
Interfaces Graphiques
Jean-Baptiste.Yunes@u-paris.fr

Université Paris Cité
©2026

Un paradigme

• GUI Graphical User Interface, Interface Utilisateur
Graphique, un type d’interface :

• plus riche que le simple clavier et l’affichage en
mode texte

• un paradigme

• une représentation picturale

• un mode d’interaction gestuel

2

Un paradigme

• c’est un paradigme très répandu aujourd’hui

• mais qui n’a pas que des avantages...

• Neal Stephenson

• In the beginning was the command line

http://fr.wikipedia.org/wiki/Neal_Stephenson

3

Un paradigme

• on considère habituellement que le père des GUI
est Douglas Engelbart (1962)

• AUGMENTING HUMAN INTELLECT: A
Conceptual Framework

• mais que dire du projet SAGE 1950-1983 ?

http://www.williamson-labs.com/480_cpu.htm

4

Un paradigme

• on considère habituellement que le père des GUI
est Douglas Engelbart (1962)

• AUGMENTING HUMAN INTELLECT: A
Conceptual Framework

• mais que dire du projet SAGE 1950-1983 ?

5

http://www.williamson-labs.com/480_cpu.htm

Event-driven

• qu’est ce que ce type d’application a de particulier ?

• son architecture

• c’est l’utilisateur qui décide...

• ...ou plutôt ce sont les évènements qui
décident

• event-driven programming, event-driven design

6

Event-driven

• Event-driven programming ?

• une boucle principale :

• (event detection) retirer un évènement

• (event handling) distribuer l’évènement à la partie
logicielle concernée

7

User-centric

• La clé de tout lorsqu’on conçoit un programme
utilisant une interface graphique c’est de suivre le
conseil suivant :

• une interface est bien conçue lorsque le
programme se comporte comme l’utilisateur
pense qu’il doit : user centric

• ceci nécessite une conception soignée

8

Architecture

• Quelle architecture ?

• un système de fenêtrage (windowing system)

• un gestionnaire de fenêtres (window manager)

• des outils et bibliothèques d’objets (tools & API)

9

Architecture

• système de fenêtrage

• X Window System (monde Unix) aka X11R7.7

• Wayland

• Quartz (Apple)

• Windows (Microsoft)

• fournit aux applications un espace (graphique)
d’accueil propre

10

Architecture

• gestionnaire de fenêtre (window manager)
• kde
• gnome
• twm
• motif
• etc.

• aqua

• dwm (Desktop Window Manager)

• gère l’ensemble des fenêtres et uniformise leur
manipulation

11

Architecture

• outils et bibliothèque d’objets (toolkits)

• Xt, Xaw, Motif

• GTK+

• FLTK

• Qt

• wxWidgets

• Cocoa

• uniformise la représentation visuelle des objets
standards

12

Aqua/Quartz (MacOSX) 13

Photo d’écran, source privée

kde/X11 (Linux) 14

Photo d’écran KDE, source Wikipédia

gnome/X11 (Linux) 15

Photo d’écran Gnome, source Wikipédia

DWM (Windows 7) 16

Photo d’écran Windows 7, source privée

Un exemple

• idée générale :

• programmer sans de préoccuper des aspects
graphiques

• toutefois il existe des règles à suivre pour créer une
interface graphique dans un environnement donné

• les guidelines

17

Guides de conception

• KDE User Interface Guidelines

• Windows User Experience Interaction Guidelines

• Guide de l’Interface Utilisateur de Gnome

• Apple Human Interface Guidelines

• etc.

18

• suivre les règles permet d’obtenir une application
qui se comporte comme attendu

• les API permettant en grande partie de garantir la
conformité vis-à-vis de ces règles

• il n’y a donc qu’à se focaliser essentiellement sur les
aspects abstraits ou logiques

19

• un programme utilisant une interface graphique
compliquée n’est pas nécessairement complexe

• les API offrent en général des objets tout faits
permettant de rendre la plupart des services
généraux attendus...

• afficher un message dans une fenêtre, par
exemple...

20

Bonjour (minimal)

import javax.swing.JOptionPane;

public class Bonjour {
 public static void main(String[] args) {
 JOptionPane.showMessageDialog(null, "Bonjour!");
 }
}

Linux (kde) MacOSX

Bonjour.java

Linux (gnome)Linux (twm) Windows 7

21

Bonjour (à la main)

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Bonjour {
 private static void creeInterface() {
 JFrame frame = new JFrame("Application Bonjour");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JLabel label = new JLabel("Bonjour!");
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
 System.exit(0);
}

 });
 frame.getContentPane().setLayout(new FlowLayout());
 frame.getContentPane().add(label);
 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 creeInterface();
 }
 });
 }
}

La même chose à la main

22

• Que sont/font tous ces objets ?

• Comment interfèrent-ils les uns avec les autres ?

