P. LANGEVIN, P. RABIZZONI, P. VÉRON, J.-P. ZANOTTI

defined by

f̄(X) :=
∑

S⊆{1,...,m}

aSXS , where S := {1, . . . ,m} \ S, (5)

is an isomorphism and for any A ∈ GL(m, 2), the following dia-
gram commutes (AT is the transpose of A) :

R∗(r,m)
A

−−−−→ R∗(r,m)

( )





y





y
( )

R∗(m − r,m) −−−−−→
(AT)−1

R∗(m − r,m)

(6)

Proposition 2.1. Let k ≥ 3, and let f be a bent function in
m = 2k variables in its anf(1). Then for each V ⊆ {1, . . . ,m},
with k + 2 ≤ |V | ≤ m,

∑

{S,T}
S∪T=V

aSaT = 0. (7)

Proof. See [6, Corollary 7.2]. �

The derivative of a boolean function f in the direction of u is
the boolean function δu f defined by δu f(x) := f(x+u)+f(x). For
homogeneous forms of degree r, we reduce f(x+u)+f(x) modulo
RM(r − 2,m) and in this case the set ∆(f) := {δu f, u ∈ F2} is a
subspace of RM∗(r − 1,m) (which is false in general).

The anf of any form f ∈ RM∗(r,m) can be splitted into two
parts, one with all the monomials in which the variable Xm ap-
pears and one with the remaining terms, therefore we can write

f = g + hXm (8)

with g ∈ RM∗(r,m − 1) and h ∈ RM∗(r − 1,m − 1).

Proposition 2.2. Let g ∈ RM∗(r,m−1) and h ∈ RM∗(r−1,m−
1). Then for any d ∈ ∆(g),

g + (d + h)Xm ∼
GL(m,2)

g + hXm. (9)

Proof. See [2, Proposition 6]. �
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3. Reduction of the problem

Before counting the number of bent functions in 8 variables,
we have to classify homogeneous quartic forms in 8 variables. We
know since the paper of X. D. Hou [5] that there are 999 GL(8, 2)-
orbits of RM∗(4, 8), but the counting arguments he used did not
give any set of representatives nor the size of these orbits (if we
except some trivial ones or those which were deduced from lower
dimensions). The main problem is obviously the huge number of
homogeneous polynomials of degree 4 in dimension m = 8 and
exhaustive search is excluded since dim RM∗(4, 8) =

(8
4

)

= 70.
The situation is much better in dimension 7 and the complete

classification of RM∗(3, 7) under the action of GL(7, 2) was given
in the same paper. There are only 12 inequivalent homogeneous cu-
bics forms in 7 variables and this will be of great help to start the
classification in dimension 8. In the sequel, {c0 = 0, c1, . . . , c11}
will denote a set of representatives of these twelve inequivalent
homogeneous cubic forms. The diagram (6) proves that the classi-
fication of RM∗(3, 7) also gives that of RM∗(4, 7) and consequently
a set of representative quartics is {q0, . . . , q11} where q0 = 0 and
qi := ci, i ∈ {1, . . . , 11}.

Lemma 3.1. Let q ∈ RM∗(4, 8). Then there exists i ∈ {0, . . . , 11}
and c ∈ RM∗(3, 7) such that

q ∼
GL(8,2)

qi + cX8. (10)

Proof. From expression (8) we get q=g+hX8, where g ∈ RM∗(4, 7)
and h ∈ RM∗(3, 7) and the variable X8 does not appear in the
quartic g nor the cubic h. We know from the classification of
RM∗(4, 7) that there exists A ∈ GL(7, 2) and i ∈ {0, . . . , 11} such
that qi = gA. Consider the following matrix B ∈ GL(8, 2) which
fixes the last variable X8 :

B :=

(

A 0T

0 1

)

, where 0 = (0, 0, 0, 0, 0, 0, 0). (11)

Then (g + hX8)
B = gA + hAX8 = qi + hAX8. �

Note that we could have chosen a form like q + ciX8 instead.
At this point, we have to find 999 inequivalent quartics in a set
containing 12 × |RM∗(3, 7)| = 12 × 235 elements which is still
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huge. Let us denote by ∆i := ∆(qi), i ∈ {0, . . . , 11} the spaces of
derivatives of the 12 representative quartics of RM∗(4, 7). Recall
that StabG(f) is the subgroup of a group G defined by

StabG(f) := {A ∈ G, | fA = f}. (12)

From now on and in order to simplify notations, let Gi stand for
StabGL(7,2)(qi). Let f ∈ ∆i, i.e. f = δuqi for some u ∈ F7

2, and let
A ∈ Gi. We have

fA(x) = f(xA)

= qi(xA + u) + qi(xA)

= qi((x + uA−1)A) + qi(x)

= δuA−1qi.

Then fA ∈ ∆i. Therefore, Gi acts on ∆i and consequently on
RM∗(3, 7)/∆i.

Proposition 3.2. Every q ∈ RM∗(4, 8) is GL(8, 2)-equivalent to
a quartic form

qi + sX8, (13)

where qi is one of the twelve representatives of RM∗(4, 7) under
the action of GL(7, 2), and s is a representative of the quotient
RM∗(3, 7)/∆i under the action of Gi.

Proof. With Lemma 3.1 we can write

q ∼
GL(8,2)

qi + cX8.

Consider A ∈ Gi and B ∈ GL(8, 2) of the form (11), then

(qi + cX8)
B = (qi)

A + cAX8

= qi + cAX8.

But cA ∈ RM∗(3, 7) hence we can write cA = d + s with d ∈ ∆i

and conclude with Proposition 2.2. �

The strategy is now straightforward, we have to calculate the
stabilizers of the twelve quartics qi, their derivative spaces ∆i and
the action of each stabilizer over the quotient space RM∗(3, 7)/∆i.
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4. Stabilizers and derivative spaces

For each of the 12 quartics qi = ci, we have to compute the
orbits of RM∗(3, 7)/∆i under the action of the stabilizer Gi =
StabGL(7,2)(qi). First it is obvious that G0 = GL(7, 2). The re-
maining 11 quartics will be computed by means of Schreier trees.
A Schreier tree is a p-ary regular tree which represents the orbit
of an element x under the action of a finitely generated group G
with p generators g1, . . . , gp. The construction of a Schreier tree of
x starts with a single node x as root. The recursive process builds
p new nodes xgi from the root x and so on for any of them which
contains a new element (hence the process stops for each element
already computed in a previous node). Figure 1 shows a (virtual)
example with 2 generators.

x

xL

xL
2

xLR

xR

xRL

xRL
2

xRLR

xRLR
2

xRLR
3

xR
2

Figure 1. Part of a Schreier-tree of x. Group is

generated by L and R. Element xRLR3

is in a leaf

because it was already computed : xRLR3

= xL.

We have to find a set of generators for each of the 11 stabilizers
subgroups Gi of the non-zero quartics qi or the corresponding Gi

for the related cubics ci if we use the commutative diagram (6).
The Schreier-Sims algorithm is often used to get a set of generators
of a subgroup H of a finitely generated group G. It needs the p
generators of G and a representative of each coset of H in G and
returns p × [G : H] generators for H (see [1]). Unfortunately, due
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to the small size of the stabilizers Gi compared to the size of the
general linear group GL(7, 2), the set of generators would have
been excessively large to compute efficiently any of the Schreier
tree we need, thus we had to find another way.

Before we explain how we get the 11 sets of generators, we must
make an important remark : we could have started our investiga-
tions from the 11 non-zero GL(7, 2)-inequivalent cubics given by
Hou in [5], but we choosed to start from scratch by exhaustive
search in order to obtain representatives with minimal number of
terms. This classification was done by computing the 11 (orbit of
0 is obvious) different Schreier binary trees for orbits of RM∗(3, 7)
under the action of GL(7, 2) with a transvection and the cyclic
shift for generators. This takes 5 hours on a pc. We summarize
the results in Table 1 where we only show the indices of monomials
for convenience, e.g. 123 stands for X1X2X3.

c ωi # min

c0 = 0 1 1
c1 = 123 11, 811 35
c2 = 125 + 134 2, 314, 956 315
c3 = 126 + 135 + 234 59, 527, 440 840
c4 = 126 + 345 45, 354, 240 70
c5 = 135 + 146 + 235 + 236 + 245 21, 165, 312 840
c6 = 127 + 136 + 145 1, 763, 776 105
c7 = 127 + 136 + 145 + 234 238, 109, 760 840
c8 = 123 + 247 + 356 2, 222, 357, 760 630
c9 = 125 + 134 + 135 + 167 + 247 + 357 444, 471, 552 2, 520

c10 = 127 + 146 + 236 + 345 17, 778, 862, 080 1, 260
c11 = 147 + 156 + 237 + 246 + 345 13, 545, 799, 680 420

Table 1. From left to right : GL(7, 2)-orbits rep-
resentatives of RM∗(3, 7) — size of the orbit —
number of equivalent cubics with the same mini-
mal number of monomials.

Let ωi := |OrbGL(7,2)(ci)|, then with the orbit-stabilizer theo-
rem, Lagrange’s theorem and diagram (6), we get for any of the
twelve representative cubic ci ∈ RM∗(3, 7),

|Gi| = |Gi| =
|GL(7, 2)|

ωi
. (14)
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This last identity gives us the strategy : find some elements of Gi

and check if the group they generate has order |Gi| (this last point
was done with gap, [4]). We tried with only 2 elements L and R
with a small order l and r respectively and we have succeeded for
the 11 non-zero cubics.

The algorithm was the following : start the construction of a
Schreier tree of ci under the action of the group GL(7, 2). If ci

appears, compute the order d of the matrix A ∈ Gi corresponding
to the path from the root ci to the leaf ci and check if d = l then
stop (same process for r). We put the orders l and r we choosed
in Table 2.

q |Gi| l r dim∆i codim∆i θi

q0 163, 849, 992, 929, 280 2 7 0 35 12
q1 13, 872, 660, 480 6 8 4 31 63
q2 70, 778, 880 12 20 6 29 289
q3 2, 752, 512 7 12 7 28 730
q4 3, 612, 672 12 14 7 28 480
q5 7, 741, 440 14 15 7 28 214
q6 92, 897, 280 7 12 6 29 136
q7 688, 128 6 7 7 28 1, 124
q8 73, 728 8 12 7 28 6, 449
q9 368, 640 12 15 7 28 1, 354
q10 9, 216 6 12 7 28 33, 736
q11 12, 096 6 12 7 28 24, 060

Table 2. From left to right : quartic — size of its
stabilizer — order of generator L — order of gen-
erator R — dimension of ∆i — dim RM∗(3, 7)/∆i

— number of Gi-orbits of RM∗(3, 7).

The 12 derivative spaces ∆i can be computed “by hand”, and
we summarize their dimensions in Table 2. Now we can compute
the twelve sets of orbits of RM∗(3, 7) under the action of the Gi’s,
building the Schreier trees with the compound matrices Li, Ri of
generators {Li, Ri} of Gi. Globally, we have to check

231 + 2 × 229 + 8 × 228 = 5 × 230 (15)

functions. We obtained 68, 647 orbits in one hour on a pc (see
Table 2 for the repartition for each of the twelve stabilizers).
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5. Number of bent functions in 8 variables

Consider an homogeneous quartic boolean function qi + cX8

where qi is one of the 12 representatives of RM∗(4, 7) under the
action of GL(7, 2) and c is a representative of RM∗(3, 7)/∆i un-
der the action of Gi. Recall that ωi = |OrbGL(7,2)(qi)| and let
θ(c) := |OrbGi

(c)|. The number of homogeneous quartics which
are GL(8, 2)-equivalent to qi + cX8 is

ωi × θ(c) × 2dim ∆i . (16)

Now we can get any quartic boolean function f in 8 variables by
adding lower degree terms l to the 68, 647 homogeneous quartics
q = qi + cX8 we obtained. In order to be bent, the quartic q + l
must fulfill the equations (7) given in Proposition 2.1 for |V | = 6,
|V | = 7 and |V | = 8. For |V | = 8, this leads to :

∑

{S,T}
S∪T={1,...,8}

aSaT = 0 (17)

which depends only on the binary coefficients of the homogeneous
part q because S and T must be of size 4. This criterion eliminates
around half of the representatives and it remains exactly 34, 799
possible ones. Let Q be the set of such quartics. Then for each
q ∈ Q, we have computed the rank r7(q) of the linear system with
8 equations and 56 indeterminates given by (7) for |V | = 7 over
the cubic coefficients and the rank r6(q) of the linear system with
28 equations and 28 indeterminates for |V | = 6 over the quadratic
coefficients. We conclude with

Theorem 5.1. The number of bent functions of degree 4 in 8
variables is lower or equal to

29 ×
∑

q=qi+cX8∈Q\{0}

256−r7(q) × 228−r6(q) ×ωi × θ(c)× 2dim ∆i (18)

which is equal to 272.32.5.31.127.641.16417.88591 ≈ 2129.2.

Proof. Apply (16) to each of the representative q ∈ Q and multiply
by 29 which is the number of possible affine parts of q. �

Note that the number of bent functions of degree < 4 is known
and is negligible compared to the number of quartic bent functions



ON THE NUMBER OF BENT FUNCTIONS WITH 8 VARIABLES 135

(the whole space RM(3, 8) has “only” 293 elements) hence this
estimation remains correct for the number of bent functions in 8
variables. Since (7) are necessary but not sufficient conditions on
coefficient, we only get an upper bound and not an exact bound.

6. Conclusion

Theorem 5.1 improves the last upper bound given in [3, Corol-
lary 4.4] which was ≈ 2152. As a corollary, this result confirms that
one could not hope to easily catch a bent function by picking a
function at random in RM(4, 8). This space is of dimension 163
and the probability is now lower than 2129.2−163 = 2−33.8.

A forthcoming work on the subject will concern the final re-
duction from 68, 647 to 999 representatives.
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RESULTS ON ROTATION SYMMETRIC BENT

FUNCTIONS

Deepak K. Dalai, Subhamoy Maitra and Sumanta Sarkar1

Abstract. In this paper we analyze the combinatorial prop-
erties related to the Walsh spectra of rotation symmetric
Boolean functions on an even number of variables. These re-
sults are then applied in studying rotation symmetric bent
functions. For the first time we could present an enumera-
tion strategy for all the 10-variable rotation symmetric bent
functions.

1. Introduction

Recently the class of rotation symmetric Boolean functions
(RSBFs) has received a lot of attention in terms of their cryp-
tographic properties [1–4, 6–9, 12, 13]. Initial study on these func-
tions has been made in [4], where nonlinearity was the main fo-
cus. Later nonlinearity and correlation immunity of such functions
have been studied in detail in [1, 6–8,12,13]. Applications of such
functions in hashing has also been demonstrated [9]. The set of
RSBFs are interesting to look into as the space is much smaller

(≈ 2
2n

n ) than the total space of Boolean functions (22n

) and the
set contains functions with very good cryptographic properties.
It has been experimentally demonstrated that there are functions
in this class which are good in terms of balancedness, nonlinear-
ity, correlation immunity, algebraic degree and algebraic immunity
(resistance against algebraic attack) [3] at the same time.

1 Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, INDIA,
email: {deepak r, subho, sumanta r}@isical.ac.in
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The combinatorial analysis of such functions is also very inter-
esting as they possess certain nice structures. It has been demon-
strated in [13] that the analysis of the Walsh spectra of such func-
tions gives rise to certain matrix with interesting combinatorial
properties that helps in fast calculations of different properties of
the functions. Later this matrix has been studied in detail in [7,8]
for an odd number of variables and new structures have been dis-
covered. However, the problem remained open for an even variables
case. In this paper we identified important structural patterns in
the matrix that helps in analyzing the Walsh spectra of RSBFs in
a more efficient way.

It is well known that bent functions only exist on an even num-
ber of variables [10]. The rotation symmetric bent functions have
been studied in detail in [1,4,12,13]. We apply the matrix structure
discovered here in studying the rotation symmetric bent functions.
Further, this structure provides efficient methods in sieving rota-
tion symmetric bent functions.

1.1. Preliminaries

To save space we refer to [13] for basic definitions related to
Boolean functions. Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n,
we define the permutation ρk

n(xi) as ρk
n(xi) = xi+k, if i + k ≤ n

and ρk
n(xi) = xi+k−n, if i + k > n. Let (x1, x2, . . . , xn−1, xn) ∈

Vn. Then we extend the definition as ρk
n(x1, x2, . . . , xn−1, xn) =

(ρk
n(x1), ρ

k
n(x2), . . . , ρ

k
n(xn−1), ρ

k
n(xn)). Hence, ρk

n acts as k-cyclic
rotation on an n-bit vector.

Definition 1.1. A Boolean function f is called rotation symmetric
(RSBF) if for each input (x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn))
= f(x1, . . . , xn) for 1 ≤ k ≤ n.

That is, the rotation symmetric Boolean functions are invari-
ant under cyclic rotation of inputs. The inputs of a rotation sym-
metric Boolean function can be divided into orbits so that each
orbit consists of all cyclic shifts of one input. An orbit is gen-
erated by Gn(x1, x2, . . . , xn) = {ρk

n(x1, x2, . . . , xn)|1 ≤ k ≤ n}
and the number of such orbits is denoted by gn. Thus the num-
ber of n-variable RSBFs is 2gn . Let φ(k) be Euler’s phi -function,
then it can be shown by Burnside’s lemma that (see also [12])

gn = 1
n

∑

k|n φ(k) 2
n
k .
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By gn,w we denote the number of orbits with weight w. For the
formula of how to calculate gn,w for arbitrary n and w, we refer
to [7, 8, 12].

