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Un paradigme

• GUI Graphical User Interface, Interface Utilisateur 
Graphique, un type d’interface :

• plus riche que le simple clavier et l’affichage en 
mode texte

• un paradigme

• une représentation picturale

• un mode d’interaction gestuel
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Un paradigme

• c’est un paradigme très répandu aujourd’hui

• mais qui n’a pas que des avantages...

• Neal Stephenson

• In the beginning was the command line

http://fr.wikipedia.org/wiki/Neal_Stephenson
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Un paradigme

• on considère habituellement que le père des GUI 
est Douglas Engelbart (1962)

• AUGMENTING HUMAN INTELLECT:  A 
Conceptual Framework

• mais que dire du projet SAGE 1950-1983 ?

http://www.williamson-labs.com/480_cpu.htm
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Event-driven

• qu’est ce que ce type d’application a de particulier ?

• son architecture

• c’est l’utilisateur qui décide...

• ...ou plutôt ce sont les évènements qui 
décident

• event-driven programming, event-driven design
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Event-driven

• Event-driven programming ?

• une boucle principale :

• (event detection) retirer un évènement

• (event handling) distribuer l’évènement à la partie 
logicielle concernée
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User-centric

• La clé de tout lorsqu’on conçoit un programme 
utilisant une interface graphique c’est de suivre le 
conseil suivant :

• une interface est bien conçue lorsque le 
programme se comporte comme l’utilisateur 
pense qu’il doit : user centric

• ceci nécessite une conception soignée
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Architecture

• Quelle architecture ?

• un système de fenêtrage (windowing system)

• un gestionnaire de fenêtres (window manager)

• des outils et bibliothèques d’objets (tools & API)
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Architecture

• système de fenêtrage

• X Window System (monde Unix) aka X11R7.7

• Wayland

• Quartz (Apple)

• Windows (Microsoft)

• fournit aux applications un espace (graphique) 
d’accueil propre
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Architecture

• gestionnaire de fenêtre (window manager)
• kde
• gnome
• twm
• motif
• etc.

• aqua

• dwm (Desktop Window Manager)

• gère l’ensemble des fenêtres et uniformise leur 
manipulation
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Architecture

• outils et bibliothèque d’objets (toolkits)

• Xt, Xaw, Motif

• GTK+

• FLTK

• Qt

• wxWidgets

• Cocoa

• uniformise la représentation visuelle des objets 
standards
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Aqua/Quartz (MacOSX) 13

Photo d’écran, source privée



kde/X11 (Linux) 14

Photo d’écran KDE, source Wikipédia



gnome/X11 (Linux) 15

Photo d’écran Gnome, source Wikipédia



DWM (Windows 7) 16

Photo d’écran Windows 7, source privée



Un exemple

• idée générale :

• programmer sans de préoccuper des aspects 
graphiques

• toutefois il existe des règles à suivre pour créer une 
interface graphique dans un environnement donné

• les guidelines
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Guides de conception

• KDE User Interface Guidelines

• Windows User Experience Interaction Guidelines

• Guide de l’Interface Utilisateur de Gnome

• Apple Human Interface Guidelines

• etc.
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• suivre les règles permet d’obtenir une application 
qui se comporte comme attendu

• les API permettant en grande partie de garantir la 
conformité vis-à-vis de ces règles

• il n’y a donc qu’à se focaliser essentiellement sur les 
aspects abstraits ou logiques
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• un programme utilisant une interface graphique 
compliquée n’est pas nécessairement complexe

• les API offrent en général des objets tout faits 
permettant de rendre la plupart des services 
généraux attendus...

