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Composants / Containers

• Interface

• une interface est obtenue par 
agrégation de composants

• des emboîtements successifs de

• boîtes (containers)

• objets (composants simples)
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Composants / Containers

• Donc deux types d’objets GUI

• les composants

• les containers

• qui sont aussi des composants...
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Composants / Containers

• (bizarrerie?) Swing

• les JComponents Swing sont 
des Container AWT…

• il n’est pas conseillé de les utiliser 
comme tels… sauf dans le cas des 
containers Swing…
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Panorama (non-exhaustif) aka les-terres-du-milieu.java in JTolkien package
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One Class to rule them all 
One Ctrl-F to find them 
One Swing to bring them all 
and in the GUI bind them, 
In the Land of Java where the Objects lie.



Component

• Les composants (java.awt.Component) :

• un nom (name)

• une taille et position (x/y/width/height - 
size/location)

• visible ou non (visible)

• réceptacle de divers événements

• Il est très important de rendre visible les 
composants sous peine… d’invisibilité !
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Container

• Les containers (java.awt.Container) :

• des méthodes de gestion de la relation 
d’agrégation Container/Composant

• add/remove/getComponent/
getComponentCount/getComponentAt/
getComponents…

• des méthodes de gestion de la disposition (layout)

• une police par défaut (font)
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JComponent

• Les composants Swing (javax.swing.JComponent) :

• support pour une apparence dynamique (pluggable 
look-and-feel)

• amélioration de la gestion du clavier

• support pour info-bulles

• support pour l’accessibilité

• support pour stockage de propriétés spécifiques

• support amélioré pour le dessin (double-buffering, 
bords)
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9

désormais

sauf exception nécessaire

nous ne préoccuperons plus que de Swing…



JComponent

• Quelques propriétés des JComponents :

• opaque (boolean)

• background/foreground (Color)

• font (Font)

• toolTip (String)

• illustration avec un JLabel (JComponentExemple.java)

• précaution : rendre le JLabel opaque car par 
défaut son fond est transparent…
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Containers

• Les Containers

• des boîtes (2D)

• ont pour rôle de contenir d’autres composants
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Containers racine

• Containers racine

•JApplet

• JDialog

• JFrame

• JWindow

• au moins un par application

• manipulables directement par le window manager
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Containers racine

• JFrame vs JWindow

• décoration...

• JDialog ?

• en général utile dans le contexte d’une autre 
fenêtre, on verra plus tard…

• JApplet ?
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Containers racine

JFrameExemple.java

• JFrame(String title)

• contient un unique JRootPane

• peut être remplacé

• ne peut être enlevé

• peut être associée à une JMenuBar
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Containers racine

JWindowExemple.java

• JWindow() / JWindow(Frame owner) / 
JWindow(Window owner)

• contient un unique JRootPane

• peut être remplacé

• ne peut être absent

• pas de barre de menu…
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Containers racine

• Rappel : les containers racines peuvent être visibles 
ou non :

•setVisible(boolean)

• il ne faut pas oublier des les rendre visibles 
sous peine d’invisibilité…

• il ne faut pas les rendre visible trop tôt! Pour 
éviter des effets désagréables de construction visible 
de l’interface et de performances…
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Containers racine

• JWindow, JFrame

• des capsules pour un container utilisateur

• le container principal (JRootPane) est accessible 
via

•Container getContentPane()

• setContentPane(Container)
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Containers

• Containers ordinaires

•JPanel

• JScrollPane

• JSplitPane

• JTabbedPane

• JToolBar

• permettent la division d’un espace existant

• ne sont utilisables que dans d’autres containers
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Containers

• Les containers ordinaires

• un espace de rangement d’autres composants, 
l’agrégation vit grâce à :

• add(Component) / remove(Component)

• comment les composants sont-ils rangés/placés ?

• comme on veut… on le verra plus tard…
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JPanel

•JPanel

• le plus simple, un espace rectangulaire

• un simple panneau d’affichage

JPanelExemple.java

JPanelExemple2.java
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JScrollPane

•JScrollPane

• une fenêtre sur un espace rectangulaire déplaçable

JScrollPaneExemple.java
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JSplitPane

•JSplitPane

• divise un espace verticalement ou 
horizontalement en deux parties dont la somme 
est l’espace entier

JSplitPaneExemple.java
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JTabbedPane

•JTabbedPane

• une pile d’espaces tous de même dimension
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JTabbedPaneExemple.java



JToolBar

•JToolBar

• un espace linéaire de rangement

• utilise des Actions
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Containers