An orbit is completely determined by its representative element
Λn,i, which is the lexicographically first element belonging to the
orbit [13]. These representative elements are again arranged lexico-
graphically. The rotation symmetric truth table (RSTT) is defined
as the gn-bit string [f(Λn,0), . . . , f(Λn,gn−1)]. For our purpose (the
reason will be clearer later) we will arrange the representative el-
ements in a permuted way to represent the RSTT and will refer
that to as RSTTπ.

In [13] it was shown that the Walsh transform takes the same
value for all elements belonging to the same orbit, i.e., Wf (u) =
Wf (v) if u ∈ Gn(v). In analyzing the Walsh spectra of RSBFs, the

nA matrix has been introduced [13]. The matrix nA is defined as

nAi,j =
∑

x∈Gn(Λn,i)
(−1)x·Λn,j , for an n-variable RSBF. Using this

gn × gn matrix, the Walsh spectra for an RSBF can be calculated
from the RSTT as Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j.

The structure of nA has been studied in detail for odd n in [7].

Define Λ̂n,i as representative element of Gn(x1, x2, . . . , xn) that
contains the complement of Λn,i. For odd n, there is a one-to-
one correspondence between the classes of even weight Λn,i’s and

the classes of odd weight Λn,i’s by Λn,i → Λ̂n,i. Hence, the set of
orbits can be divided into two parts (of same cardinality) contain-
ing representative elements of even and odd weight, respectively.
The authors of [7] permuted the rows of the matrix nA using
a permutation π such that the first gn

2 rows correspond to the
representative elements, Λn,i, of even weights (arranged in lex-
icographical order of representative elements and recognized as
Λn,i for i = 0 to gn

2 − 1) and the next gn

2 rows correspond to
the complements of them (these are of odd weights) and recog-

nized as Λn,i = Λ̂n,i− gn
2

for i = gn

2 to gn − 1. In the permu-

tation, the corresponding rows and columns of nA are swapped.
The resulting matrix is denoted by nA

π, which has the form

nA
π =

(

nH nH

nH −nH

)

where nH is a sub matrix of nA
π. Us-

ing this matrix nA
π, the authors of [7] showed that Walsh spec-

tra calculation could be reduced by almost half of the amount

compared to [13]. Let σ1 = ((−1)f(Λn,0), . . . , (−1)
f(Λ

n,
gn
2 −1)) and

σ2 = ((−1)
f(Λ

n,
gn
2

)
, . . . , (−1)f(Λn,gn−1)) be vectors of dimension gn

2 .
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Remember that these Λn,i’s are numbered after the permutation

π takes place, i.e., σ1 ‖ σ2 is basically (−1)RSTTπ

. Let us now
consider the values w1 = σ1 nH, w2 = σ2 nH. Then the Walsh
spectra of f have (w1 + w2) for the first gn

2 many representative
elements (which are of even weights) and (w1−w2) for the next gn

2
many representative elements (which are of odd weights). Using

this strategy [7], one needs 2 ·
( gn

2

)2
+ gn = g2

n

2 + gn operations,

whereas g2
n operations are needed using matrix nA as in [13].

2. Walsh spectra of RSBFs on an even number of variables

In this section we derive combinatorial results related to the
Walsh spectra of RSBFs on an even number of variables and then
use the results in the analysis of rotation symmetric bent functions.
For the analysis we need to concentrate on the classes where the
complement (coordinate wise complement) of each vector of that
class falls in the same class. Such situation does not happen when
n is odd [7], and that is the reason why the situation is more com-
plicated when n is even. When n is odd, if the weight of a vector is
even (respectively odd) then the weight of its complement is odd
(respectively even). However, for n even, there are some classes
(vectors from this class have weight n

2 ) where the complement
of each vector falls in that same class. For example, for n = 4,
G4((0, 0, 1, 1)) and G4((0, 1, 0, 1)) are such type of classes.

From now on we assume that n is even. If the vectors of Gn(Λn,i)

have even (respectively odd) weight, then the vectors of Gn(Λ̂n,i)
have weight even (respectively odd), since n is even. Also, there

are some classes of weight n
2 such that Gn(Λn,i) = Gn(Λ̂n,i). Now

we partition the class representatives into 5 ordered sets Mn, Un,
Ûn, Vn and V̂n as follows:

Mn = {Λn,i|wt(Λn,i) = n
2 & Gn(Λn,i) = Gn(Λ̂n,i)},

Divide the set {Λn,i|wt(Λn,i) = n
2 & Gn(Λn,i) 6= Gn(Λ̂n,i)} into

two disjoint sets M1
n and M2

n such that Λn,i ∈ M1
n iff Λ̂n,i ∈ M2

n.
Un = {Λn,i|wt(Λn,i) ≤ n

2 & wt(Λn,i) is even} \ (Mn ∪ M2
n),

Ûn = {Λ̂n,i|Λn,i ∈ Un},
Vn = {Λn,i|wt(Λn,i) ≤ n

2 & wt(Λn,i) is odd} \ (Mn ∪ M2
n),

V̂n = {Λ̂n,i|Λn,i ∈ Vn}.
Consider that the elements in Un, Vn and Mn are ordered in

lexicographical manner and the elements in Ûn and V̂n (they are
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basically the representatives of the orbits that contain elements
which are complements of Un, Vn) are ordered according to the

ordering of Un and Vn (that is Λ̂n,i of Ûn or V̂n corresponds to Λn,i

of Un or Vn in the ordering). We permute the rows and columns of

nA using a permutation π such that the elements in any row and
column will be in the order: Un, Vn,Mn, V̂n, Ûn. In the permutation
we swap rows and the corresponding columns of nA. We denote
the resulting matrix by nA

π, which will give a useful submatrix
structure presented in Theorem 2.2. For this we first need the
following technical result.

Proposition 2.1. Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈
{0, 1}n, where n is even. Then, the following hold:

1. If wt(x) and wt(y) are both even,
⊕n

i=1(xi∧yi) =
⊕n

i=1(xi∧yi) =
⊕n

i=1(xi∧yi) =
⊕n

i=1(xi∧yi).
2. If wt(x) is even and wt(y) is odd,
⊕n

i=1(xi ∧ yi) = 1 ⊕
⊕n

i=1(xi ∧ yi) =
⊕n

i=1(xi ∧ yi) = 1 ⊕
⊕n

i=1(xi ∧ yi).
3. If wt(x) and wt(y) are both odd,
⊕n

i=1(xi ∧ yi) = 1 ⊕
⊕n

i=1(xi ∧ yi) = 1 ⊕
⊕n

i=1(xi ∧ yi) =
⊕n

i=1(xi ∧ yi)

Proof. The proof of above claims follows directly from the fol-
lowing observations: (i)

⊕n
i=1((ai ∧ bi)

⊕

(ai ∧ bi)) =
⊕n

i=1 bi, (ii)
⊕n

i=1((ai ∧ bi)
⊕

(ai ∧ bi)) =
⊕n

i=1 ai, (iii)
⊕n

i=1((ai ∧ bi)
⊕

(ai ∧

bi)) =
⊕n

i=1 bi. �

Theorem 2.2. When n is even, the matrix nA
π is of the form

nAπ =

Un Vn Mn V̂n Ûn

Un

Vn

Mn

V̂n

Ûn

0

B

B

B

B

B

B

B

B

B

B

@

nG1
nG2

nG3
nG2

nG1

nG4
nG5

nG6 −nG5 −nG4

= 0 −nG5 −nG4

nG7
nG8

nG9 (−1)n/2
nG8 (−1)n/2

nG7

= 0 = 0

nG4 −nG5 (−1)n/2
nG6

nG5 −nG4

= 0

nG1 −nG2 (−1)n/2
nG3 −nG2

nG1

1

C

C

C

C

C

C

C

C

C

C

A

where nG1, nG2, nG3, nG4, nG5, nG6, nG7, nG8 and nG9

are matrices of size |Un| × |Un|, |Un| × |Vn|, |Un| × |Mn|, |Vn| ×
|Un|, |Vn|× |Vn|, |Vn|× |Mn|, |Mn|× |Un|, |Mn|× |Vn| and |Mn|×
|Mn|. Further nG9 is a zero matrix if n ≡ 2 (mod 4).

Proof. Consider the element nA
π
r,c in matrix nA

π as the element
corresponding to the row representative element Λn,r and column
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representative element Λn,c. Similarly, the element nA
π
r,c in ma-

trix nA
π is the element corresponding to the row representative

element Λ̂n,r and column representative element Λn,c. Similarly,
we define nA

π
r,c and nA

π
r,c. Now, nA

π
r,c =

∑

x∈Gn(Λn,r)(−1)x.Λn,c =
∑

x∈Gn(Λn,r)(−1)⊕
n
i=1(xi∧Λ(n,c)i

),

nA
π
r,c =

∑

x∈Gn(Λn,r)(−1)x.Λn,c =
∑

x∈Gn(Λn,r)(−1)⊕
n
i=1(xi∧Λ̂(n,c)i

),

nA
π
r,c =

∑

x∈Gn(Λn,r)(−1)x.Λn,c =
∑

x∈Gn(Λn,r)(−1)⊕
n
i=1(xi∧Λ(n,c)i

),

nA
π
r,c =

∑

x∈Gn(Λn,r)(−1)x.Λn,c =
∑

x∈Gn(Λn,r)(−1)⊕
n
i=1(xi∧Λ̂(n,c)i

).

Since wt(Λn,i) and wt(Λ̂n,i) are even for Λn,i ∈ Un, it follows
from Proposition 2.1 that nA

π
r,c = nA

π
r,c = nA

π
r,c = nA

π
r,c

for Λn,r,Λn,c ∈ Un. Similarly from Proposition 2.1 we get, for
Λn,r ∈ Un and Λn,c ∈ Vn, nA

π
r,c = nA

π
r,c = − nA

π
r,c = − nA

π
r,c.

Further, considering other possibilities we will get the matrix nA
π

in required structure.
Note that, Λn,i ∈ Mn implies Λn,i = Λ̂n,i. Now for any odd

weight v ∈ {0, 1}n and any w ∈ Mn,
(1) nA

π
v,w =

∑

x∈Gn(v)(−1)x.w =
∑

x∈Gn(v)(−1)x.w = −nA
π
v,w

⇒ nA
π
v,w = 0.

(2) nA
π
w,v =

∑

x∈Gn(w)(−1)x.v =
∑

x∈Gn(w)(−1)x.v = −nA
π
w,v

⇒ nA
π
w,v = 0.

Further, using these two results we get nG6 = nG8 = 0 and

nG9 = 0 if n ≡ 2 (mod 4). �

We will present an example for 6 variables. The matrix struc-
ture presented here extracts the regularity from the basic structure
presented in [13, Section 3].

Example 2.3. U6 = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1)},

Û6 = {(1, 1, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1), (0, 1, 0, 1, 1, 1), (0, 1, 1, 0, 1, 1)}, V6 = {(0, 0, 0, 0, 0, 1),

(0, 0, 1, 0, 1, 1)}, V̂6 = {(0, 1, 1, 1, 1, 1), (0, 0, 1, 1, 0, 1)}
and M6 = {(0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1)}.

6A
π =

U6 V6 M6 V̂6 Û6

U6

V6

M6

V̂6

Û6

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 2 − 2 − 2 2 − 2 2 − 6 2 − 2 6 2 − 2 − 2
6 − 2 2 − 2 2 − 2 −2 6 2 − 2 6 − 2 2 − 2
3 − 1 − 1 3 1 1 −3 − 3 1 1 3 − 1 − 1 3
6 2 2 2 4 0 0 0 −4 0 −6 − 2 − 2 − 2
6 − 2 − 2 2 0 − 4 0 0 0 4 −6 2 2 − 2
6 2 − 2 − 6 0 0 0 0 0 0 −6 − 2 2 6
2 − 2 2 − 2 0 0 0 0 0 0 −2 2 − 2 2
6 2 2 2 −4 0 0 0 4 0 −6 − 2 − 2 − 2
6 − 2 − 2 2 0 4 0 0 0 − 4 −6 2 2 − 2
1 1 1 1 −1 − 1 −1 − 1 −1 − 1 1 1 1 1
6 2 − 2 − 2 −2 2 −2 6 −2 2 6 2 − 2 − 2
6 − 2 2 − 2 −2 2 2 − 6 −2 2 6 − 2 2 − 2
3 − 1 − 1 3 −1 − 1 3 3 −1 − 1 3 − 1 − 1 3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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The structure of the matrix nA
π helps in analyzing the Walsh

spectra for RSBFs on an even number of variables. For notational

purposes, divide the (−1)RSTTπ

into five partitions represented
as vectors σ1, σ2, σ3, σ4, σ5 by:

σ1 = {(−1)f(Λn,0), . . . , (−1)f(Λn,|Un|−1)},

σ2 = {(−1)f(Λn,|Un|)}, . . . , (−1)f(Λn,|Un|+|Vn|−1)},

σ3 = {(−1)f(Λn,|Un|+|Vn|), . . . , (−1)f(Λn,|Un|+|Vn|+|Mn|−1)},

σ4 = {(−1)f(Λn,|Un|+|Vn|+|Mn|), . . . , (−1)f(Λn,gn−|Un|−1)}, and

σ5 = {(−1)f(Λn,gn−|Un|), . . . , (−1)f(Λn,gn−1)}.
Then we define, w1 = σ1 nG1, w2 = σ1 nG2, w3 = σ1 nG3,

w4 = σ2 nG4, w5 = σ2 nG5, w6 = σ2 nG6 = 0,
w7 = σ3 nG7, w8 = σ3 nG8 = 0, w9 = σ3 nG9,
ŵ4 = σ4 nG4, ŵ5 = σ4 nG5, ŵ6 = σ4 nG6 = 0,
ŵ1 = σ5 nG1, ŵ2 = σ5 nG2, ŵ3 = σ5 nG3.
The Walsh spectra of the function can be seen as: ((w1 + w4 +

w7 + ŵ4 + ŵ1) ‖ (w2 + w5 − ŵ5 − ŵ2) ‖ (w3 + w9 + (−1)n/2ŵ3) ‖

(w2 − w5 + ŵ5 − ŵ2) ‖ (w1 − w4 + (−1)n/2ŵ7 − ŵ4 + ŵ1)).
To compute the Walsh spectra using the structure of nA

π, one
needs a little more than half of the total computation than using

nA as described in [13]. Here, using the submatrices of nA
π, we

need 2|Un|(|Un| + |Vn| + |Mn|) + 2|Vn|(|Un| + |Vn|) + |Mn|(|Un| +
|Mn|) + gn = |Un|(2|Un| + 2|Vn| + |Mn|) + |Vn|(2|Un| + 2|Vn|) +
|Mn|(2|Un| + |Mn|) + gn = |Un|gn + |Vn|(gn − |Mn|) + |Mn|(gn −

2|Vn|)+gn = gn(|Un|+|Vn|+
|Mn|

2 )+(gn

2 −3|Vn|)|Mn|+gn ≤ g2
n

2 +gn

many operations. Now we study the cardinality of Un, Vn,Mn.

Lemma 2.4. When n is even, the number of classes Gn(Λn,i)

such that Gn(Λn,i) = Gn(Λ̂n,i) is
∑

k|n
2

1

2k
dk where dk = 2k −

∑

k
k1

=odd>1 dk1.

Proof. Let x = Λn,i be the leader of one of such classes where

Gn(Λn,i) = Gn(Λ̂n,i). So, for x = (x1, · · · , xn), x = (x1, · · · , xn),

there exists k, 0 < k < n, such that ρk
n(x) = x, i.e., (x1, · · · , xn) =

ρk
n(x1, · · · , xn). This implies, (x1, · · · , xn) = (xk+1, · · · , xn, x1,

· · · , xk) and hence,

(x1, · · · , xn−k) = (xk+1, · · · , xn), (1)

(x1, · · · , xk) = (xn−k+1, · · · , xn). (2)
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Now, we will get from (1) that

(x1, · · · , xk) = (xk+1, · · · , x2k) = (x2k+1, · · · , x3k) = · · · (3)

(xn−k+1, · · · , xn) = (xn−2k+1, · · · , xn−k) = (xn−3k+1, . . . , xn−2k)

= (xn−4k+1, · · · , xn−4k) = · · · (4)

Then, from (1), (2) and (3), we deduce x = bbbb · · · bb, where b

is a block of length k. Thus, k must divide n
2 . Now, we need to

count the strings of the above form where b is the smallest block.
There could be 2k different patterns and hence the number of
strings of form bbbb · · · bb is also 2k. Next, we need to take care
of the double counting when b is of the form cccc · · · cc where c is
of length k1 and k

k1
is odd. Thus, the count of such strings for a

fixed k is dk = 2k −
∑

k
k1

=odd>1 dk1 . The string bbbb · · · bb has cycle

length 2k. So, each class contains 2k many elements. So, we have
1
2k (2k −

∑

k
k1

=odd>1 dk1) many classes where length of b is k. Since

we need to count for every k such that k|n2 . �

The next result follows from the count gn,w in [8, 13] and the
count in Lemma 2.4.

Theorem 2.5. |Mn| =
∑

k|n
2

1
2kdk where dk = 2k−

∑

k
k1

=odd>1 dk1 .

If n
2 is even, |Un| = |Ûn| =

∑

w≤n
2

&even gn,w − |Mn|, |Vn| =

|V̂n| =
∑

w< n
2

&odd gn,w.

If n
2 is odd, |Un| = |Ûn| =

∑

w< n
2

&even gn,w, |Vn| = |V̂n| =
∑

w≤n
2

&odd gn,w − |Mn|.