• C’est le sujet central de ce cours

• Comprendre la structure d’une API d’une
interface graphique

• nous étudierons celle de Java : Swing

• mais les autres sont assez semblables au
moins dans leur principe

23

• En préliminaire on peut dire que les interfaces
graphiques :

• constituent un domaine pour lequel le paradigme
objet est assez efficace

• font une utilisation intensive de divers design
pattern

• si vous avez déjà tout oublié : révisez…

24

Décomposition d’une interface 25

AWT; Swing

• GUI Java

• Historiquement :

• AWT Abstract Window Toolkit

• son utilisation directe est considérée comme
obsolète

• sa disponibilité est conservée car :

• Swing, basé sur AWT...

• il existe aussi SWT (Eclipse Foundation)…

26

AWT vs Swing

• AWT

• les composants sont lourds (heavyweight), i.e. ils
ont tous un pair natif attaché...

• la conception d’AWT est thread-safe, trop lourd...

• Swing

• sauf les composants racine, ils sont légers
(lightweight)

• pas thread-safe

27

• JFC Java Foundation Classes

• composants Swing

• look-and-feel

• accessibilité

• API 2D

• internationalisation

28

• 12 packages AWT

• dans le module java.desktop

29

java.awt  
java.awt.color  
java.awt.datatransfer  
java.awt.dnd  
java.awt.event  
java.awt.font  
java.awt.geom  

java.awt.im  
java.awt.im.spi  
java.awt.image  
java.awt.image.renderable  
java.awt.print

javax.swing  
javax.swing.border  
javax.swing.colorchooser  
javax.swing.event  
javax.swing.filechooser  
javax.swing.plaf  
javax.swing.plaf.basic  
javax.swing.plaf.metal  
javax.swing.plaf.multi

javax.swing.plaf.nimbus  
javax.swing.plaf.synth  
javax.swing.table  
javax.swing.text  
javax.swing.text.html  
javax.swing.text.html.parser  
javax.swing.text.rtf  
javax.swing.tree  
javax.swing.undo

• 18 packages Swing

• dans le module java.desktop

30

JFrame

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Bonjour {
 private static void creeInterface() {
 JFrame frame = new JFrame("Application Bonjour");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JLabel label = new JLabel("Bonjour!");
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {
	 public void actionPerformed(ActionEvent e) {
	 	 System.exit(0);
	 	 }
	 });
 frame.getContentPane().setLayout(new FlowLayout());
 frame.getContentPane().add(label);
 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 creeInterface();
 }
 });
 }
}

• JFrame ?
• un des quatres conteneurs racine

(top-level containers) JFrame,
JDialog, JWindow, JApplet

• il faut au moins un conteneur pour
afficher quelque chose...

31

http://localhost/~yunes/Java/docs/api/javax/swing/JFrame.html

JLabel
32

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Bonjour {
 private static void creeInterface() {
 JFrame frame = new JFrame("Application Bonjour");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JLabel label = new JLabel("Bonjour!");
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {
	 public void actionPerformed(ActionEvent e) {
	 	 System.exit(0);
	 	 }
	 });
 frame.getContentPane().setLayout(new FlowLayout());
 frame.getContentPane().add(label);
 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 creeInterface();
 }
 });
 }
}

• JLabel ?
• un composant permettant d’afficher

un texte court, une image ou les deux
• il est passif

http://localhost/~yunes/Java/docs/api/javax/swing/JLabel.html

JButton
33

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Bonjour {
 private static void creeInterface() {
 JFrame frame = new JFrame("Application Bonjour");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JLabel label = new JLabel("Bonjour!");
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {
	 public void actionPerformed(ActionEvent e) {
	 	 System.exit(0);
	 	 }
	 });
 frame.getContentPane().setLayout(new FlowLayout());
 frame.getContentPane().add(label);
 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 creeInterface();
 }
 });
 }
}

• JButton ?
• un composant permettant d’obtenir

une interaction basique avec
l’application

http://localhost/~yunes/Java/docs/api/javax/swing/JButton.html

Listener
34

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Bonjour {
 private static void creeInterface() {
 JFrame frame = new JFrame("Application Bonjour");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JLabel label = new JLabel("Bonjour!");
 JButton button = new JButton("Ok");
 button.addActionListener(new ActionListener() {
	 public void actionPerformed(ActionEvent e) {
	 	 System.exit(0);
	 	 }
	 });
 frame.getContentPane().setLayout(new FlowLayout());
 frame.getContentPane().add(label);
 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 creeInterface();
 }
 });
 }
}

• JButton ?

• addActionListener permet
d’associer une réaction au clic, ici
on termine l’application

http://localhost/~yunes/Java/docs/api/javax/swing/JButton.html

• JFrame contient :

• un JRootPane qui lui-même est composé :

• d’un glassPane (Component) qui recouvre un
JLayeredPane lequel contient :

• un contentPane (Container)

• éventuellement une JMenuBar

35

• le contentPane par défaut est

• descendant de JComponent

• lequel utilise un BorderLayout

• note : les composants Swing sont des
Containers AWT...

36

• pack() :

• calcule les tailles adéquates permettant une
représentation raisonnable à l’écran de la
hiérarchie construite

37