• afficher un message dans une fenêtre, par 
exemple...
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Bonjour (minimal)

import javax.swing.JOptionPane;

public class Bonjour {
   public static void main(String[] args) {
      JOptionPane.showMessageDialog( null, "Bonjour!" );
   }
}

Linux (kde) MacOSX

Bonjour.java

Linux (gnome)Linux (twm) Windows 7
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Bonjour (à la main)

import javax.swing.*;        
import java.awt.*;
import java.awt.event.*;

public class Bonjour {
    private static void creeInterface() {
        JFrame frame = new JFrame("Application Bonjour");
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        JLabel label = new JLabel("Bonjour!");
        JButton button = new JButton("Ok");
        button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
    System.exit(0);
}

    });
        frame.getContentPane().setLayout(new FlowLayout());
        frame.getContentPane().add(label);
        frame.getContentPane().add(button);
        frame.pack();
        frame.setVisible(true);
    }

    public static void main(String[] args) {
        javax.swing.SwingUtilities.invokeLater(new Runnable() {
            public void run() {
                creeInterface();
            }
        });
    }
}

La même chose à la main
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• Que sont/font tous ces objets ?

• Comment interfèrent-ils les uns avec les autres ?

• C’est le sujet central de ce cours

• Comprendre la structure d’une API d’une 
interface graphique

• nous étudierons celle de Java : Swing

• mais les autres sont assez semblables au 
moins dans leur principe
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• En préliminaire on peut dire que les interfaces 
graphiques :

• constituent un domaine pour lequel le paradigme 
objet est assez efficace

• font une utilisation intensive de divers design 
pattern

• si vous avez déjà tout oublié : révisez…
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Décomposition d’une interface 25



AWT; Swing

• GUI Java

• Historiquement :

• AWT Abstract Window Toolkit

• son utilisation directe est considérée comme 
obsolète

• sa disponibilité est conservée car :

• Swing, basé sur AWT...

• il existe aussi SWT (Eclipse Foundation)…
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AWT vs Swing

• AWT

• les composants sont lourds (heavyweight), i.e. ils 
ont tous un pair natif attaché...

• la conception d’AWT est thread-safe, trop lourd...

• Swing

• sauf les composants racine, ils sont légers 
(lightweight)

• pas thread-safe
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• JFC Java Foundation Classes

• composants Swing

• look-and-feel

• accessibilité

• API 2D

• internationalisation
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• 12 packages AWT

• dans le module java.desktop
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java.awt  
java.awt.color  
java.awt.datatransfer  
java.awt.dnd  
java.awt.event  
java.awt.font  
java.awt.geom  

java.awt.im  
java.awt.im.spi  
java.awt.image  
java.awt.image.renderable  
java.awt.print 



javax.swing  
javax.swing.border  
javax.swing.colorchooser  
javax.swing.event  
javax.swing.filechooser  
javax.swing.plaf  
javax.swing.plaf.basic  
javax.swing.plaf.metal  
javax.swing.plaf.multi 

javax.swing.plaf.nimbus  
javax.swing.plaf.synth  
javax.swing.table  
javax.swing.text  
javax.swing.text.html  
javax.swing.text.html.parser  
javax.swing.text.rtf  
javax.swing.tree  
javax.swing.undo 

• 18 packages Swing

• dans le module java.desktop
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JFrame

import javax.swing.*;         
import java.awt.*; 
import java.awt.event.*; 

public class Bonjour { 
  private static void creeInterface() { 
    JFrame frame = new JFrame("Application Bonjour"); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    JLabel label = new JLabel("Bonjour!"); 
    JButton button = new JButton("Ok"); 
    button.addActionListener(new ActionListener() { 
	     public void actionPerformed(ActionEvent e) { 
	 	   System.exit(0); 
	 	 } 
	    }); 
     frame.getContentPane().setLayout(new FlowLayout()); 
     frame.getContentPane().add(label); 
     frame.getContentPane().add(button); 
     frame.pack(); 
     frame.setVisible(true); 
    } 
    public static void main(String[] args) { 
       javax.swing.SwingUtilities.invokeLater(new Runnable() { 
         public void run() { 
           creeInterface(); 
         } 
       }); 
    } 
}