Now we look for further symmetry in the nA and nA
π. This

result works for both even and odd n.

Theorem 2.6. nAi,j = nAi,0

nAj,0
nAj,i and nA

π
i,j =

nAπ
i,0

nAπ
j,0

nA
π
j,i for

any positive integer n.

Proof. Let ki = |Gn(Λn,i)| = nAi,0 and ni = n
ki

for 0 ≤ i < n.

Now, nAi,j =
∑

x∈Gn(Λn,i)
(−1)x.Λn,j = (−1)ρ

0
n(Λn,i).Λn,j + · · · +

(−1)ρ
ki−1
n (Λn,i).Λn,j = (−1)ρ

ki
n (Λn,i).Λn,j + · · ·+(−1)ρ

2ki−1
n (Λn,i).Λn,j =

. . . = (−1)ρ
(ni−1)ki
n (Λn,i).Λn,j + · · ·+ (−1)ρ

niki−1
n (Λn,i).Λn,j . As niki =

n, ni nAi,j =
∑

x∈Gn(Λn,i)
(−1)x.Λn,j +· · ·+

∑

x∈Gn(Λn,i)
(−1)x.Λn,j =

(−1)ρ
0
n(Λn,i).Λn,j + · · ·+(−1)ρ

n−1
n (Λn,i).Λn,j . Since (−1)ρ

t
n(Λn,i).Λn,j =
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(−1)Λn,i.ρ
n−t
n Λn,j , we have (−1)ρ

0
n(Λn,i).Λn,j +· · ·+(−1)ρ

n−1
n (Λn,i).Λn,j

= (−1)Λn,i.ρ
n
n(Λn,j)+· · ·+(−1)Λn,i.ρ

1
n(Λn,j) = (−1)Λn,i.ρ

0
n(Λn,j)+· · ·+

(−1)Λn,i.ρ
kj−1
n (Λn,j) +(−1)Λn,i.ρ

kj
n (Λn,j) + · · ·+(−1)Λn,i.ρ

2kj−1
n (Λn,j) +

· · · + (−1)Λn,i.ρ
(nj−1)kj
n (Λn,j) + · · · + (−1)Λn,i.ρ

njkj−1
n (Λn,j)

= nj

(

(−1)Λn,i.ρ0
n(Λn,j) + · · · + (−1)Λn,i.ρ

kj−1
n (Λn,j)

)

= nj nAj,i.

Thus, nAi,j =
nj

ni
nAj,i = ki

kj
nAj,i = nAi,0

nAj,0
nAj,i. Since nA

π is

generated by permuting rows and columns of nA simultaneously
using the permutation π, nA

π also preserves the symmetry. �

So by this way we can reduce the computation time by around
half to compute nA and nA

π for any n. The computation time
to construct the submatrices of nA

π is reduced. Since this result
works for both even and odd n, this gives further insight to the
matrix structure for odd n over the results presented in [7].

3. Rotation Symmetric Bent Functions

Construction and enumeration of bent RSBFs have been stud-
ied in [1,4,12,13]. It is easy to see that [10,13] an RSBF f is bent

iff Wf (Λj) =
∑gn−1

i=0 (−1)f(Λn,i)
nA

π
i,j = ±2

n
2 for 0 ≤ j ≤ gn − 1.

As we find interesting regular structure in nA
π
i,j, we may apply

that in studying rotation symmetric bent functions (RSBNFs).
Once again we recall that the order of representative elements are
according to the order: Un, Vn,Mn, V̂n, Ûn and the corresponding

division of (−1)RSTTπ

is σ1, σ2, σ3, σ4, σ5. Let us define the fol-
lowing five elements which are basically partial values of the Walsh
spectra:

Q1,j =

|Un|−1
∑

i=0

(−1)f(Λn,i)
nA

π
i,j =

|Un|−1
∑

i=0

σ1i nA
π
i,j,

Q2,j =

|Un|+|Vn|−1
∑

i=|Un|

(−1)f(Λn,i)
nA

π
i,j =

|Un|+|Vn|−1
∑

i=|Un|

σ2i nA
π
i,j,

Q3,j =

|Un|+|Vn|+|Mn|−1
∑

i=|Un|+|Vn|

(−1)f(Λn,i)
nA

π
i,j =

|Un|+|Vn|+|Mn|−1
∑

i=|Un|+|Vn|

σ3i nA
π
i,j,
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Q4,j =

|Un|+2|Vn|+|Mn|−1
∑

i=|Un|+|Vn|+|Mn|

(−1)f(Λn,i)
nA

π
i,j

=

|Un|+2|Vn|+|Mn|−1
∑

i=|Un|+|Vn|+|Mn|

σ4i nA
π
i,j,

Q5,j =

2|Un|+2|Vn|+|Mn|−1
∑

i=|Un|+2|Vn|+|Mn|

(−1)f(Λn,i)
nA

π
i,j

=

2|Un|+2|Vn|+|Mn|−1
∑

i=|Un|+2|Vn|+|Mn|

σ5i nA
π
i,j.

As Wf (Λn,j) =
∑5

k=1 Qk,j, to get n-variable bent RSBFs it is
enough to consider the following problem.

Problem 1.

Find the RSBF σ1||σ2||σ3||σ4||σ5, such that,

∑5
k=1 Qk,j = ±2

n
2 ,

for all j such that, 0 ≤ j ≤ gn − 1.

The search space size for this problem is 2gn × gn.
Before going further, let us discuss the following results:

(1) Let Λn,j ∈ Mn then
∑

Λn,i∈Un

S

Mn

S

Ûn
(−1)f(Λn,i)

nA
π
i,j =

±2
n
2 as nG6 = nG8 = 0. Further if n

2 is odd, since, nG9 =

0, we have
∑

Λn,i∈Un

S

Ûn
(−1)f(Λn,i)

nA
π
i,j = ±2

n
2 . That is,

if Λn,j ∈ Mn then for n
2 even, Q1,j + Q3,j + Q5,j = ±2

n
2

and for n
2 odd, Q1,j + Q5,j = ±2

n
2 .

(2) Let Λn,j ∈ Vn then Q1,j + Q2,j + Q4,j + Q5,j = ±2
n
2 . Also,

Λ̂n,j = Λn,k ∈ V̂n. Then Q1,k +Q2,k +Q4,k +Q5,k = Q1,j −

Q2,j − Q4,j + Q5,j = ±2
n
2 . From these two equations we

will get either Q1,j + Q5,j = 0 and Q2,j + Q4,j = ±2
n
2 or

Q1,j + Q5,j = ±2
n
2 and Q2,j + Q4,j = 0

(3) Let Λn,j ∈ Un, i.e., Λ̂n,j ∈ Ûn. Then one can check that if n
2

is odd, either Q1,j +Q5,j = ±2
n
2 and Q2,j +Q3,j +Q4,j = 0

or, Q1,j + Q5,j = 0 and Q2,j + Q3,j + Q4,j = ±2
n
2 .
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If n
2 is even, then either Q1,j + Q3,j + Q5,j = ±2

n
2 and

Q2,j +Q4,j = 0 or, Q1,j +Q3,j +Q5,j = 0 and Q2,j +Q4,j =

±2
n
2 .

The above results are necessary conditions on partial Walsh spec-
tra for a function to be RSBNF. Consequently, this gives a sieving
strategy for finding RSBNF’s. Let us describe the case when n

2 is
even with a continuing example for n = 8 in the following subsec-
tion.

3.1. Complete enumeration of 8-variable bent RSBF

We search for 8-variable RSBNF’s, therefore we call Problem 1,
where the exhaustive search space = 236 × 36 ≈ 241. Looking
at the structure we divide the search problem into two parts.
First we search for σ1||σ3||σ5 and then σ2||σ4 respectively with
some constraints(to be discussed in next steps). Finally we con-
catenate them to find which patterns among all possibilities for
σ1||σ2||σ3||σ4||σ5 have Walsh spectra equal to ±16 at all points.
Step 1. Search for σ1||σ2||σ3.

As the Walsh spectra of an RSBF and its complements are the
same, we fix f(x) = 0 for wt(x) = 0 for this search. First we con-
sider Λ8,j ∈ M8 and find patterns, σ1||σ2||σ3 satisfying following
condition,

Q1,j + Q3,j + Q5,j = ±2
8
2 = ±16,

where Λ8,j ∈ M8.

(5)

The size of the search space is 22|U8|+|M8|−1 = 22·8+4−1 = 219.
Out of all 219 binary patterns we find only 4954 patterns as the
solutions.

Then we concentrate on Λ8,j ∈ V8. Since 8G
8 = 0, the part

σ3 will not have any effect on the partial Walsh spectra at the
points in Λ8,j ∈ V8. So we find only patterns σ1||σ5 satisfying the
following condition,

Q1,j + Q5,j = ±2
8
2 = ±16 or 0,

where Λ8,j ∈ V8.

(6)

Thus the search space for this problem is 22|U8|−1 = 215. Out of
4954 many σ1||σ3||σ5 patterns obtained from (5), we find only 602
many σ1||σ5 patterns which satisfy (6).
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Out of these 602 patterns, we sieve out the patterns which
satisfy the following condition,

Q1,j + Q3,j + Q5,j = ±2
8
2 = ±16 or 0,

where Λ8,j ∈ U8.

(7)

Search space for this is of the size 219 and we get only 400 patterns
out of those 602 patterns. We put those 400 σ1||σ3||σ5 patterns in
DATABASE 1.
Step 2. Search for σ2||σ4.

We concentrate on Λ8,j ∈ U8∪V8 and find σ2||σ4 patterns which
satisfy following condition,

Q2,j + Q4,j = ±2
n
2 or 0,

where Λ8,j ∈ U8 ∪ V8.

(8)

We can fix f(x) = 0 for wt(x) = 1, as the sets of Walsh spectra of
f and f + lin, where lin is the linear RSBF on the same variable,
are permutation of each other. So, the size of the search space for
this problem is 22|V8|−1 = 215. Among all 215 binary patterns, we
find that there are only 420 patterns which are the solutions to
Problem 8. We put them in DATABASE 2.
Step 3. Matching σ1||σ3||σ5 and σ2||σ4.

Now we create the σ1||σ2||σ3||σ4||σ5 pattern by concatenating
the elements of DATABASE 1 and 2, i.e., we check out of 400 ×
420 (< 216) patterns, the number of which are actually solutions
to Problem 1. Due to the symmetry of the matrix depicted in
Theorem 2.2, it is enough to test for Λ8,j ∈ U8∪V8. Finally we get
3776 many patterns which are bent RSBF on 8 variables. Recall
that we considered f(x) = 0 for wt(x) = 0 and wt(x) = 1. Hence
the total number of RSBNF is 4 × 3776.

The sieving strategy presented here is much more efficient than
that of [13, Page 14]. To make a comparison we refer to the exam-
ple for 8-variable case, where the computation needs only 2 seconds
compared to 1 minute in [13] under the exactly same hardware,
operating system and programming strategy.
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3.2. Complete enumeration of 10-variable bent RSBFs

Complete enumeration of 10-variable RSBNFs was an open
question till date. Only a few 10-variable RSBNFs have been re-
ported by heuristic search (simulated annealing) [1]. With the
improvement mentioned in the previous subsection, the complete
enumeration of 10-variable RSBNFs looks infeasible. Here we look
at the combinatorial structure of the matrix 10A

π in more details
for a complete enumeration of 10-variable RSBNFs.

It is clear that to search for all 10-variable RSBNF, we have to
refer to Problem 1. Like the enumeration for 8-variable case, here
the search is done in three parts. Looking at the structure of the
matrix depicted in Theorem 2.2, first we search for the bit patterns
σ1||σ5 having length 28 + 28 = 56 bits. These patterns satisfy

the partial Walsh spectra Q1,j + Q5,j = ±2
n
2 or 0 where Λn,j ∈

Un∪Vn∪Mn. Let us denote the set of these patterns as S1. Thus, for
simple search one have to check 256 many patterns. Then we search
for the bit patterns σ2||σ3||σ4 of length 24+4+24 = 52 bits. These

patterns satisfy the partial Walsh spectra Q2,j +Q3,j +Q4,j = ±2
n
2

or 0 where Λn,j ∈ Un ∪ Vn. Let’s denote the set of these patterns
as S2. So, in this step by simple search one have to check 252

many patterns. In the last part, we match patterns from S1 and
S2 such that the sum of the partial Walsh spectra of them satisfies
the bent value, i.e., ±2

n
2 for each j. Then the satisfied patterns

σ1||σ2||σ3||σ4||σ5 are the bent functions and it requires |S1| × |S2|
amount of merging.

With the help of currently available hardwares, it is hard to
handle this search effort (≈ 256) in feasible time. Thus we ex-
ploit a more involved and efficient strategy. Below we describe the
strategies in three steps. The following theorem is useful in order
to decrease the search effort.

Theorem 3.1. Let n
2 be odd. Then there is a permutation on the

elements of Un and Vn ∪ Mn respectively such that (nG1) can be

transformed to

(

nH1

nH2

)

and (nG2
nG3) can be transformed to

(

nH1

−nH2

)

.

Proof. Suppose x = (x1, . . . , xn) ∈ Un. Let y′ = (x1, x2, x3, x4, . . . ,

xn−1, xn) and y′′ = (x1, x2, x3, x4, . . . , xn−1, xn). It can be easily
checked that the weight of both y′ and y′′ is odd as n

2 is odd and
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wt(x) is even. Take one with minimum weight from y′ and y′′ and
rename it as y. We claim that x ∈ Un iff y ∈ Vn ∪ Mn. Because
x ∈ Un implies wt(x1, . . . , xn) is even and that implies wt(y) is odd
i.e., y ∈ Vn ∪Mn. Conversely if y is in Vn ∪Mn then wt(y) is odd,
which implies wt(x) is even i.e., x ∈ Un. Hence |Un| = |Vn ∪ Mn|.

Further, without any loss of generality, we can assume y = y′′,
then for any t = (t1, . . . , tn) ∈ Un, we have nAt,x =

∑

a∈Gn(t)(−1)a.x

=
∑

a∈Gn(t)

(−1)(a1 ,a3,...,an−1)(x1,x3,...,xn−1)+(a2,a4,...,an)(x2,x4,...,xn)

=
∑

a∈Gn(t)

(−1)(a1 ,...,an−1)(x1,...,xn−1)+(a2,...,an)(x2,...,xn)+wt(a2,...,an).

Since each a ∈ Gn(t) is a rotation of bits of t and wt(t) is even,
both wt((a1, a3, . . . , an−1)) and wt((a2, a4, . . . , an)) are either even
or odd. So nAt,x = nAt,y if wt(a2, a4, . . . , an) is even and nAt,x =
−nAt,y if wt(a2, a4, . . . , an) is odd. So, we rearrange the vectors
of Un into two parts U ′

n and U ′′
n such that for each t ∈ U ′

n,
wt(t2, t4, . . . , tn) is even and for each t ∈ U ′′

n , wt(t2, t4, . . . , tn)
is odd. Further, we arrange Vn ∪ Mn in two parts W ′

n and W ′′
n

corresponding to U ′
n and U ′′

n . Hence the result. �

We give an example for 6 variable matrix shown in Example 2.3.

Example 3.2. We classify U6 and V6 ∪ M6 according to Theo-
rem 3.1 in to U ′

6 and U ′′
6 and W ′

6 and W ′′
6 respectively. Then we

have,
U ′

6 = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 1)},
U ′′

6 = {(0, 0, 0, 0, 1, 1), (0, 0, 1, 0, 0, 1)},
W ′

6 = {(0, 0, 0, 0, 0, 1), (0, 1, 0, 1, 0, 1)},
W ′′

6 = {(0, 0, 1, 0, 1, 1), (0, 0, 0, 1, 1, 1)}.
For this the submatrices (6G

1) and (6G
2

6G
3) of Example 2.3 re-

spectively, can be transformed into the following matrices:

0

B

@

1 1 1 1
6 2 −2 −2
6 −2 2 −2
3 −1 −1 3

1

C

A
and

0

B

@

1 1 1 1
6 2 −2 −2
−6 2 −2 2
−3 1 1 −3

1

C

A
.

Step 1. Search for σ1||σ5.

We search for the patterns σ1||σ5 such that,

Q1,j + Q5,j = ±2
10
2 = ±232 or 0,

where Λ10,j ∈ U10 ∪ V10 ∪ M10.

(9)
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The search space for this is 256. To reduce the search space fur-
ther, we consider the matrix 10A

π after giving the arrangements
discussed in the proof of the Theorem 3.1 on the vectors of U10 and
V10 ∪ M10. We break the patterns σ1 as σ′

1||σ
′′
1 and σ5 as σ′

5||σ
′′
5

and their partial Walsh spectra Q1,j as Q′
1,j + Q′′

1,j and Q5,j as

Q′
5,j + Q′′

5,j according to the classification of U10 into U ′
10 and U ′′

10.

So, in this case we have to enumerate all string patterns σ′
1, σ

′′
1 , σ′

5

and σ′′
5 that satisfy

Q′
1,j + Q′′

1,j + Q′
5,j + Q′′

5,j = ±2
10
2 = ±32 or 0,

where Λ10,j ∈ U10.

