
Interfaces Graphiques
Les Composants

Jean-Baptiste.Yunes@u-paris.fr
Université Paris Cité

©2026



Composants / Containers

• Interface

• une interface est obtenue par 
agrégation de composants

• des emboîtements successifs de

• boîtes (containers)

• objets (composants simples)

Component

Container

*

2



Composants / Containers

• Donc deux types d’objets GUI

• les composants

• les containers

• qui sont aussi des composants...

Component

Container

*

3



Composants / Containers

• (bizarrerie?) Swing

• les JComponents Swing sont 
des Container AWT…

• il n’est pas conseillé de les utiliser 
comme tels… sauf dans le cas des 
containers Swing…

Component

Container

*

JComponent

4



Panorama (non-exhaustif) aka les-terres-du-milieu.java in JTolkien package
5

Component

Container

JComponentPanel

Applet

JApplet

ScrollPane Window

Dialog Frame JWindow

FileDialog JDialog JFrame

AbstractButton

JButton JMenuItemJToggleButton

JMenu

Box

JCheckBoxMenuItem JRadioButtonMenuItem

JCheckBox JRadioButton

JColorChooser JComboBox

JFileChooser JInternalFrame

Button

Label

Canvas

Checkbox

Choice

List

Scrollbar

TextComponent

TextArea

TextField
JLabel

JLayeredPane

JList

JMenuBar

JOptionPane

JPanel

JPopupMenu

JProgressBar

JRootPane

JScrollBar

JScrollPane

JSeparator

JSlider

JSpinner

JSplitPane

JTabbedPane

JTable

JTextComponent

JToolBar

JToolTip

JTree

JViewport
JTextFieldJTextAreaJEditorPane

JTextPane JFormattedTextField JPasswordField

MenuComponent

MenuItemMenuBar

CheckboxMenuItem Menu

PopupMenu

Mordor

Eriâdor

One Class to rule them all 
One Ctrl-F to find them 
One Swing to bring them all 
and in the GUI bind them, 
In the Land of Java where the Objects lie.



Component

• Les composants (java.awt.Component) :

• un nom (name)

• une taille et position (x/y/width/height - 
size/location)

• visible ou non (visible)

• réceptacle de divers événements

• Il est très important de rendre visible les 
composants sous peine… d’invisibilité !

6



Container

• Les containers (java.awt.Container) :

• des méthodes de gestion de la relation 
d’agrégation Container/Composant

• add/remove/getComponent/
getComponentCount/getComponentAt/
getComponents…

• des méthodes de gestion de la disposition (layout)

• une police par défaut (font)

7



JComponent

• Les composants Swing (javax.swing.JComponent) :

• support pour une apparence dynamique (pluggable 
look-and-feel)

• amélioration de la gestion du clavier

• support pour info-bulles

• support pour l’accessibilité

• support pour stockage de propriétés spécifiques

• support amélioré pour le dessin (double-buffering, 
bords)

8



9

désormais

sauf exception nécessaire

nous ne préoccuperons plus que de Swing…



JComponent

• Quelques propriétés des JComponents :

• opaque (boolean)

• background/foreground (Color)

• font (Font)

• toolTip (String)

• illustration avec un JLabel (JComponentExemple.java)

• précaution : rendre le JLabel opaque car par 
défaut son fond est transparent…

10



Containers

• Les Containers

• des boîtes (2D)

• ont pour rôle de contenir d’autres composants

11



Containers racine

• Containers racine

•JApplet

• JDialog

• JFrame

• JWindow

• au moins un par application

• manipulables directement par le window manager

12



Containers racine

• JFrame vs JWindow

• décoration...

• JDialog ?

• en général utile dans le contexte d’une autre 
fenêtre, on verra plus tard…

• JApplet ?

13



Containers racine

JFrameExemple.java

• JFrame(String title)

• contient un unique JRootPane

• peut être remplacé

• ne peut être enlevé

• peut être associée à une JMenuBar

14



Containers racine

JWindowExemple.java

• JWindow() / JWindow(Frame owner) / 
JWindow(Window owner)

• contient un unique JRootPane

• peut être remplacé

• ne peut être absent

• pas de barre de menu…

15



Containers racine

• Rappel : les containers racines peuvent être visibles 
ou non :

•setVisible(boolean)

• il ne faut pas oublier des les rendre visibles 
sous peine d’invisibilité…

• il ne faut pas les rendre visible trop tôt! Pour 
éviter des effets désagréables de construction visible 
de l’interface et de performances…

16



Containers racine

• JWindow, JFrame

• des capsules pour un container utilisateur

• le container principal (JRootPane) est accessible 
via

•Container getContentPane()

• setContentPane(Container)

17



Containers

• Containers ordinaires

•JPanel

• JScrollPane

• JSplitPane

• JTabbedPane

• JToolBar

• permettent la division d’un espace existant

• ne sont utilisables que dans d’autres containers

18



Containers

• Les containers ordinaires

• un espace de rangement d’autres composants, 
l’agrégation vit grâce à :

• add(Component) / remove(Component)

• comment les composants sont-ils rangés/placés ?