• JFrame ?
• un des quatres conteneurs racine 

(top-level containers) JFrame, 
JDialog, JWindow, JApplet

• il faut au moins un conteneur pour 
afficher quelque chose...
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http://localhost/~yunes/Java/docs/api/javax/swing/JFrame.html


JLabel
32

import javax.swing.*;         
import java.awt.*; 
import java.awt.event.*; 

public class Bonjour { 
  private static void creeInterface() { 
    JFrame frame = new JFrame("Application Bonjour"); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    JLabel label = new JLabel("Bonjour!"); 
    JButton button = new JButton("Ok"); 
    button.addActionListener(new ActionListener() { 
	     public void actionPerformed(ActionEvent e) { 
	 	   System.exit(0); 
	 	 } 
	    }); 
     frame.getContentPane().setLayout(new FlowLayout()); 
     frame.getContentPane().add(label); 
     frame.getContentPane().add(button); 
     frame.pack(); 
     frame.setVisible(true); 
    } 
    public static void main(String[] args) { 
       javax.swing.SwingUtilities.invokeLater(new Runnable() { 
         public void run() { 
           creeInterface(); 
         } 
       }); 
    } 
}

• JLabel ?
• un composant permettant d’afficher 

un texte court, une image ou les deux
• il est passif

http://localhost/~yunes/Java/docs/api/javax/swing/JLabel.html


JButton
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import javax.swing.*;         
import java.awt.*; 
import java.awt.event.*; 

public class Bonjour { 
  private static void creeInterface() { 
    JFrame frame = new JFrame("Application Bonjour"); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    JLabel label = new JLabel("Bonjour!"); 
    JButton button = new JButton("Ok"); 
    button.addActionListener(new ActionListener() { 
	     public void actionPerformed(ActionEvent e) { 
	 	   System.exit(0); 
	 	 } 
	    }); 
     frame.getContentPane().setLayout(new FlowLayout()); 
     frame.getContentPane().add(label); 
     frame.getContentPane().add(button); 
     frame.pack(); 
     frame.setVisible(true); 
    } 
    public static void main(String[] args) { 
       javax.swing.SwingUtilities.invokeLater(new Runnable() { 
         public void run() { 
           creeInterface(); 
         } 
       }); 
    } 
}

• JButton ?
• un composant permettant d’obtenir 

une interaction basique avec 
l’application

http://localhost/~yunes/Java/docs/api/javax/swing/JButton.html


Listener
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import javax.swing.*;         
import java.awt.*; 
import java.awt.event.*; 

public class Bonjour { 
  private static void creeInterface() { 
    JFrame frame = new JFrame("Application Bonjour"); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    JLabel label = new JLabel("Bonjour!"); 
    JButton button = new JButton("Ok"); 
    button.addActionListener(new ActionListener() { 
	     public void actionPerformed(ActionEvent e) { 
	 	   System.exit(0); 
	 	 } 
	    }); 
     frame.getContentPane().setLayout(new FlowLayout()); 
     frame.getContentPane().add(label); 
     frame.getContentPane().add(button); 
     frame.pack(); 
     frame.setVisible(true); 
    } 
    public static void main(String[] args) { 
       javax.swing.SwingUtilities.invokeLater(new Runnable() { 
         public void run() { 
           creeInterface(); 
         } 
       }); 
    } 
}

• JButton ?

• addActionListener permet 
d’associer une réaction au clic, ici 
on termine l’application

http://localhost/~yunes/Java/docs/api/javax/swing/JButton.html


• JFrame contient :

• un JRootPane qui lui-même est composé : 

• d’un glassPane (Component) qui recouvre un 
JLayeredPane lequel contient :

• un contentPane (Container)

• éventuellement une JMenuBar
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• le contentPane par défaut est

• descendant de JComponent

• lequel utilise un BorderLayout

• note : les composants Swing sont des 
Containers AWT...
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• pack() :

• calcule les tailles adéquates permettant une 
représentation raisonnable à l’écran de la 
hiérarchie construite
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