(10)

Again following the structure of the submatrices, the patterns
σ′

1, σ
′′
1 , σ′

5 and σ′′
5 should also satisfy

Q′
1,j − Q′′

1,j − Q′
5,j + Q′′

5,j = ±32 or 0,

where Λ10,j ∈ V10 ∪ M10.
(11)

These two equations imply that both Q′
1,j + Q′′

5,j and Q′′
1,j + Q′

5,j

are either ±32 or ±16 or 0 and both the addition and subtraction
of these two expressions are either ±32 or 0 for any Λ10,j ∈ U10. So
we need to find the binary strings σ′

1||σ
′′
5 (each of length 28 bits)

such that
Q′

1,j + Q′′
5,j = ±32 or ±16 or 0. (12)

Search space for this is of the size of 227, since we assign f(x) = 0
for wt(x) = 0; we find 417712 < 219 many patterns satisfying
the constraints. Let us denote the set of these patterns as S11.
Similarly we have to find patterns σ′

5||σ
′′
1 . As the previous case,

the same set S11 will be generated for σ′
5||σ

′′
1 where f(x) = 0 for

wt(x) = 10. Next we check partial Walsh spectra of two patterns
from the set S11 whether both their addition and subtraction are
either ±32 or 0. For that we have to check 417712 × 417712 ≈ 238

many patterns. However, we find that partial Walsh spectra of
the obtained patterns in S11 are all ±16 for Λ10,j ∈ M10 and we
need Q1,j + Q5,j = ±32. So, we divide these 417712 many pat-
terns into 24 = 16 many files where the patterns are differentiated
according to the partial Walsh spectra at these 4 places where
the values are ±16. Then we check the patterns in a particular
file with the patterns of another file if the subtraction of the two
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partial Walsh spectra values give ±32. For example the patterns
in the file having partial Walsh spectra 16,−16, 16,−16 at the
points in M10 are matched with the patterns in the file having
Walsh spectra −16, 16,−16, 16 at those points in M10. Using this
strategy we could generate 28546720 many patterns for σ1||σ5 of
length 56 bits considering f(x) = 0 for wt(x) = 0, 10, such that
the corresponding partial Walsh spectra are either ±32 or 0. So,
the cardinality of S1 is 2 × 28546720 = 57093440 as we consider
the complement patterns too. Interestingly, we observe that the
partial Walsh spectra at the points in Un which are corresponded
by the elements of Mn by the arrangement in Theorem 3.1 are al-
ways 0. Let us denote these class representatives in Un as λ1, λ2, λ3

and λ4.
Step 2. Search for σ2||σ3||σ4.

We search for patterns σ2||σ3||σ4 having bit length 52 such that
their partial Walsh spectra are either ±32 or 0, i.e.,

Q2,j + Q3,j + Q4,j = ±32 or 0. (13)

Instead of searching over all the 252 binary patterns, we exploit the
structures of submatrices of 10A

π to reduce the search effort. Since
(as mentioned at the end of Step 1) the partial Walsh spectra at
the points λ1, λ2, λ3 and λ4 are always 0, we have to search the
patterns for which the partial Walsh spectra at these points are
±32. Now we look at the values of the entries in these 4 columns.
We have one column containing 51 10’s and one 2. So, to make
32 (similarly for −32) we have to choose 28 points (including the
point where the value is 2) for 1 and rest 24 points for −1. In rest
of the 3 columns we have a further structure among the points;
there are always three 10’s and one 2 in the matrix 10G

7. Then,
there are three divisions of elements of V10 ∪ V̂10 such that each
of these three columns have all 6 values in each division and all 2
values in the other 2 divisions. From this structure, we find that
the values of σ3 are either all 1 (to make 32) or all −1 (to make
−32).

Moreover, for the values in each corresponding division of σ2||σ4,
there are equal numbers of 1’s and −1’s, i.e., there will be 8 1’s and
8 −1’s in each of the three divisions. However, we already have σ5

patterns as all 1’s or all −1’s. Additionally, we find that the value
Q3,j = 0 for Λ10,j ∈ V10 ∪U10 \ {λ1, λ2, λ3, λ4}. Hence, we need to
find out the patterns for σ2||σ4 such that Q2,j + Q4,j = ±32 or, 0
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for Λ10,j ∈ V10 ∪U10 \ {λ1, λ2, λ3, λ4}. For this the search space is
248. As the submatrices associated to σ2 and σ4 are similar which
is 10G

4, we can exploit a folding strategy [5] to reduce the search
space down to 324 ≈ 238 < 248. This we explain below.

Our search for the patterns σ2||σ4 is such that, σ2 10G
4 +

σ4 10G
4 = ±32 or 0 and σ2 10G

5 − σ4 10G
5 = ±32 or 0. This

can be written as (σ2 + σ4) 10G
4 = ±32 or 0, i.e., P1 10G

4 = ±32
or 0, where P1 = σ2 + σ4 and (σ2 − σ4) 10G

5 = ±32 or 0, i.e.,
P2 10G

4 = ±32 or 0, where P2 = σ2 − σ4. The patterns P1 and P2

are called the folding of the pattern σ2||σ4 similar to the notation
used in [5] and it is of length 24. The option for each bit of σ2||σ4

are either 1 or −1; this gives that each place of P1 and P2 can
take values from {−2, 0, 2}. Hence the search space reduces to the
size 324 ≈ 238 from 248. Now we use more constraints obtained
from the points λ1, λ2, λ3, λ4 to reduce the search effort further.
As in each division of σ2||σ4, there are 8 1’s and 8 −1’s, then
after folding we have three divisions of length 8 where the value
of the each place is −2, 0 or 2. The values 2 or −2 come from
the addition of two 1’s or two −1’s respectively and the value 0
comes from the addition of 1 and −1. Thus we have to choose
8 length ternary patterns where the values of each place is from
{−2, 0, 2} and the sum of the values is 0 for each of the three di-
visions and search space for this problem is of the size 38 < 214.
We find 1107 many such 8 length patterns. Therefore our task re-
mains to search out of 1107 × 1107 × 1107 ≈ 231 many patterns,
which have partial Walsh spectra equal to ±32 or 0 at the points
in the set V10 ∪ U10 \ {λ1, λ2, λ3, λ4}. First we work with U10 and
find patterns of the the type P1 such that, P1 10G

4 = ±32 or 0.
After that from each P1 pattern we generate the possible P2 pat-
terns as follows: (i) if the value is 2 or −2 in P1 at a position,
then the corresponding value of P2 will be 0, (i) if the value is
0 in P1 at a position, then the corresponding value of P2 will be
2 or −2. Among all these P2 patterns we take those patterns for
which P2 10G

4 = ±32 or 0. Finally solving all P1 and P2 patterns
obtained, we get 150820080 many patterns for σ2||σ4. Note that
the value of σ3 can be either all 1 and −1, so the actual number
of patterns for σ2||σ3||σ4 is 2 × 150820080 = 301640160 and the
name the set of these patterns as S2.
Step 3. Matching σ1||σ5 and σ2||σ3||σ4.

In this step we check each pattern from the set S1 generated in
Step 1 with each pattern from the set S2 generated in Step 2.
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For simple checking one needs to check 57093440 × 301640160
pairs where in each checking one compares at most 48 places. So
the total number of comparing is approximately 48 × 57093440 ×
301640160 ≈ 251 which is again very large. Interestingly, any σ1||σ5

pattern with partial Walsh spectrum value at a particular point
equal to ±32 may give rise to a bent RSBF, if it is concatenated
with a σ2||σ3||σ4 pattern having partial Walsh spectrum 0 at that
point and the other way. We sort the patterns of S1 and S2 ac-
cording to their absolute values in the partial Walsh spectra. The
sorting for S1 is giving more priority to the absolute value 32 over
0. The sorting for S2 is in reverse order of the sorting of S1. We
use bucket sorting to sort two sets S1 and S2. So, the complexity
of sorting will be around 48 · 301640160 ≈ 234. Since ±32 will be
matched with 0 and other way, we can go for linear checking for
the patterns of both sets. So the number of checking will be around
48 · 301640160 ≈ 234. Hence during this step the time complexity
is approximately 235. Finally, we get 4771563008 ≈ 232 rotational
symmetric bent function.

Clearly total search effort required for all the three steps is of
the order 238. For all these enumerations we used Linux 8.0 oper-
ating system on Pentium 4, 2.4 GHz CPU, 1 GB RAM machine
and the total time spent was less than 6 hours.

3.3. Modifying Symmetric Bent to RSBNF

A small subclass of Boolean functions is the set of symmet-
ric Boolean functions where the output of the function depends
only on the weight of the input vector. It is known that for any
even n there are exactly 4 symmetric bent functions and these
are quadratic [11]. As they are symmetric, by definition, they are
rotation symmetric too. It is possible to modify these functions
such that the symmetry of the functions will be disturbed, but
the rotational symmetry property will be maintained and at the
same time the bentness property will be preserved. For µ ∈ Mn,
the weight of all elements in Gn(µ) is n

2 . Also there exists ν ∈ Un

for n ≡ 0 mod 4 (respectively ν ∈ Vn for n ≡ 2 mod 4) such that
the weight of elements in Gn(ν) is n

2 . We change the function by
modifying the outputs corresponding to the inputs in Gn(µ). This
breaks the symmetry property as there are now different outputs
at the inputs of weight n

2 . However, by this technique the func-
tion stays at least rotation symmetric. Let us present an example
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corresponding to 6-variable functions. Note that if we take a sym-
metric bent function on 6-variables and complement the outputs
corresponding to the inputs G6(µ), where µ ∈ M6, the functions
becomes RSBNF, but not symmetric.

4. Conclusion

In this paper we present certain combinatorial structure on
Walsh spectra of rotation symmetric Boolean functions on an even
number of variables. Note that in [7, 8], certain structures have
been obtained for rotation symmetric Boolean functions on an odd
number of variables. This has been extended for an even number
of variables in this paper. Most interestingly, the structure helped
in enumerating the 10-variable rotation symmetric functions for
the first time.

The authors like to acknowledge the anonymous reviewers for their
comments that improved the quality of the paper. The third author,
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EQUATIONAL DEFINABILITY AND A

QUASI-ORDERING ON BOOLEAN FUNCTIONS ∗

Miguel Couceiro1 and Maurice Pouzet2

Abstract. Earlier work by several authors has focused on
defining Boolean function (b.f.) classes by means of func-
tional equations. In [10], it was shown that the classes of
Boolean functions definable by functional equations coincide
with initial segments of the quasi-ordered set (Ω,≤) made
of the set Ω of b.f., suitably quasi-ordered. Furthermore,
the classes defined by finitely many equations coincide with
the initial segments of (Ω,≤) which are definable by finitely
many obstructions. The resulting ordered set (Ω/ ≡,⊑) em-
beds into ([ω]<ω,⊆), the set - ordered by inclusion - of finite
subsets of the set ω of integers. But the converse also holds.
We define an order-embedding of ([ω]<ω,⊆) into (Ω/ ≡,⊑).
From this result, we deduce that the dual space of the dis-
tributive lattice made of finitely definable classes is uncount-
able. Looking at examples of finitely definable classes, we
consider classes of b.f. with a bounded number of essential
variables and classes of functions with bounded polynomial
degree. We provide concrete equational characterizations of
these classes, as well as of the subclasses made of linear func-
tions with a bounded number of essential variables. More-
over, we present descriptions of the classes with bounded
polynomial degree in terms of minimal obstructions.

∗ The work of the first author was partially supported by the Graduate School

in Mathematical Logic MALJA, and by grant #28139 from the Academy of

Finland, the work of the second named author was supported by INTAS
1 Department of Mathematics, Statistics and Philosophy, University of
Tampere, Kanslerinrinne 1, 33014 Tampere, Finland
email: Miguel.Couceiro@uta.fi
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1. Introduction

In [10], Ekin, Foldes, Hammer and Hellerstein considered func-
tional equations as an approach to definability of Boolean function
classes. The classes which can be defined by means of functional
equations have been completely described in terms of a quasi-order
on the set Ω of all Boolean functions. The quasi-order is the fol-
lowing: for two functions f, g ∈ Ω set g ≤ f if g can be obtained
from f by identifying, permuting or adding variables. These classes
coincide with initial segments for this quasi-ordering called iden-
tification minor in [10], minor in [17], subfunction in [21], and
simple variable substitution in [4]. Since then, greater emphasis
on this quasi-ordering has emerged. For example, it was observed
that Ω is the union of four blocks with no comparabilities in be-
tween, each block being made of the elements above a minimal
element. It is well-known that Ω contains infinite antichains (see
e.g. [10–12, 17]). A complete classification of pairs C1, C2 of par-
ticular initial segments (”clones”) for which C2 \ C1 contains no
infinite antichains was given in [3]. Our paper is a contribution to
the understanding of this quasi-ordering.

Some properties are easier to express in terms of the poset
(Ω/ ≡,⊑) associated with the quasi-ordered set (Ω,≤) and made
of the equivalence classes associated with the equivalence ≡ de-
fined by f ≡ g if f ≤ g and g ≤ f . As we will see (Corol-
lary 2.4), for each x ∈ Ω/ ≡, the initial segment ↓ x := {y ∈
Ω/ ≡: y ≤ x} is finite, hence (Ω/ ≡,⊑) decomposes into the levels
Ω/ ≡0, . . . Ω/ ≡n, . . . , where Ω/ ≡n is the set of minimal elements
of Ω/ ≡ \∪{Ω/ ≡m: m < n}. Moreover, each level is finite; for an
example Ω/ ≡0 is made of four elements (the equivalence classes
of the two constants functions, of the identity and of the negation
of the identity). This fact leads to the following:

Problem 1. How does the map ϕΩ/≡, which counts for every n
the number ϕΩ/≡(n) of elements of Ω/ ≡n, behave?

From the fact that for each x ∈ Ω/ ≡, the initial segment ↓ x
is finite it follows that initial segments of (Ω/ ≡,⊑) correspond
bijectively to antichains of (Ω/ ≡,⊑). Indeed, for each antichain
A ⊆ (Ω/ ≡,⊑), the set Forbid(A) := {y ∈ Ω/ ≡ : x ∈ A ⇒ x 6⊑ y}
is an initial segment of (Ω/ ≡,⊑). Conversely, each initial segment
I of (Ω/ ≡,⊑) is of this form (if A is the set of minimal elements
of Ω/ ≡ \I, then since for each x ∈ Ω/ ≡ the set ↓ x is finite,
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I = Forbid(A)).Viewing the elements outside I as obstructions,
this amounts to say that every initial segment can be defined by a
minimal set of obstructions.

Another feature of this poset, similar in importance, is the fact
that it is up-closed, that is for every pair x, y ∈ (Ω/ ≡), the final
segment ↑ x∩ ↑ y is a finite union (possibly empty) of final seg-
ments of the form ↑ z. This means that the collection of initial
segments of the form Forbid(A) where A runs throught the finite
antichains of Ω/ ≡ which is closed under finite intersections is also
closed under finite unions.

Such initial segments have a natural interpretation in terms
of Boolean functions. Indeed, as we have said, initial segments of
(Ω,≤) coincide with equational classes. Each of these initial seg-
ments identifies to an initial segment of (Ω/ ≡,⊑) and, as in this
case, can be written as Forbid(A) for some antichain A of (Ω,≤)
(the difference with an initial segment of (Ω/ ≡,⊑) is that the an-
tichain A is not unique). Let us consider the set F of classes which
can be defined by finitely many equations. They are characterized
by the following theorem which appeared in [10].

Theorem 1.1. For an initial segment I of (Ω,≤), the following
properties are equivalent:

(i) I ∈ F ;
(ii) I is definable by a single equation;
(iii) I = Forbid(A) for some finite antichain.

The main properties of F are reassembled in the following
lemma [8].

Lemma 1.2.

(1) F is closed under finite unions and finite intersections;
(2) Forbid({f}) ∈ F for every f ∈ Ω;
(3) ↓ f ∈ F for every f ∈ Ω;
(4) the class Ek of Boolean functions with no more than k

essential variables belongs to F for every integer k.

By making use of basic linear algebra over the 2-element field,
we derive equational characterizations for each class Ek (see The-
orem 5.1).

Most of the Boolean clones are finitely definable (in fact, there
are only 8 clones which cannot be defined by finitely many equa-
tions, see [11]). In particular, the clone L of linear operations (w.r.t
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the 2-element field) belongs to F ; we give an explicit equation
defining the subclass Lk of linear operations with at most k essen-
tial variables (see Theorem 5.2).

We also consider the classes Dk, 1 ≤ k, of functions which
are represented by multilinear polynomials with degree less than
k. We present finite sets of minimal obstructions for each class
Dk (see Theorem 4.2) showing that each of these classes is in F .
Equivalent characterizations but in terms of functional equations
were given in [6].

The set F ordered by inclusion is a bounded distributive lat-
tice. As it is well known [9] a bounded distributive lattice T is
characterized by its Priestley space, that is the collection of prime
filters of T , the spectrum of T, ordered by inclusion and equipped
with the topology induced by the product topology on P(T ). In
our case, F is dually isomorphic to the sublattice of P(Ω/ ≡)
generated by the final segments of the form ↑ x for x ∈ Ω/ ≡.
This lattice is the tail-lattice of (Ω/ ≡,⊑). From the fact that
(Ω/ ≡,⊑) is up-closed and has finitely many minimal elements,
it follows that the Priestley space of the tail-lattice of (Ω/ ≡,⊑)
is the set J (Ω/ ≡,⊑) of ideals of (Ω/ ≡,⊑) ordered by inclusion
and equipped with the topology induced by the product topology
on P(Ω/ ≡) (see [1], Theorem 2.1 and Corollary 2.7). Hence we
have:

Theorem 1.3. The Priestley space of the lattice F ordered by
reverse inclusion is the set J (Ω/ ≡,⊑) of ideals of (Ω/ ≡,⊑)
ordered by inclusion and equipped with the topology induced by the
product topology on P(Ω/ ≡).