• Containers spéciaux :

•JRootPane

• JLayeredPane

• JInternalFrame

• JDesktopPane

• Leur usage est plus anecdotique ou technique…
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JRootPane

•JRootPane

• on ne les crée jamais soi-même

• les containers racine s’occupent d’en fournir

• leur structure est très particulière…
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JLayeredPane

•JLayeredPane

• autorise la superposition « en Z-stack » de 
différent panneaux à usages particuliers…

contentPane
menuBar

défaut

toolBar
palettes

modales internes
popups
drag’n’drop
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JInternalFrame - JDesktopPane

•JInternalFrame

• autorise la création de frames internes, c’est-à-
dire de fenêtres à l’intérieur d’une autre

•JDesktopPane

• une version spéciale de JInternalFrame 
adaptée pour gérer des fenêtres internes multiples
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Containers : Menu

• Les menus

•JMenuItem

• un choix dans un menu

•JMenu

• un container dédié qui hérite de JMenuItem

• JMenuBar

• un container dédié à l’accueil de menus

JMenuItem

JMenu

*

JMenuBar

*
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Containers : Menu

JMenuExemple.java

• Attention

• une seule barre de menu par container racine 
(setJMenuBar(JMenuBar))

• le placement de la barre n’est pas contrôlable 
(WindowManager dépendant)

• Mac OS java -Dapple.laf.useScreenMenuBar=true

• pas de layout modifiable
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Containers : Menu

JSeparatorExemple.java

• Les séparation logiques entre groupes d’items 
peuvent être obtenues par utilisation de

•JSeparator
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• Si le container est visible

• validate() permet d’obtenir un replacement 
correct de tous les composants après ajout de 
nouveaux composants

• Container racine

• pack() permet d’obtenir un rangement optimal
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Composants

• Les Composants

• proposent une interaction avec l’utilisateur

• affichage

• interaction en entrée

• les deux combinés
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Composants

• Les composants :

• peuvent être actifs ou non, i.e. autorisent 
l’interactivité

•setEnabled(boolean)

• boolean getEnabled()

• l’effet obtenu est en général un grisé

JButtonExemple.java JButtonDisabledExemple.java
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Composants

• Composants simples non-interactifs

•JLabel

• JProgressBar

• JSeparator

• JToolTip

• fournissent une information à l’utilisateur
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Composants

JLabelExemple.java JLabelIconeExemple.java

• JLabel

• permet d’afficher une icône et/ou un texte

• supporte un sous-ensemble de HTML 3.2
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Composants

ProgressMonitorExemple.java

• JProgressBar

• permet de rendre compte d’une progression

• cousins : ProgressMonitor / 
ProgressMonitorInputStream
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JProgressBarExemple.java



Composants

• Composants interactifs simples :
• Boutons
•JButton
• JMenuItem
• JCheckBox JCheckBoxMenuItem
• JRadioButton JRadioButtonMenuItem
• JToggleButton

• Listes
•JComboBox
• JList

• Texte
•JTextField JFormattedTextField/JPasswordField

• Divers
•JSlider
• JSpinner

38



Boutons

• Les boutons (AbstractButton) peuvent être 
regroupés logiquement via des ButtonGroup

• cela n’a vraiment de sens que pour les boutons 
qui ont un état de sélection

• donc ni JButton, ni JMenuItem

• le plus souvent utilisé avec les RadioButton

• Les ButtonGroup permettent de contrôler 
l’exclusion mutuelle lors de sélection

39
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Boutons

• Les listes

• Les JComboBoxs peuvent être éditables

• on verra plus tard comment personnaliser les 
rendus de ces objets… Les curieux peuvent aller 
jeter un œil sur ListCellRenderer<E>
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Texte

• Les champs de saisie de texte

• ordinaire

• mot de passe (saisie masquée)

• champ formatés (date, etc)
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Divers

• Le curseur (slider)

• un curseur sur une règle

• les graduations peuvent être activées ou non 
(mineures/majeures)

• Le spinner

• la roulette (attention son aspect graphique n’est 
pas celui généralement attendu…)
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Composants

• Composants avancés (complexes, i.e. plus d’une 
interaction) :

•JColorChooser

• JEditorPane

• JTextPane

• JFileChooser

• JTable

• JTextArea

• JTree

• On les étudiera plus tard…
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Layouts

• Les Layouts

• algorithmes de placement de composants dans 
des containers...