This result ask for a description of J (Ω/ ≡,⊑). We prove that
it embeds the poset (P(ω),⊆), the power set of ω, ordered by
inclusion.

Our proof is a by-product of an attempt to locate (Ω/ ≡,⊑)
among posets, that we now describe. There are two well-known
ways of classifying posets. One with respect to isomorphism,
two posets P and Q being isomorphic if there is some order-
isomorphism from P onto Q. The other w.r.t. equimorphism, P
and Q being equimorphic if P is isomorphic to a subset of Q, and
Q is isomorphic to a subset of P . Given a poset P , one may ask to
which well-known poset P is isomorphic or, if this is too difficult,
to which P is equimorphic. If P is the poset (Ω/ ≡,⊑), we cannot
answer the first question. We answer the second.
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Let [ω]<ω be the set of finite subsets of the set ω of integers.
Once ordered by inclusion, this yields the poset ([ω]<ω,⊆). This
poset decomposes into levels, the n-th level being made of the n-
element subsets of ω. Since all its levels (but one) are infinite, it
is not isomorphic to (Ω/ ≡,⊑). But:

Theorem 1.4. (Ω/ ≡,⊑) is equimorphic to ([ω]<ω,⊆).

As it is well-known and easy to see, the poset ([ω]<ω,⊆) con-
tains an isomorphic copy of every countable poset P such that the
initial segment ↓ x is finite for every x ∈ P . Since (Ω/ ≡,⊑) enjoys
this property, it embeds into ([ω]<ω,⊆). The proof that ([ω]<ω,⊆)
embeds into (Ω/ ≡,⊑) is based on a strengthening of a construc-
tion of an infinite antichain in (Ω,≤) given in [17]. The order-
preserving injective map embedding ([ω]<ω,⊆) into (Ω/ ≡,⊑) is
given in Section 3.

Since J ([ω]<ω,⊆) is isomorphic to (P(ω),⊆), J (Ω/ ≡,⊑) em-
beds (P(ω),⊆), proving our claim above.

This work was done while the first named author visited the
Probabilities-Combinatoric-Statistic group at the Claude-Bernard
University in Gerland during the fall of 2005. An expanded version
is on the net [8].

2. Basic notions and basic results

2.1. Partially ordered sets and initial segments

A quasi-ordered set (qoset) is a pair (Q,≤) where Q is an ar-
bitrary set and ≤ is a quasi-order on Q, that is, a reflexive and
transitive binary relation on Q. If the quasi-order is a partial-order,
i.e., if it is in addition antisymmetric, then this qoset is said to be
a partially-ordered set (poset). The equivalence ≡ associated to ≤
is defined by x ≡ y if x ≤ y and y ≤ x. We denote x < y the fact
that x ≤ y and y 6≤ x. We denote x the equivalence class of x and
Q/ ≡ the set of equivalence classes. The image of ≤ via the quo-
tient map from Q into Q/ ≡ (which associates x to x) is an order,
denoted ⊑. According to our notations, we have x < y if and only
if x ⊏ y. Throught this map, properties of qosets translate into
properties of posets. The consideration of a poset rather than a
qoset is then matter of convenience.

Let (Q,≤) be a qoset. A subset I of Q is an initial segment if it
contains every q′ ∈ Q whenever q′ ≤ q for some q ∈ I. We denote
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by ↓ X the initial segment generated by X ⊆ Q, that is,

↓ X = {q′ ∈ Q : q′ ≤ q for some q ∈ X}.

If X := {x}, we use the notation ↓ x instead of ↓ {x}. An initial
segment of the form ↓ x is principal. A final segment of (Q,≤) is
an initial segment for the dual quasi-order. We denote ↑ X the
final segment generated by X and use ↑ x if X := {x}. Given
a subset X of Q, the set Q\ ↑ X is an initial segment of Q; we
will rather denote it Forbid(X) and refer to the members of X as
obstructions. We denote by I(Q,≤) the poset made of the initial
segments of (Q,≤) ordered by inclusion. For example I(Q,=) =
(P(Q),⊆). An ideal of Q is a non-empty initial segment I of Q
which is up-directed, this condition meaning that for every x, y ∈ I
there is some z ∈ I such that x, y ≤ z. We denote by J (Q,≤) the
poset made of the ideals of (Q,≤) ordered by inclusion.

Let (Q,≤) and (P,≤) be two posets. A map e : Q → P is an
embedding of (Q,≤) into (P,≤) if satisfies the condition

q′ ≤ q if and only if e(q′) ≤ e(q)

Such a map is necessarily one-to-one. If it is surjective, this is an
isomorphism of Q onto P . For example J ([ω]<ω,⊆) is isomorphic
to (P(ω),⊆).

Hence an embedding of Q into P is an isomorphism of Q onto
its image. The relation Q is embeddable into P if there is some
embedding from Q into P is a quasi-order on the class of posets.
Two posets which are equivalent with respect to this quasi-order,
that is which embed in each other, are said equimorphic. We note
that if (Q,≤) is a qoset the quotient map from Q onto Q/ ≡
induces an isomorphism from I(Q,≤) onto I(Q/ ≡,⊑) and from
J (Q,≤) onto J (Q/ ≡,⊑).

A chain, or a linearly ordered set, is a poset in which all ele-
ments are pairwise comparable with respect to an order ≤. By an
antichain we simply mean a set of pairwise incomparable elements.

Let (P,≤) be a poset. Denote by Min(P ) the subset of P made
of minimal elements of P . Define inductively the sequence (Pn)n∈N

setting P0 := Min(P ) and Pn := Min(P \ ∪{Pn′ : n′ < n}). For
each integer n, the set Pn is an antichain, called a level of P . If
Pn is non-empty, this is the n-th level of P . For x ∈ P , we write
h(x, P ) = n if x ∈ Pn. Trivially, we have:
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Lemma 2.1. P is the union of the Pn’s whenever for every x ∈ P ,
the initial segment ↓ x is finite.

We will need the following result. It belongs to the folklore of
the theory of ordered sets. For sake of completeness we give a
proof.

Lemma 2.2. A poset (P,≤) embeds into ([ω]<ω,⊆) if and only
if P is countable and for every x ∈ P , the initial segment ↓ x is
finite.

Proof. The two conditions are trivially necessary. To prove that
they suffice, set ϕ(x) :=↓ x. This defines an embedding from (P,≤)
into ([ω]<ω,⊆). �

2.2. Boolean functions

Denote by N the set of non-negative integers and by N
∗ the set

N \ {0}. Let B := {0, 1}. For n ∈ N
∗ a map f : B

n → B is an n-ary
Boolean function. Let Ω(n) be the set of n-ary Boolean functions
and set Ω =

⋃

{Ω(n) : n ∈ N
∗}. By a class of Boolean functions,

we simply mean a subset K of Ω and we set K(n) := K ∩ Ω(n).
For i, n ∈ N

∗ with i ≤ n, define the i-th n-ary projection en
i by

setting en
i (a1, . . . , an) := ai. Set Ic := {en

i : i, n ∈ N
∗}. These n-ary

projection maps are also called variables, and denoted x1, . . . , xn,
where the arity is clear from the context. If f is an n-ary Boolean
function and g1, . . . , gn are m-ary Boolean functions, then their
composition is the m-ary Boolean function f(g1, . . . , gn), whose
value on every a ∈ B

m is f(g1(a), . . . , gn(a)). This notion is nat-
urally extended to classes I, J ⊆ Ω, by defining their composition
I ◦ J as the set of all composites of functions in I with functions
in J , i.e.

I ◦ J := {f(g1, . . . , gn) | n,m ≥ 1, f ∈ I(n), g1, . . . , gn ∈ J (m)}.

When I = {f}, we write f ◦ J instead of {f} ◦ J . Using this
terminology, a clone of Boolean functions is defined as a class C
containing all projections and idempotent with respect to class
composition, i.e., C ◦C = C. As an example, the class Ic made of
all projections is a clone. For further extensions see e.g. [4–7].

An m-ary Boolean function g is said to be obtained from an
n-ary Boolean function f by simple variable substitution, denoted
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g ≤ f , if there are m-ary projections p1, . . . , pn ∈ Ic such that
g = f(p1, . . . , pn). In other words,

g ≤ f if and only if g ◦ Ic ⊆ f ◦ Ic.

Thus ≤ constitutes a quasi-order on Ω. If g ≤ f and f ≤ g,
then g and f are said to be equivalent, g ≡ f . Let Ω/ ≡ denote
the set of all equivalent classes of Boolean functions and let ⊑
denote the partial-order induced by ≤. A class K ⊆ Ω is said
to be closed under simple variable substitutions if each function
obtained from a function f in K by simple variable substitution
is also in K. In other words, the class K is closed under simple
variable substitutions if and only if K/ ≡ is an initial segment of
Ω/ ≡. (For an early reference on the quasi-order ≤ see e.g. [20]
and for futher background see [2–4, 10, 17, 21]. For variants and
generalizations see e.g. [5, 6, 12–14].)

2.2.1. Essential variables and minors

Let f : B
n → B be an n-ary Boolean function. For each 1 ≤

i ≤ n, xi is said to be an essential variable of f if there are
a1, . . . , ai−1, ai+1, . . . , an in B such that

f(a1, . . . , ai−1, 0, ai+1, . . . , an) 6= f(a1, . . . , ai−1, 1, ai+1, . . . , an).

Otherwise, xi is called a dummy variable of f . The essential ar-
ity of f , denoted ess(f), is the number of its essential variables.
Note that constant functions are the only Boolean functions whose
variables are all dummy.

Lemma 2.3.

(1) If g < f then ess(g) < ess(f);
(2) Salomaa [19]: For every Boolean function f we have

max{ess(g) : g < f} ≥ ess(f) − 2.

According to the above lemma, for every n ≥ 1, and for each
Boolean function f in the n-th level, we have n < ess(f) ≤ 2n+1,
and hence:

Corollary 2.4. Every principal initial segment in (Ω/ ≡,⊑) is
finite and each level is finite.



EQUATIONAL DEFINABILITY OF BOOLEAN FUNCTION CLASSES 165

The poset (Ω/ ≡,⊑) is trivially countable, and by Corollary
2.4, for every x ∈ P , the initial segment ↓ x is finite. Thus, by
Lemma 2.2, it follows that (Ω/ ≡,⊑) embeds into ([ω]<ω,⊆). In
order to show that Theorem 1.4 holds, it is enough to provide an
embedding of ([ω]<ω,⊆) into (Ω/ ≡,⊑). Such a map is given in
Section 3.

2.3. Definability of Boolean function classes by means of func-

tional equations

A functional equation (for Boolean functions) is a formal ex-
pression

h1(f(g1(x1, . . . ,xp)), . . . , f(gm(x1, . . . ,xp))) =
= h2(f(g

′
1(x1, . . . ,xp)), . . . , f(g

′
t(x1, . . . ,xp)))

(1)

where m, t, p ≥ 1, h1 : B
m → B, h2 : B

t → B, each gi and g′j is a
map B

p → B, the x1, . . . ,xp are p distinct vector variable symbols,
and f is a distinct function symbol. Such equations were system-
atically studied in [10]. See e.g. [11,17,18] for variants, and [5] for
extensions and more stringent notions of functional equations.

An n-ary Boolean function f : B
n → B, satisfies the equation

(1) if, for all v1, . . . ,vp ∈ B
n, we have

h1(f(g1(v1, . . . ,vp)), . . . , f(gm(v1, . . . ,vp))) =
= h2(f(g′1(v1, . . . ,vp)), . . . , f(g′t(v1, . . . ,vp)))

where g1(v1, . . . ,vp) is interpreted component-wise, that is,

g1(v1, . . . ,vp) = (g1(v1(1), . . . ,vp(1)), . . . , g1(v1(n), . . . ,vp(n))).

A class K of Boolean functions is said to be defined by a set E of
functional equations, if K is the class of all those Boolean functions
which satisfy every member of E . It is not difficult to see that if
a class K is defined by a set E of functional equations, then it is
also defined by a set E ′ whose members are functional equations in
which the indices m and t are the same. Moreover, each functional
equation 1 is satisfied by exactly the same functions satisfying

h1(f(g1(x1, . . . ,xp)), . . . , f(gm(x1, . . . ,xp)))+
h2(f(g

′
1(x1, . . . ,xp)), . . . , f(g

′
t(x1, . . . ,xp))) = 0

where + denotes the sum modulo 2. Thus, if a class K is defined
by finitely many equations H1 = 0, . . . ,Hn = 0, then it is also
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defined by a single equation
∨

1≤i≤n Hi = 0. Using this fact, we
can see that if K1 and K2 are classes in F , then K1 and K2 are
defined by expressions

H1 = 0 and H2 = 0

respectively, and thus K1 ∪ K2 and K1 ∩ K2 are defined by

H1 ∧ H2 = 0 and H1 ∨ H2 = 0

respectively. In other words, statement (1) of Lemma 1.2 holds.
By an equational class we simply mean a class of Boolean func-

tions definable by a set of functional equations. The following
characterization of equational classes was first obtained by Ekin,
Foldes, Hammer and Hellerstein [10]. For variants and extensions,
see e.g. [5, 11,18].

Theorem 2.5. The equational classes of Boolean functions are
exactly those classes that are closed under simple variable substi-
tutions.

In other words, a class K is equational if and only if K/ ≡ is
an initial segment of Ω/ ≡.

3. ([ω]<ω,⊆) embeds into (Ω/ ≡,≤)

In order to define an embedding from ([ω]<ω,⊆) into (Ω/ ≡,≤),
we need to consider two infinite antichains of Boolean functions.
The following lemma is a particular case of Proposition 3.4 in [17].

Lemma 3.1. The family (fn)n≥4 of Boolean functions, given by

fn(x1, . . . , xn) =

{

1 if #{i : xi = 1} ∈ {1, n − 1}
0 otherwise.

constitutes an infinite antichain of Boolean functions.

Note that fn(a, . . . , a) = 0 for a ∈ {0, 1}. The following lemma
was presented in [3].

Lemma 3.2. Let (fn)n≥4 be the family of Boolean functions given
above, and consider the family (un)n≥4 defined by

un(x0, x1, . . . , xn) = x0 · fn(x1, . . . , xn)
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The family (un)n≥4 constitutes an infinite antichain of Boolean
functions.

Let I be a non-empty finite set of integers greater than or equal
to 4, and let gI be the

∑

i∈I i-ary function given by

gI =
∑

i∈I
fi(x

i
1, . . . , x

i
i) ·

∏

j∈I\{i}

∏

1≤k≤j

xj
k

This family has several nice properties. By identifying all xj
k to x0,

for j ∈ I \ {i} and 1 ≤ k ≤ j, we obtain

ui(x0, x
i
1, . . . , x

i
i) = x0 · fi(x

i
1, . . . , x

i
i).

In fact, if I1 ⊆ I2, then by identifying all xj
k in gI2 to xi

1, for
i ∈ I1,j ∈ I2 \ I1 and 1 ≤ k ≤ j, we obtain gI1 . Moreover, gI = 1
if and only if there exactly one i ∈ I such that

i) for all j ∈ I \ {i} and 1 ≤ k ≤ j, xj
k = 1, and

ii) #{1 ≤ k ≤ i : xi
k = 1} ∈ {1, i − 1}.

These facts are used to prove the following result (see [8]).

Proposition 3.3. Let I be a non-empty finite set of integers
greater than or equal to 4, and let gI be the

∑

i∈I i-ary function
given above. Then for every n ≥ 4, n ∈ I if and only if un ≤ gI .
Moreover, I1 ⊆ I2 if and only if gI1 ≤ gI2 .

As an immediate consequence we get:

Corollary 3.4. The mapping I ′ 7→ gI′ , where I ′ = {i + 4 : i ∈ I},
is an embedding from ([ω]<ω,⊆) into (Ω/ ≡,≤).

4. Boolean functions with bounded polynomial degree

A multilinear monomial is a term of the form

~xI =
∏

i∈I

xi,

for some finite set I. The size | I | is called the degree of ~xI .
A multilinear polynomial is a sum of monomials and its degree
is the largest degree of its monomials. We convention that 0 is
a multilinear monomial, and that 1 is the empty monomial ~x∅.
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Note that the only monomials with degree zero are the multilinear
monomials 0 and 1.

It is well-known that each Boolean function f : B
n → B is

uniquely represented by multilinear polynomial belonging to the
ring B[x1, . . . , xn] over the 2-element field B, i.e.

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI · ~xI

where each aI belongs to B.

Lemma 4.1. If f is uniquely represented by the multilinear poly-
nomial

∑

I⊆{1,...,n}

aI · ~xI

then for aI 6= 0, the variables occurring in ~xI are essential in f .

The degree of a Boolean function f : B → B, denoted deg(f)
is thus defined as the degree of the multilinear polynomial p ∈
B[x1, . . . , xn] representing f . For each 1 ≤ k, let Dk be the class
of Boolean functions with degree less than k. For example, D1

contains only constant functions, and thus it is the union of the
two equivalence classes containing the constant-zero and constant-
one functions. The class D2 is made of functions of degree at most,
that is functions f of the form

f(x1, . . . , xn) = c1 ·x1+ . . .+cn ·xn+c, where c1, . . . , cn, c ∈ {0, 1}

These functions are called linear (rather than affine). They form a
clone, the clone of linear functions usually denoted L rather than
D2.

Let K be an equational class of Boolean functions. We denote
by Critical(K) the set of of minimal elements of Ω\K/ ≡. Observe
that

K/ ≡= Forbid(Critical(K)).

The following theorem provides a characterization of each set of
the form Critical(Dk). The case k = 1 appears to be different
from the case k ≥ 2.

Theorem 4.2. For each k ≥ 2, an equivalence class g, of a
Boolean function g, is in Critical(Dk) if and only if g ≡ r, for
r = p + q where

(1) p = x1 ·· · ··xk or p =
∑

i∈I ~xI\{i}, where I = {1, . . . , k+1}
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(2) deg(q) < k and all variables occurring in q occur in p.

The set Critical(D1) consists of the equivalence classes of x1 ·x2+
x1, x1 + x2, x1 and x1 · x2 + x1 + 1, x1 + x2 + 1, x1 + 1.

Corollary 4.3. For each k ≥ 1, Critical(Dk) is finite. Thus Dk

is finitely definable.

Several equational characterizations of the classes Dk (also, in
domains more general than the Boolean case), were given in [6].
We present those characterizations which are given in terms of
linear equations. For the proof, we refer the reader to [6].

Theorem 4.4. In [6]: Let k ≥ 1. The class Dk of Boolean func-
tions having degree less than k, is defined by

∑

I⊆{1,...,k}

f(
∑

i∈I

xi) = 0

Corollary 4.5. The clone L of linear functions is defined by

f(x1 + x2) + f(x1) + f(x2) + f(0) = 0

5. Boolean functions with a bounded number of essential

variables

For each 1 ≤ k, let Ek be the class of Boolean functions with
no more than k essential variables, i.e.

Ek := {f ∈ Ω : ess(f) ≤ k}.

Theorem 5.1. The class Ek of of Boolean functions with no more
than k essential variables is defined by

∏

i∈k+1

(f(xi) + 1)f(xi + yi) →
∨

i∈k+1

∨

J⊆k+1\{i}

f(xi + yi ·
∑

j∈J

yj) = 1

(2)

Proof. Suppose first that f : B
n −→ B is not in Ek. To see that

f does not satisfy (2), let p1, . . . , pk+1 be k + 1 distinct unit n-
vectors, and let v1, . . . , vk+1 be n-vectors such that for each i ∈
k + 1, f(vi) 6= f(vi + pi). Note that these n-vectors exist because
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ess(f) ≥ k +1. Since the p′is are distinct, for each J ⊆ k + 1\{i},
the componentwise product pi·

∑

j∈J
pj is the zero vector. If f(vi) = 0,

set v′i = vi, otherwise set v′i = vi + pi. We have

∏

i∈k+1

(f(v′i) + 1)f(v′i + pi) = 1

but
∨

i∈k+1

∨

J⊆k+1\{i}

f(v′i + pi ·
∑

j∈J

pj) = 0.

Now suppose that f : B
n −→ B is in Ek. By Theorem 2.5, we

may assume that all variables of f are essential, and thus n ≤ k.

Fact 1. Let n ≤ k. Any set of vectors v′1, ..., v
′
k+1 ∈ B

n is linearly
dependent, i.e. there are i ∈ k + 1 and J ⊆ k + 1 \ {i} such that

v′i =
∑

j∈J

v′j .

Fact 2. The componentwise product of vectors over B is idempo-
tent, i.e. for every v′ ∈ B

n, n ≥ 1, we have v′ · v′ = v′.

Let v1, ..., vk+1, v
′
1, ..., v

′
k+1 ∈ B

n such that

∏

i∈k+1

(f(vi) + 1)f(vi + v′i).

By Fact 1, there are i ∈ k + 1 and J ⊆ k + 1 \ {i} such that

v′i =
∑

j∈J

v′j

and from Fact 2, it follows that

f(vi + v′i ·
∑

j∈J

v′j) = 1.

Hence, f satisfies (2). �

Let Lk be the class of linear functions with at most k ≥ 1 es-
sential variables, that is Lk = L ∩ Ek. As observed, since L is
finitely definable and for each 1 ≤ k, Ek is finitely definable, it
follows that Lk is also finitely definable. In fact, for each 1 ≤ k,
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by making use of the equations defining L and Ek, we can easily
derive an equation defining Lk (see discussion preceding Theorem
2.5). The following theorem provides alternative equational char-
acterizations of each Lk.

Theorem 5.2. The class Lk of linear functions with at most k ≥ 1
essential variables is defined by

∏

i∈k+1

(f(xi) + f(0)) −→
∨

1≤j<l≤k+1

(f(xj · xl) + f(0)) = 1 (3)

Proof. Suppose that f : B
n −→ B is not in Lk. To see that f does

not satisfy (3), let p1, . . . , pk+1 be k + 1 distinct unit n-vectors,
corresponding to k + 1 essential variables of f . Clearly, for every
1 ≤ j < l ≤ k + 1, pj · pl is the zero-vector 0, and hence,

∨

1≤j<l≤k+1

(f(pj · pl) + f(0)) = 0

Furthermore, for every 1 ≤ i ≤ k + 1, f(pi) + f(0) = 1. Thus
f does not satisfy (3). For the converse we will use the following
lemma which follows from Fact 1 and Fact 2.

Lemma 5.3. Let 1 ≤ n ≤ k and let a1, . . . ,ak+1 be k+1 n-vectors
of odd weight. Then there are 1 ≤ i < j ≤ k + 1 such that aj · ai

has odd weight.

Now suppose that f : B
n −→ B is in Ek. By Theorem 2.5, we

may assume that all variables of f are essential. Thus n ≤ k and
moreover, f(x1, . . . , xn) = x1 + . . . + xn + c, where c ∈ {0, 1} and
1 ≤ n ≤ k. Observe that f(v) + f(0) = 1 if and only if v has odd
weight. Now, if v1, . . . , vk+1 are k + 1 n-vectors such that

∏

i∈k+1

(f(vi) + f(0)) = 1

then each vi, i ∈ k + 1, has odd weight and by Lemma 5.3 it
follows that there are 1 ≤ i < j ≤ k + 1 such that vi · vj has odd
weight, and hence,

∨

1≤j<l≤k+1

(f(vj · vl) + f(0)) = 1

and the proof of Theorem 5.2 is complete. �
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An equivalent form of Lemma 5.3 in the proof of Theorem 5.2 is
the following lemma of independent interest, which appears equiv-
alently formulated in [15] as Problem 19 O (i), page 238.

Lemma 5.4. If k + 1 subsets Ai, 1 ≤ i ≤ k + 1 of a k-element set
A have odd size, then there are 1 ≤ i < j ≤ k + 1, i 6= j, such that
Ai ∩ Aj has odd size.

Remark 1. The number of such pairs can be even. For an ex-
ample, let k=4, A := {0, 1, 2, 3} and A1, . . . , A5 whose correspond-
ing vectors are a1 := 1110, a2 := 1101, a3 := 0111, a4 = 1000,
a5 = 0001. There are only four odd intersections, namely A1∩A4,
A2 ∩ A4, A2 ∩ A5 and A3 ∩ A5.

The authors would like to thank Arto Salomaa for sending a copy of
the paper [19], which provided the optimal lower bound given in (2) of
Lemma 2.3.
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NECESSARY CONDITIONS ON BALANCED

BOOLEAN FUNCTIONS WITH MAXIMUM

NONLINEARITY

Faruk Göloğlu1, 2 and Melek D. Yücel2, 3

Abstract. We investigate the necessary conditions on bal-
anced Boolean functions with highest possible nonlinearity
using the Numerical Normal Form (NNF), which was in-
troduced by Carlet and Guillot. We show some divisibility
properties of the Walsh spectrum of Boolean functions with
given algebraic degree. We finally give a necessary condition
on weights of restrictions of balanced Boolean functions with
highest possible nonlinearity to their subspaces.

1. Introduction

In this paper, we investigate the properties of n-variable bal-
anced Boolean functions with highest possible nonlinearity. The
upper bound for the nonlinearity of a balanced Boolean function
with even number of variables is 2n−1 − 2

n
2
−1 − 2. Although this

value is reached for n ≤ 6, the problem whether it can be reached
for larger values of n is open. The paper is based mostly on one of
the author’s Master’s thesis [3].

In order to find out some results concerning the nonlinearity
of balanced Boolean functions, we first investigate the necessary
conditions on their Walsh spectra and weight structure. During the

1 Dept. of Computer Technology and Information Systems, Bilkent Univer-
sity, Ankara, Turkey, email: gologlu@bilkent.edu.tr.
2 Institute of Applied Mathematics, Middle East Technical University, An-
kara, Turkey.
3 Dept. of Electrical and Electronics Engineering, Middle East Technical
University, Ankara, Turkey. email: yucel@eee.metu.edu.tr
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analysis, we frequently use the Numerical Normal Form [2]. Carlet
proved Theorem 2.1, relating resilience and nonlinearity [1] stated
in Section 2. An immediate consequence of this theorem is on the
degree of balanced Boolean functions with highest nonlinearity,
which we give as Corollary 2.2. We then cite two lemmas (Lemma
2.3 and Lemma 2.4) [3] concerning integer multisets, to make way
to Theorem 2.5 [3], which relates Walsh spectrum values to the
algebraic degree of the function.

Using the work of Rota [5] and the fact that Fn
2 is a locally finite

partially ordered set with a greatest lower bound, we give the sub-
space weight concept and use Möbius inversion to get the original
function from its subspace weight spectrum. We then obtain the
formula (Proposition 3.1) to get the Walsh transform values from
subspace spectrum. We use this result in Theorem 4.1 to deduce a
necessary condition on the weight structure of balanced Boolean
functions.

1.1. Basics

A Boolean function is a function from Fn
2 to F2. The weight of

a Boolean function f , wt(f), is the number of elements a ∈ Fn
2 for

which f(a) = 1:

wt(f) =
∑

a∈F
n
2

f(a)

A function f : Fn
2 → F2 is balanced if wt(f) = 2n−1.

Let f be a Boolean function defined on Fn
2 . The discrete Fourier

transform of f is defined for any a = (a1, a2, . . . , an) ∈ Fn
2 as

follows:

Ff (a) =
∑

x∈F
n
2

f(x)(−1)a·x

Let f̂ = (−1)f , then the Walsh transform Wf is defined to be

the discrete Fourier transform of f̂ :

F
f̂
(a) = Wf (a) =

∑

x∈F
n
2

f̂(x)(−1)a·x =
∑

x∈F
n
2

(−1)f(x)⊕a·x

Relation between Ff (a) and Wf (a) is given as:

Wf (a) = 2nδ0(a) − 2Ff (a)
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where δ0(a) = 1 if a = 0 and 0 otherwise.
Wf (a) can take integer values between −2n, and 2n, and there

are some known restrictions on the spectrum. For instance the
well-known Parseval’s equality states:

∑

x∈F
n
2

W 2
f (x) = 22n

Another well-known condition that relates the weight of f ,
wt(f), to its Walsh transform values as follows:

Proposition 1.1.

– Wf (a) ≡ 0 (mod 4), ∀a ∈ Fn
2 if wt(f) is even,

– Wf (a) ≡ 2 (mod 4), ∀a ∈ Fn
2 if wt(f) is odd.

Nonlinearity of f , nl(f), is the minimum distance of f to affine
functions, which is:

nl(f) = 2n−1 −
1

2
maxa∈Fn

2
{|Wf (a)|}

Let 1 ≤ m < n. f is m-th order correlation immune if

Wf (a) = 0

for all a such that 1 ≤ wt(a) ≤ m. f is m-resilient if f is balanced
and m-th order correlation immune.

A multiset is a set where repetition of an element is allowed.
We use the symbols {∗ and ∗} when we use a multiset.

Any f : Fn
2 → F2 can be represented in the following form:

f(x1, . . . , xn) =
⊕

u∈F
n
2

au

(

n
∏

i=1

xui

i

)

, au ∈ F2 (1)

with unique au’s found by:

au =
⊕

x∈F
n
2
|x�u

f(x)

The form in (1) is called the Algebraic Normal Form of f . The
algebraic degree of f is the degree of (1).

A partially ordered set P is a set of elements with an order
relation � and an equality =, such that the following axioms hold:
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(1) x � x for all x ∈ P (reflexive).
(2) if x � y and y � z then x � z for all x, y, z ∈ P (transi-

tive).
(3) if x � y and y � x then x = y for all x, y ∈ P (antisym-

metric).

Fn
2 with inclusion order � and ordinary equality =, can be

viewed as a partially ordered set (cf. [3], Remark 3.4.1 at p.31).
Möbius inversion is treated in [4,5], which are excellent resources.
The reader is also referred to [3] (Theorem 3.4.5 and Proposition
3.4.6 at pp.36–37) for a quick reference to Möbius inversion and
the Möbius function for Fn

2 .

1.2. Numerical Normal Form

NNF is an integer valued polynomial representation of Boolean
functions. Coefficients of NNF are found by [2]:

λu = (−1)wt(u)
∑

a∈F
n
2
| a�u

(−1)wt(a)f(a)

where the notation a � u denotes the inclusion partial order, i.e.,
support Ia = {i | ai 6= 0, 1 ≤ i ≤ n} ⊆ Iu.

Discrete Fourier transform of f can be recovered from NNF
coefficients [2]:

Ff (a) = (−1)wt(a)
∑

u∈F
n
2
| a�u

2n−wt(u)λu

2. A Necessary Condition on the Walsh Spectrum

The following result of Carlet, gives nonlinearity bounds for
resilient Boolean functions:

Theorem 2.1. [1] Let f : Fn
2 → F2 be an m-resilient Boolean

function with 0 ≤ m ≤ n − 2 and algebraic degree d > 1. The

nonlinearity, nl(f), is divisible by 2m+1+⌊n−m−2

d ⌋.

The following corollary states that, to reach the maximum non-
linearity, a balanced Boolean function must have maximal possible
degree.

Corollary 2.2. Let f : Fn
2 → F2 be a balanced Boolean function

with even n ≥ 6. If nl(f) = 2n−1 − 2
n
2
−1 − 2 then degree d of f is

n − 1.
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Proof. Let f be a balanced Boolean function of n variables with
nl(f) = 2n−1 −2

n
2
−1−2, with degree d. d < n since f is balanced.

If d ≤ n−2 then 4 | nl(f) by Theorem 2.1. Since 4 ∤ 2n−1−2
n
2
−1−2

for n ≥ 6, we deduce d > n − 2. This completes the proof. �

The following lemmas, which count the number of some subsets
of an integer multiset, will be used in Theorem (2.5).

Lemma 2.3. Let A = {∗ z1, . . . , zn ∗}, zi ∈ Z be a multiset. Let
the subset sum SX be defined on the subsets X ⊆ A as:

SX =

{

0 if X = ∅,
∑

x∈X x otherwise.

Then

|{X ⊆ A |SX is even}| =

{

2n−1 if A contains an odd integer,
2n otherwise.

Proof. A can be written as A = AE ∪ AO, even and odd parts of
A respectively. Let |AO| = m ≤ n. Subsets of AE can be identified
to the elements of Fn−m

2 , and subsets of AO can be identified to
the elements of Fm

2 . The set of all subsets X ⊆ A such that SX is
even is identified to an hyperplane of Fn

2 unless m = 0. If m = 0,
then any subset has even subset sum. �

Lemma 2.4. Let A = {∗ z1, . . . , zn ∗}, zi ∈ Z be a multiset,
and oA denote the number of odd entries in A, that is oA =
|{zi ∈ A | zi is odd}|.

|{X ⊆ A | |X | is odd and SX is odd}| =







0 if oA = 0
2n−2 if 0 < oA < n

2n−1 if oA = n

|{X ⊆ A | |X | is odd and SX is even}| =







2n−1 if oA = 0
2n−2 if 0 < oA < n

0 if oA = n

|{X ⊆ A | |X | is even and SX is odd}| =







0 if oA = 0
2n−2 if 0 < oA < n

0 if oA = n

|{X ⊆ A | |X | is even and SX is even}| =







2n−1 if oA = 0
2n−2 if 0 < oA < n

2n−1 if oA = n

Proof. The idea in the proof of Lemma 2.3 applies. �
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The following result not only generalizes Proposition 1.1, but
also relates the algebraic degree to the Walsh spectrum of the
function.

Theorem 2.5. Let f : Fn
2 → F2 be a Boolean function with n ≥ 3

and NNF coefficients λu, u ∈ Fn
2 . Then:

– If d = n − 1, then:
– Wf (u) ≡ 0 (mod 8) for all u ∈ I,
– Wf (u) ≡ 4 (mod 8) for all u ∈ J ,

– If d < n− 1, then Wf (u) ≡ k (mod 8) for all u ∈ Fn
2 , with

k = 4 or k = 0, depending on λ1.
– If d = n, let r be the terms in ANF with degree d − 1.

– if r = n, then Wf (u) ≡ k (mod 8) for all u ∈ Fn
2 , with

k = 6 or k = 2, depending on λ1,
– otherwise

∗ Wf (u) ≡ 2 (mod 8) for all u ∈ I,
∗ Wf (u) ≡ 6 (mod 8) for all u ∈ J ,

for two index sets I, J ⊆ Fn
2 , with I ∩ J = ∅, I ∪ J = Fn

2 and
|I| = |J | = 2n−1.