• problème : ranger des bagages dans un coffre
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Layouts

•LayoutManager

• on peut toujours essayer de ranger les éléments soi-
même mais c’est généralement non-portable et 
parfaitement déconseillé…

• on peut choisir la politique de placement associée à 
un container donné

• méthode setLayout(LayoutManager)
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Layouts

• Layouts de base

• AWT

•BorderLayout

• CardLayout

• FlowLayout

• GridLayout

• GridBagLayout

• Swing

• BoxLayout

• GroupLayout

• OverlayLayout

• ScrollPaneLayout

• SpringLayout

• ViewportLayout
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Layouts

BorderLayoutExemple.java

•BorderLayout

• par défaut dans :

• les JRootPane des JWindow

•les contentPane des JFrame

• Cinq composants au plus : nord, sud, est, ouest, 
centre

• conserve dynamiquement son aspect

• retaille les composants si nécessaire
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Layouts

FlowLayoutExemple.java

•FlowLayout

• par défaut dans les panneaux

• les composants sont placés comme 
dans un flot d’écriture

• ne retaille pas les composants
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Layouts

BoxLayoutExemple.java

• BoxLayout

• par défaut dans les Box

• les composants sont rangés 
horizontalement ou verticalement 
dans des espaces tous de même 
taille

• ne retaille pas les composants
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Layouts

GroupLayoutExemple.java

• GroupLayout

• permet d’obtenir des effets d’alignement

• ne retaille pas les composants

• un poil complexe à utiliser
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Layouts

OverlayLayoutExemple.java

•OverlayLayout

• superpose des composants comme CardLayout

• mais autorise la visualisation/manipulation par 
transparence…
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Layouts

SpringLayoutExemple.java

•SpringLayout

• exprime des contraintes entre composants

• simple en apparence…

52



Internationalisation
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Internationalisation

• Régionalisation (Localization) l10n

• adaptation d’une application aux caractéristiques 
culturelles locales

• travail de l’ordre de la traduction

• Internationalisation (Internationalization) i18n

• processus de développement conduisant à 
produire une application localisable

• travail spécifique de développement
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Internationalisation

• Idée (simple)

• ne pas afficher un message en dur

• utiliser une fonction réalisant la traduction 
adéquate en fonction d’un environnement donné
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Internationalisation

• java.util.ResourceBundle

• une classe d’encapsulation de données 
régionalisées, la sélection des données est opérée 
par un ResourceBundle.Control

• des méthodes pour obtenir les messages depuis 
une liste (une classe adéquate ou un fichier 
adéquat)
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Internationalisation

• Récupérer des données régionalisées depuis un 
fichier

•ResourceBundle.getBundle(String name)

• le fichier recherché aura pour nom

• name + suffixe régionalisé + “.properties“

• ex : Messages_fr_FR.properties

• possibilité d’internaliser le Bundle...
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Internationalisation

• Récupérer la traduction d’un terme

•unResourceBundle.getString(String clé)

• permet de récupérer la chaîne associée à la 
clé donnée, et ce dans la base précédemment 
sélectionnée
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Internationalisation

• Internationalisation

• MacOSX

• préférences système

• Windows

• préférences système

• Unix

• environnement : LANG, LC_*

• dans Eclipse : sélection possible dans 
Run Configurations... ➧ Environment

InternationalisationExemple.java
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Internationalisation

• Internationalisation

InternationalisationExemple.java
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Mnémoniques

• Les menus et la navigation au clavier

• on peut associer aux menus, items et boutons un 
mnémonique

• une lettre (associée à un modificateur en général <ALT>) 
permettant de se placer (naviguer) et sélectionner l’objet 
associé

• attention, l’action associée n’est pas réalisée (<RET>)

• ce n’est pas un raccourci!

• un raccourci permet de déclencher l’action associée à un 
objet d’interface sans passer par l’objet

• c’est de l’accessibilité

• La RFC 1345 est dédiée au sujet « Character Mnemonics & 
Character Sets »
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Mnémoniques

• pour associer un mnémonique

•setMnemonic(int)

• l’entier est normalement l’identité d’une touche 
du clavier

•java.awt.event.KeyEvent.VK_*

• si le caractère est présent dans le texte affiché 
par l’objet associé, ce caractère est souligné 
par l’interface

• Attention: macOS ne supporte pas les mnémoniques Swing
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Raccourcis

• un raccourci permet de déclencher l’action 
associée à un objet d’interface sans passer par 
l’objet

• c’est de l’ergonomie

•setAccelerator(KeyStroke)

• pour l’observer, il faut être capable d’associer des 
actions à des objets d’interface (très bientôt 
traité…)
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