Proof. Let Λw = {∗λu | wt(u) = w∗} be the multi-set of NNF
coefficients of those terms with weight w of f . In the following
formula, let Xw,a ⊆ Λw for 0 ≤ w < n, and SXw,a be the subset
sum of the given subset. The Fourier transform of f at a can be
written as:

Ff (a) = (−1)wt(a)
[

λ1 + 2SXn−1,a
+ 22SXn−2,a

+ · · · + 2nSX0,a

]

where Xw,a ⊆ Λw for 0 ≤ w < n is completely determined by:

Xw,a = {λu | wt(u) = w and u � a}

Hence, for each a ∈ Fn
2 and with wt(a) = n− 1, there corresponds

a unique Xn−1,a ∈ P(Λn−1), the map is also onto.

– Case d = n − 1:
Observe λ1 is even since d = n − 1. Then Lemma 2.3

and the fact −k ≡ k (mod 4) whenever k = 0 or k = 2
assures us Ff (a) ≡ 0 (mod 4) for half of a ∈ Fn

2 and
Ff (a) ≡ 2 (mod 4) for (the other) half of a ∈ Fn

2 . Recall
that

Wf (a) = 2nδ0(a) − 2Ff (a)
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by Theorem 1.1. Observe that

Wf (a) ≡ 4 (mod 8) ⇐⇒ Ff (a) ≡ 2 (mod 4)

and

Wf (a) ≡ 0 (mod 8) ⇐⇒ Ff (a) ≡ 0 (mod 4)

whenever n ≥ 3.
– Case d < n − 1:

Lemma 2.3 implies for all a ∈ Fn
2 ,

– Ff (a) ≡ 0 (mod 8) or
– Ff (a) ≡ 4 (mod 8),

depending on λ1.
– Case d = n: Straightforward application of Lemma 2.4

proves the result.

�

Now, using Theorem 2.5 and Corollary 2.2, we can deduce:

Corollary 2.6. Suppose f is a balanced Boolean function with
even n variables and suppose nl(f) = 2n−1 − 2

n
2
−1 − 2, then for

exactly half of the elements, a ∈ Fn
2 ,Wf (a) ≡ 0 (mod 8), and for

exactly half of the elements, a ∈ Fn
2 ,Wf (a) ≡ 4 (mod 8).

3. Weight Spectrum

Let f : Fn
2 → F2, and let us define the subspace weight of f for

all u ∈ Fn
2 as follows:

su =
∑

a�u

f(a) (2)

su is simply the weight of f |E, the restriction of f to the sub-
space E, where E = {v ∈ Fn

2 | v � u}.
We can view Fn

2 as a locally finite partially ordered set with a
greatest lower bound; hence we can employ Möbius inversion. By
Möbius inversion and (2):

f(u) = (−1)wt(u)
∑

a∈F
n
2
| a�u

(−1)wt(a)sa

The discrete Fourier transform of f can be defined in terms of
subspace weights. In the sequel, ā denotes the complement of a.
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Proposition 3.1. Let f be a Boolean function and su be the sub-
space weight coefficients of f for all u ∈ Fn

2 . Then:

Ff (a) = (−1)wt(ā)
∑

u∈F
n
2
| ā�u

(−1)wt(u)2n−wt(u)su

Proof.

Ff (a) =
∑

x∈Fn
2

f(x)(−1)a·x

=
∑

x∈F
n
2

(−1)wt(x)
∑

u∈Fn
2

| u�x

(−1)wt(u)su(−1)a·x

=
∑

u∈F
n
2

(−1)wt(u)su

∑

x∈F
n
2

| u�x

(−1)wt(x)(−1)a·x

=
∑

u∈F
n
2

(−1)wt(u)su

∑

x∈F
n
2

| u�x

(−1)ā·x (employ x = x̄)

= (−1)wt(ā)
∑

u∈F
n
2

(−1)wt(u)su

∑

x∈F
n
2

| x�ū

(−1)ā·x

= (−1)wt(ā)
∑

u∈F
n
2

| ā�u

(−1)wt(u)2n−wt(u)su

�

4. Weight Spectrum of Balanced Functions with Highest

Possible Nonlinearity

The following theorem gives a restriction on the weight struc-
ture of subspaces (with dimension at least n − 2) of a balanced
Boolean function having maximum nonlinearity.

Theorem 4.1. Let n be even and f : Fn
2 → F2 be a balanced

Boolean function. f has nonlinearity nl(f) = 2n−1 − 2
n
2
−1 − 2,

only if

(a) 2n−2 − 2
n
2
−2 − 1 ≤ su ≤ 2n−2 + 2

n
2
−2 + 1 if wt(u) = n− 1,

and
(b) 2n−3 − 2

n
2
−2 − 2

n
2
−3 − 1 ≤ su ≤ 2n−3 + 2

n
2
−2 + 2

n
2
−3 + 1 if

wt(u) = n − 2
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Proof. nl(f) = 2n−1 − 2
n
2
−1 − 2 if and only if |Ff (a)| ≤ 2

n
2
−1 + 2

for all nonzero a. Since f is balanced s1 = 2n−1. If wt(u) = n− 1,
then

2
n
2
−1 + 2 ≥ |Ff (ū)| =

∣

∣2n−1 − 2su

∣

∣

2
n
2
−1 + 2 ≥ 2n−1 − 2su

su ≥ 2n−2 − 2
n
2
−2 − 1

and

2
n
2
−1 + 2 ≥ −2n−1 + 2su

su ≤ 2n−2 + 2
n
2
−2 + 1

If wt(u) = n − 2, then

2
n
2
−1 + 2 ≥ |Ff (ū)| =

∣

∣2n−1 − 2(sv1
+ sv2

) + 4su

∣

∣

2
n
2
−1 + 2 ≥ 2n−1 − 2(sv1

+ sv2
) + 4su

su ≤
2

n
2
−1 + 2 − 2n−1 + 2(sv1

+ sv2
)

4

su ≤ 2n−3 + 2
n
2
−2 + 2

n
2
−3 + 1

and

2
n
2
−1 + 2 ≥ −2n−1 + 2(sv1

+ sv2
) − 4su

su ≥
−2

n
2
−1 − 2 + 2n−1 − 2(sv1

+ sv2
)

4

su ≥ 2n−3 − 2
n
2
−2 − 2

n
2
−3 − 1

where v1, v2 ≻ u and wt(v1) = wt(v2) = n − 1. �

Remark: Since balance and nonlinearity are affine invariants,
the weight of restriction of f to any flat of dimension n − 1 and
n − 2 are as given in the theorem.

5. Conclusion

The given theorems can be used to speed up search algorithms,
by restricting the search space.
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Fonctions Booléennes : Cryptographie & Applications

BOOLEAN GRÖBNER BASIS

Olga Masnyk Hansen1 and Jean Francis Michon2

Abstract. Our goal is to present the elements of the theory
of Gröbner’s basis (GB), classically developed for polynomial
rings like F2[X1, ..., Xn] , in the ring B of boolean functions
in n variables using boolean (term) orders.

The central problem is the lack of any admissible mono-
mial order relation in B . In spite of this, we have still a
simple notion of boolean order which is not compatible with
multiplication of boolean monomials but has sufficient good
properties to allow a ”reduction”. Consequently we can de-
fine ”boolean Gröbner basis” (BGB) for any chosen boolean
order.

The trivial equivalent of Buchberger algorithm is false in
B . We give some easy modification to be able to produce a
BGB for representable boolean orders. In this case we can
use a lift to the polynomial theory.

We give at the end a minimal bibliography more adapted
to the beginner than to the specialist. The books [1] [4] are
fine standard references on the general subject of Gröbner
basis for readers unaware of this subject. The motivation of
this work relies on our investigations for fast computations
of GB of some cryptographic boolean systems: see [2], [5].

1. The basic notations

n is the number of variable, a fixed integer
〈a, ...〉 is the ideal generated by a, ... in some ring

1 IBM Public, Bytoften, DK-8240, Risskov, Denmark,
email: omh@dk.ibm.com
2 LITIS, Université de Rouen, Avenue de l’université, 76801 Saint Etienne
du Rouvray, France
email: jean-francis.michon@univ-rouen.fr
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P = F2[X1, ...,Xn] is the polynomial ring in n variables over the
finite field F2.
B = F2[X1, ...,Xn]/ < S1, . . . ,Sn > stands for the corresponding
Boolean functions in n variables ring, where Si = X2

i + Xi (1 ≤
i ≤ n) are called the structural polynomials. B is not a domain.
All its ideals are principal and have a unique generator.

Through this paper we have tried to use capital letters for all
the objects from P and to use small letters for those from B .
We define two maps:

– The canonical ring homomorphism P
φ

−→ B,
with φ(Xi) = xi and φ(X2

i ) = xi,

– B
π

−→ Pn,
with π(xi) = Xi and

π(f) + π(g) = π(f + g) (1.1)

π(f)π(g) ≡ π(fg) mod Σ, (1.2)

where p, g ∈ B and Σ = 〈S1 . . . ,Sn〉 the ideal generated
by the structural polynomials. The map π is a F2 -linear
embedding but is not multiplicative. We have φ ◦ π = IdB
but π ◦ φ 6= IdP .

For a family of boolean functions F = {f1, f2, . . . , fm} we define
the canonical lift of the ideal I = 〈f1, . . . , fm〉 ⊆ B to the polyno-
mial ring P as I = φ−1(I) = 〈π(f1), . . . , π(fm),S1, . . . ,Sn〉 ⊆ P.
M is the monoid (for multiplication) of monomials of P,
M = φ(M) is the set of boolean monomials in n variables.
M is a monoid for multiplication isomorphic to ({0, 1}n,∨) (”OR”
operation on n-bit vectors).
M(f) is the set of all monomials of a boolean function f. For ex.
if f = x1x3 + x2x3x4 then M(f) = {x1x3, x2x3x4} .

Let m1,m2 ∈ M where m1 = xα1

1 xα2

2 . . . xαn

n and

m2 = xβ1

1 xβ2

2 . . . xβn

n with αi, βi ∈ {0, 1} for all i : 1 ≤ i ≤ n then:
The greatest common divisor of two boolean monomials m1

and m2 is gcd(m1,m2) =
∏n

i=1 xγi

i , where γi = min(αi, βi). The

least common multiple is lcm(m1,m2) =
∏n

i=1 xδi

i , where δi =
max(αi, βi) .
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2. Boolean orders

We recall the definition of admissible orders on M (for all cor-
responding definitions in polynomial ring c. f. [1, 4]).

Definition 2.1. A total strict order < on M is called admissible

order or term order on M if it fulfills the two conditions:

(i) 1 < T for all T ∈ M ;
(ii) if T1 < T2 then ST1 < ST2 for all S, T1, T2 ∈ M.

An admissible order on M is simply a total order compatible
with the monoid structure (multiplicative) of M . Such an order
cannot exist on M because of torsion:

1 < xi ⇒ xi < x2
i = xi

and this is a contradiction. We need a new definition of admissi-
bility for boolean monomials. The best we can expect is this.

Definition 2.2. A total order < on M is called a boolean (term)

order on M if the following property holds:

(i) For all t,m1,m2 ∈ M, if m1 < m2 then tm1 < tm2 if no
variable of t occurs in m2.

With respect to a chosen boolean order, the leading mono-

mial of a nonzero boolean function f is its highest monomial. We
shall denote the leading monomial of f (resp. the leading term of
a polynomial F ) by L(f). (resp. L(F ).)

Theorem 2.1. Any admissible order on M defines a total order
on π(B) by restriction to π(B). The image of this order by φ is
a boolean order. Not all boolean orders are obtained in this way,
except when n < 5.

Proof. Suppose that < on M is induced by restriction and image
from a polynomial admissible term order denoted by the same
symbol <.

If a, b ∈ M a < b and xi does not divide a nor b then it follows
from admissibility that :

π(axi) = π(a)π(xi) = π(a)Xi < π(bxi) = π(b)π(xi) = π(b)Xi

so axi = a < bxi.
If a, b ∈ M a < b and xi divides a but does not divide b, then

π(a) < π(b)X, so π(a)Xi < π(b)Xi because of admissibility, and
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1 < Xi implies π(a) < π(a)Xi. Thus π(a) < π(bxi) and taking the
image we have axi = a < bxi.

The second part follows from the fact that for n ≥ 5 there are
boolean orders which are not the image of any admissible order
on M . We don’t go further in this highly interesting field, we refer
to [3]. �

This theorem says that the family of boolean orders splits in two
classes : the boolean orders which are restriction-image of some
admissible order(s) on M and which are called representable

boolean orders, and the boolean orders which are not (called non-

representable boolean orders).

It allows us to speak of the lex or the drl (degree reverse lexi-
cographical) boolean orders for example. They correspond to the
restriction to π(M) and image by φ of these classical admissible
orders on M . We must keep in mind that these boolean orders are
no longer compatible with boolean multiplication and that two
different polynomial orders may induce the same boolean order.

It is clear also that there are only finitely many boolean orders
on M . For example when n = 2 we have only 2 boolean orders:
1 < x < y < xy and the other obtained by permutation of x and y.
When n = 3 there are 12 orders. In fact up to the six permutations
of the three variables there are only two boolean orders which are
the restrictions of lex and drl. The exact enumeration for the
number of representable or non-representable boolean orders on
M is unknown. For small values of n we obtained independently
some of the results given in [3].

To conclude this section we stress on the fact that a complete
change of the leading monomial may occur after a multiplication
by a variable dividing it.

Let f = x1x3 + x1 + x2x3 ∈ B with boolean order lex and x3 <
x2 < x1. We have L(f) = x1x3 but for x1f = x1x3 + x1 + x1x2x3

the leading monomial is L(x1f) = x1x2x3 and not x1x3.

The property of boolean orders implies that the leading term of
a boolean function will be preserved after multiplications by vari-
ables (and product of such variables by iteration) not dividing this
leading term. The other terms of the function must be reordered
and some of them may cancel.
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3. Boolean Gröbner basis for general boolean orders

We suppose that we are given a boolean order < on M and,
without loss of generality, that 1 < xn < ... < x1 for this order.

3.1. Boolean reduction

Definition 3.1. For boolean monomials p, q ∈ M we say that p
divides q and denote p|q if and only if there exists h ∈ M, such
that ph = q.

Definition 3.2. Let f, h ∈ B and F = {f1, . . . , fs} ⊂ B fi 6= 0
(1 ≤ i ≤ s). We say that f reduces to h with respect to F in

one step and write

f
F
−→ h

if some monomial a of f can be divided by some L(fi) (1 ≤ i ≤ s)
and, if a = mL(fi) with a monomial m whose variables do not
divide L(fi) : then

h = f − mfi

For example with lex (boolean) order: x1x2 + x2x3 + x3
x3+1
−→

x1x2 + x2 + x3

Definition 3.3. Let f , h be two boolean functions. For a given
finite family of non-zero boolean functions F = {f1, . . . , fs} ⊂ B,
we say that f reduces to h with respect to F and write

f
F
−→∗ h

if and only if there exists a finite family of boolean functions
h1, . . . , ht such that

f
F
−→ h1

F
−→ . . .

F
−→ ht

F
−→ h

We shall feel free to forget the ∗ sometimes.

Definition 3.4. A boolean function f is called reduced wrt a
family of non-zero boolean functions F = {f1, . . . , fs} if f can not
be reduced by F .

It is easy to see that the reduction of any boolean function f
wrt some given F is a process which always terminates because
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of boolean ordering. But the reduction process is not confluent in
general like for polynomials. That is to say we may have

f
F
−→∗ g and f

F
−→∗ h

with g and h reduced with respect to F , and g 6= h.

3.2. Boolean Gröbner basis definitions

The results of this section, except the existence of BGB, are di-
rect transpositions of classical definitions and theorems well known
in the polynomial case (see [1]).

Definition 3.5. A finite family {f1, ..., ft} ⊂ I is a boolean

Gröbner basis (BGB) of a nonzero ideal I ⊂ B, if the leading
term of any nonzero element of I can be divided by the leading
term of some element of the family.

The existence of BGB for any ideal I of B is trivial because I

has a finite number of elements and consequently the set I is a
BGB of the ideal I.

Theorem 3.1. Let G be a BGB of an ideal of B . Then any f ∈ B
has a unique reduction wrt G.

Proof. Suppose G is a BGB of I. Let f ∈ B with f
G
−→∗ r1 and

f
G
−→∗ r2, with r1 and r2 reduced wrt G. Then r2 − r1 ∈ I then

r2 − r1
G
−→∗ 0. Suppose r2 − r1 6= 0 then one of the term of r1 or

r2 can be reduced by some element of G. This is a contradiction
with the fact that r1 and r2 are reduced wrt G. �

Surprisingly, the converse of this theorem is not true for boolean
functions. Let G be a family reduced to one element g 6= 0. Then
the pathes of reductions of a boolean function f are all the same
and the reduction wrt G is confluent. But G is not in general a
BGB of the ideal 〈g〉.

Take for example g = x1x2 + x1 + x3 with lex order. Then
x2x3 = x2g ∈ 〈g〉 and x2x3 cannot be reduced wrt g. So g is not a
BGB of 〈g〉. But the reduction of any f wrt G = {g} is confluent.

One says that a BGB is reduced (resp. minimal) when no
term of the elements of the basis can be divided by a leading term
of some element of the basis except maybe itself (resp. when no
leading term of an element of the basis divides another except for
itself).
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Theorem 3.2. Let (f1, ...ft) a BGB of an ideal I, then if
L(f2)|L(f1) then (f2, ..., ft) is a BGB of this ideal.

Proof. If L(f2)|L(f1) we have

f1
f2,...,ft

−−−−→∗ 0

so f1 ∈ 〈f2, ..., ft〉 and every leading term of an element of the ideal
can be divided by some leading term of the family 〈f2, ..., ft〉. �

The preceding theorem gives a process to extract a minimal
BGB from any given BGB.

Theorem 3.3. All minimal BGB of a given ideal I have the same
number of elements and the set of leading terms of these minimal
BGB are identical.

Proof. Let (g1, ...gt) and (f1, ...fs) be two minimal BGB of I. We
suppose that s > t. L(f1) can be divided by some L(gi). We can
renumber the family such that i = 1. Now g1 ∈ I and some L(fj)
must divide L(g1). By transitivity L(fj)|L(f1) so j = 1 by the
minimality hypothesis, and L(g1) = L(f1). The same is true for
L(f2) with some L(gj) and j 6= 1 because of minimality. We can
renumber such that j = 2. For the same reasons L(g2) = L(f2).
Repeating this process we must have s = t and the leading terms
of each families are identical. �

Starting from a minimal BGB of I we can construct a reduced
BGB with the classical process :

Theorem 3.4. Let g1, ..., gt a minimal BGB of an ideal I. Con-
sider the following process

g1
H1−−→∗ h1 with h1 reduced wrt H1 = {g2, ..., gt}

g2
H2−−→∗ h2 with h2 reduced wrt H2 = {h1, g3, ..., gt}

g3
H3−−→∗ h3 with h3 reduced wrt H3 = {h1, h2, g4, ..., gt}

. . .

gt
Ht−→∗ ht with ht reduced wrt Ht = {h1, h2, ..., ht−1}

Then H = {h1, ..., ht} is a reduced BGB.

Theorem 3.5. For a fixed boolean term order, every ideal of B
has a unique reduced BGB.
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Proof. Let (g1, ...gt) and (f1, ...ft) two reduced BGB of I. They
have the same number of elements and we can suppose L(fi) =
L(gi) for all i because they are minimal. For a given i, suppose
fi 6= gi, then fi − gi ∈ I, so L(fj)|L(fi − gi) for some j. We have
j 6= i because L(fi − gi) < L(fi). So the leading term of fj divides
some term of fi or gi . This is impossible because the basis are
reduced by hypothesis. So fi = gi. �

4. GB and BGB for representable boolean orders

We suppose now that a representable boolean order < is chosen
on B , so we can choose (in several ways in general) some admissible
order on P whose restriction-image to B is <. Consequently, we
can use the same symbol < for these two (polynomial and boolean
functions).

The following polynomial fact is important in the following:

Lemma 4.1. For any admissible order the structural polynomi-
als form the unique reduced Gröbner basis of Σ. For all F ∈
F2[X1, ...,Xn]

F
Σ
−→ π(φ(F ))

This reduction is terminal and confluent i.e. we cannot reduce the
right hand side anymore, and all terminal reductions are the same.

Proof. The proof is straightforward and omitted. The confluence
of reductions is classical property of polynomial Gröbner basis. �

Proposition 4.2 (Lifting to polynomials). If F is a family of
boolean functions, then for any boolean functions f, g ∈ B such

that f
F
−→ g we have

π(f)
π(F)∪Σ
−−−−−→ π(g)

Proof. It is sufficient to prove this for one step reduction f
h
−→ g

with h ∈ F . We can write f = L(f) + r, h = L(h) + s and
L(h)|L(f). Then by additivity of π :

π(f) = π(L(f)) + π(r) = L(π(f)) + π(r)

π(h) = π(L(h)) + π(s) = L(π(h)) + π(s)
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and π(L(h))|π(L(f)). So we have a one step polynomial reduction

π(f)
π(h)
−−−→ G

for some G ∈ F2[X1, ...,Xn] with L(π(f)) = π(L(f)) > L(G).
Thus we have φ(G) = g. By lemma 4.1 we deduce that

π(f)
π(h)
−−−→ G

Σ
−→ π(g)

and we have our result.
We will complete the proof in similar way if L(h) divides some

other monomial of f than L(f). �

The proof of the ”Lifting to polynomials” proposition shows
that the ”boolean reduction” of f is the strategy ”use the struc-
tural polynomials first” on π(f).

Proposition 4.3. Let I be any ideal of Pn such that Σ ⊂ I. Then
an element of its reduced Gröbner basis which is not a structural
polynomial has only squarefree monomials.

Proof. Let G be a GB of I. We know that G ∪ Σ is still a GB of
I. We reduce all elements of G which are not in Σ by structural
polynomials and we get squarefree polynomials. So there exists a
GB which contains squarefree polynomials and Σ.

Now we compute a minimal GB from it. The only reduction
which can occur is the reduction of a structural polynomial X2

i +
Xi by some squarefree polynomial. The result of this reduction
will be squarefree. In this way of computation some of structural
polynomials may disappear from the minimal GB. In this case it
remains a polynomial with leading term Xi.

From the minimal GB we construct the reduced GB by the
standard way and the result will be only square free polynomials
with maybe some structural polynomials. �

4.1. Computation of S-polynomials with structural polynomials

Lemma 4.4. Let f a nonzero boolean function, F a polynomial
such that φ(F ) = f , Si = X2

i + Xi a structural polynomial. If
G = S(F, Si) is the classical S-polynomial, then φ(G) = xiφ(F )
or φ(F ).

Proof. We have one of the 3 cases for F , writing the leading term
first:
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1. F = XiM + R
2. F = Xk

i M + R and k ≥ 2
3. F = M + R

where M is a monomial prime to Xi. We look at S polynomial
G = S(F,X2

i + Xi),

1. G = S(XiM +R,X2
i +Xi) = (XiM +R)Xi +(X2

i +Xi)M
then g = φ(G) = xim + xir = xiφ(F )

2. G = S(Xk
i M+R,X2

i +Xi) = Xk
i M+R+(X2

i +Xi)X
k−2
i M

then g = φ(G) = xim + r = φ(F )
3. G = S(M + R,X2

i + Xi) = X2
i (M + R) + (X2

i + Xi)M
then g = φ(G) = xiφ(F ).

�

5. The Boolean version of Buchberger theorem for repre-

sentable orders

There is no surprise in our definition of the Boolean S-function
(for a chosen representable or non-representable Boolean order):

Definition 5.1. Let f, g be nonzero Boolean functions with
L(f) = cm1 and L(g) = cm2 for some c,m1,m2 ∈ Mn and
gcd(L(f),L(g)) = c. The SB−function of f and g is

SB(f, g) = m2f + m1g. (5.1)

From now we suppose that a representable Boolean order is
chosen on B .

Theorem 5.1 (Boolean Buchberger theorem for representable
orders (RBB)). The family of non zero Boolean functions F =
{f1, ..., ft} ⊂ B is a BGB if and only if the following two condi-
tions are verified

– SB(fi, fj)
F
−→∗ 0 for all 1 ≤ i, j ≤ t

– xifj
F
−→∗ 0 for all j and all i such that xi|L(fj).

Proof. If F is a BGB then it is easy to verify that these two con-
ditions hold.

We shall prove the converse part from classical Buchberger the-
orem. We first prove the following lemmas. The first is the classical
way used to solve the polynomial systems over F2 (zero dimen-
sional systems).
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Lemma 5.2. Let I be any ideal of B and U be a (resp. reduced)
Gröbner basis (GB) of the ideal
I = φ−1(I) = 〈π(f1), ..., π(ft), S1, ..., Sn〉 . Then the family φ(U)
(with unnecessary 0 functions canceled) is a (resp. reduced) BGB
of I.

Proof. If f ∈ I, f 6= 0, then there exist G ∈ U such that
L(G)|L(π(f)). The monomial L(π(f)) is square free and it follows
that L(G) is square free too. We know that φ is a multiplicative
function in the specific cases where its inputs are square free mono-
mials. Hence φ(L(G)) divides φ(L(π(f)). The conclusion that φ(U)
is a BGB of I follows when we switch L and π, what is possible
to both G and π(f), since they both satisfy hypothesis of lemma
5.3 below.

In the reduced case we use proposition 4.3. As a consequence,
if a member G ∈ U is not a structural polynomial, we have

π(φ(G)) = G

and if G is a structural polynomial then φ(G) = 0. The BGB φ(U)
is just U without structural polynomials and with variables Xi

replaced by xi (without any simplification occurring). Following
our definition this exactly signifies that φ(U) is a reduced BGB.

�

Lemma 5.3. Let F ∈ F2[X1, ...,Xn] such that L(F ) is square free
then φ(L(F )) = L(φ(F )).

Proof. Let M ∈ Mn any monomial. Then M ≥ π(φ(M)) and
equality occurs if and only if M is square free.

Let F = M1 + ... + Mr with M1 > ... > Mr. Then for i > 1 :

M1 > Mi ≥ π(φ(Mi))

If M1 is square free

π(φ(M1)) = M1 > π(φ(Mi))

then φ(M1) > φ(Mi) and φ(M1) = φ(L(F ) is the leading term of
φ(F ). This proves the lemma. �

Lemma 5.4. Suppose that xi ∤ L(f) then xif
f
−→ 0

Proof. In this case we have L(xif) = xiL(f) and a one step of
reduction by f gives 0. �
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Now we continue the proof of the RBB theorem:
Assume that both condition hold in RBB theorem. By the last

lemma it is actually equivalent to assume that xifj
F
−→ 0 for any

Boolean variable xi and any Boolean function fj ∈ F .
Let I = 〈f1, ..., ft〉 and I = φ−1(I). It is clear that

I = 〈π(f1), ..., π(ft),Σ〉 .

Set F = π(F) ∪ Σ and Fi = π(fi). We must verify Buchberger
condition on F .

We proceed in three steps and 1 ≤ j ≤ t :

Step 1: S(Fi, Fj)
F
−→ 0 for any 1 ≤ i, j ≤ t.

We apply lifting proposition to

SB(fi, fj)
F
−→ 0 then π(SB(fi, fj))

F
−→ 0 and it is clear that

S(Fi, Fj)
Σ
−→ π(SB(fi, fj)).

Step 2: S(Si, Sj)
F
−→ 0 for any 1 ≤ i, j ≤ n (Si, Sj ∈ Σ) is

evident.

Step 3: S(Fi, Sj)
F
−→ 0 for any 1 ≤ i ≤ t and any 1 ≤ j ≤ n.

We know that the leading term of Fi is square free. Suppose
Xj |L(Fi) then Fi can be written Fi = XjM +R with a polynomial

R and a monomial M . Then S(Fi, Pj) = XjFi + MPj
Σ
−→ π(xjfi)

because of confluence of reduction by Σ. Now we can apply lifting
and finish. If Xj ∤ L(Fi) then Fi = M + R with M = L(F ) and

R a polynomial. In this case S(Fi, Sj) = X2
j Fi + MSj

Σ
−→ π(xjfi).

We then apply lifting and finish.

The three steps are now completed. The Buchberger theorem
says that F is a GB of I and the result follows by lemma 5.2 since
π(F ) = F . �

We know that the efficient use of Buchberger theorem (and al-
gorithm which it implies) needs good criteria to choose the pairs
for computation of S-polynomials. For many pairs (fi, fj) of
Boolean functions SB(fi, fj) reduces to zero and the algorithm
runs for nothing constructive. In the polynomial cases we have the
criteria of Buchberger, Faugère, and others that can help drasti-
cally. The reader must be aware of the fact that for example the
first criterion of Buchberger is false on Boolean as shown in the
following example
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Example: We use lex order and let f = x1x3+1 and g = x2x4+

x3x4 + x4 then S(π(f), π(g))
π(f),π(g)
−−−−−−→ 0 by first Bucherberger’s

criterion. But SB(f, g) = x2x4
f,g
−−→ x3x4 + x4.

Conclusion

Papers dealing with the problem of finding Boolean solutions
of Boolean systems use representable Boolean term orders, lift the
problem to polynomial ring, add the structural polynomials and
compute the GB in the classical polynomial context. We showed
here that there is a ”pure” Boolean theory of GB which reflects this
process up to a strategy of computation on polynomials (reduction
by the structural polynomials first).

We draw attention of the reader on the mysterious existence of
non representable orders which give also BGB but prevent us from
any ”lift” to polynomial ring. In this case the status of Boolean
Buchberger theorem is unclear. We shall investigate this field in a
forthcoming paper .

Our feeling is that it may exist a purely Boolean BGB theory
avoiding use of polynomial consideration.

It seems also very interesting for the solving of systems of
Boolean functions to look at the other representations of the
Boolean functions. For example the algebraic representation us-
ing the xi and the complement variable xi.

A library in C++ has been written and reflects the main ideas
presented in this paper. It uses NTL library from Victor Shoup
(http://www.shoup.net/).

The authors thank the reviewers for their remarks and advices
allowing this new revised version.

Appendix A. Toy example of BGB computation

Now we give a toy example of computation of a BGB for rep-
resentable boolean order with help of implemented C++ library,
which includes the main operations from Boolean Buchberger The-
orem: SB−functions, multiplication by variables, which are in-
cluded in the leading monomial and reduction. The additional op-
erations which are used in this library: construction of the matrix
from the given boolean functions and computing the echelon of it
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at every step of computation. The columns are indexed by all the
monomials occurring in the boolean functions, ordered with the
chosen boolean order.

The input consists of two boolean functions generating some
ideal in B. We use boolean lex order. The output is reduced BGB.
In our example we obtain the BGB in one step.

Writing the input system of 2 functions:

x[1]x[2] + x[4]

x[1]x[3] + x[5]

===============

List of terms of the System

(all monomials in decreasing lex order):

x[1]x[2], x[1]x[3], x[4], x[5]

The matrix of the system is:

[

[1 0 1 0]

[0 1 0 1]

]

===============

Computes products:

x[1]*P = x[1]x[2] + x[1]x[4]

x[2]*P = x[1]x[2] + x[2]x[4]

x[1]*Q = x[1]x[3] + x[1]x[5]

x[3]*Q = x[1]x[3] + x[3]x[5]

===============

S_b-functions of this system:

S_b(P , Q) =x[2]x[5] + x[3]x[4]

S_b(x[1]*P,x[2]*P) = x[1]x[4] + x[2]x[4]

S_b(x[1]*P,x[1]*Q) = x[1]x[2]x[5] + x[1]x[3]x[4]

S_b(x[1]*P,x[3]*Q) = x[1]x[3]x[4] + x[2]x[5]

S_b(x[2]*P,x[1]*Q) = x[1]x[2]x[5] + x[2]x[3]x[4]

S_b(x[2]*P,x[3]*Q) = x[2]x[3]x[4] + x[2]x[5]

S_b(x[1]*Q,x[3]*Q) = x[1]x[2]x[5] + x[2]x[5]

Adds these functions to the system S:

x[1]x[2] + x[4]

x[1]x[3] + x[5]

x[1]x[2] + x[1]x[4]

x[1]x[2] + x[2]x[4]

x[1]x[3] + x[1]x[5]

x[1]x[3] + x[3]x[5]

x[2]x[5] + x[3]x[4]

x[1]x[4] + x[2]x[4]

x[1]x[2]x[5] + x[1]x[3]x[4]

x[1]x[3]x[4] + x[2]x[5]

x[1]x[2]x[5] + x[2]x[3]x[4]

x[2]x[3]x[4] + x[2]x[5]

x[1]x[2]x[5] + x[2]x[5]
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===============

New List of terms of this System:

x[1]x[2]x[5], x[1]x[2], x[1]x[3]x[4], x[1]x[3],

x[1]x[4], x[1]x[5], x[2]x[3]x[4], x[2]x[4],

x[2]x[5], x[3]x[4], x[3]x[5], x[4], x[5]

The matrix from this System:

[

[0 1 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 1 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 1 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0]

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 1 0 0 0 0]

[1 0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0 0]

[1 0 0 0 0 0 0 0 1 0 0 0 0]

]

The echelon of this matrix:

[

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 1 0 0 0 0]

[0 0 0 1 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0]

]

The System from this matrix

x[1]x[2] + x[4]

x[1]x[3] + x[5]

x[1]x[2] + x[1]x[4]

x[1]x[2] + x[2]x[4]

x[1]x[3] + x[1]x[5]

x[1]x[3] + x[3]x[5]

x[2]x[5] + x[3]x[4]

x[1]x[4] + x[2]x[4]

x[1]x[2]x[5] + x[1]x[3]x[4]

x[1]x[3]x[4] + x[2]x[5]
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x[1]x[2]x[5] + x[2]x[3]x[4]

x[2]x[3]x[4] + x[2]x[5]

x[1]x[2]x[5] + x[2]x[5]

===============

Now we reduce the System:

[

[1 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0]

]

===============

System with removed zero lines:

[

[1 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1]

]

Terms after reduction are:

x[1]x[2], x[1]x[3], x[1]x[4], x[1]x[5],

x[2]x[4], x[2]x[5], x[3]x[4],

x[3]x[5], x[4]x[5], x[4], x[5]

===============

Boolean Groebner Base:

x[1]x[2] + x[4]

x[1]x[3] + x[5]

x[1]x[4] + x[4]

x[1]x[5] + x[5]

x[2]x[4] + x[4]

x[2]x[5] + x[4]x[5]

x[3]x[4] + x[4]x[5]

x[3]x[5] + x[5]

==========
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We see that BGB of this example includes 8 boolean functions.
The corresponding polynomial GB of the ideal

〈

X1X2 + X4,X1X3 + X5,X
2
1 + X1, . . . ,X

2
5 + X5

〉

computed for example by MAPLE has 13 polynomials, where 8 of
them corresponds to the BGB and 5 additional are the structural
polynomials. We must be aware that in general all the structural
polynomials are not always in the reduced GB. The structural
polynomial X2

i + Xi will not appear in the reduced GB, when the
leading term of some element of the GB is Xi (see proposition
4.3).

Revised Version, September 2006.
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