• comme on veut… on le verra plus tard…

19



JPanel

•JPanel

• le plus simple, un espace rectangulaire

• un simple panneau d’affichage

JPanelExemple.java

JPanelExemple2.java

20



JScrollPane

•JScrollPane

• une fenêtre sur un espace rectangulaire déplaçable

JScrollPaneExemple.java

21



JSplitPane

•JSplitPane

• divise un espace verticalement ou 
horizontalement en deux parties dont la somme 
est l’espace entier

JSplitPaneExemple.java

22



JTabbedPane

•JTabbedPane

• une pile d’espaces tous de même dimension

23

JTabbedPaneExemple.java



JToolBar

•JToolBar

• un espace linéaire de rangement

• utilise des Actions

24



Containers

• Containers spéciaux :

•JRootPane

• JLayeredPane

• JInternalFrame

• JDesktopPane

• Leur usage est plus anecdotique ou technique…

25



JRootPane

•JRootPane

• on ne les crée jamais soi-même

• les containers racine s’occupent d’en fournir

• leur structure est très particulière…

26



JLayeredPane

•JLayeredPane

• autorise la superposition « en Z-stack » de 
différent panneaux à usages particuliers…

contentPane
menuBar

défaut

toolBar
palettes

modales internes
popups
drag’n’drop

27



JInternalFrame - JDesktopPane

•JInternalFrame

• autorise la création de frames internes, c’est-à-
dire de fenêtres à l’intérieur d’une autre

•JDesktopPane

• une version spéciale de JInternalFrame 
adaptée pour gérer des fenêtres internes multiples

28



Containers : Menu

• Les menus

•JMenuItem

• un choix dans un menu

•JMenu

• un container dédié qui hérite de JMenuItem

• JMenuBar

• un container dédié à l’accueil de menus

JMenuItem

JMenu

*

JMenuBar

*

29



Containers : Menu

JMenuExemple.java

• Attention

• une seule barre de menu par container racine 
(setJMenuBar(JMenuBar))

• le placement de la barre n’est pas contrôlable 
(WindowManager dépendant)

• Mac OS java -Dapple.laf.useScreenMenuBar=true

• pas de layout modifiable

30



Containers : Menu

JSeparatorExemple.java

• Les séparation logiques entre groupes d’items 
peuvent être obtenues par utilisation de

•JSeparator

31



• Si le container est visible

• validate() permet d’obtenir un replacement 
correct de tous les composants après ajout de 
nouveaux composants

• Container racine

• pack() permet d’obtenir un rangement optimal

32



Composants

• Les Composants

• proposent une interaction avec l’utilisateur

• affichage

• interaction en entrée

• les deux combinés

33



Composants

• Les composants :

• peuvent être actifs ou non, i.e. autorisent 
l’interactivité

•setEnabled(boolean)

• boolean getEnabled()

• l’effet obtenu est en général un grisé

JButtonExemple.java JButtonDisabledExemple.java

34



Composants

• Composants simples non-interactifs

•JLabel

• JProgressBar

• JSeparator

• JToolTip

• fournissent une information à l’utilisateur

35



Composants

JLabelExemple.java JLabelIconeExemple.java

• JLabel

• permet d’afficher une icône et/ou un texte

• supporte un sous-ensemble de HTML 3.2

36



Composants

ProgressMonitorExemple.java

• JProgressBar

• permet de rendre compte d’une progression

• cousins : ProgressMonitor / 
ProgressMonitorInputStream

37

JProgressBarExemple.java



Composants

• Composants interactifs simples :
• Boutons
•JButton
• JMenuItem
• JCheckBox JCheckBoxMenuItem
• JRadioButton JRadioButtonMenuItem
• JToggleButton

• Listes
•JComboBox
• JList

• Texte
•JTextField JFormattedTextField/JPasswordField

• Divers
•JSlider
• JSpinner

38



Boutons

• Les boutons (AbstractButton) peuvent être 
regroupés logiquement via des ButtonGroup

• cela n’a vraiment de sens que pour les boutons 
qui ont un état de sélection

• donc ni JButton, ni JMenuItem

• le plus souvent utilisé avec les RadioButton

• Les ButtonGroup permettent de contrôler 
l’exclusion mutuelle lors de sélection

39

Bu
tt
on
Ex
em
pl
e.
ja
va



Boutons

• Les listes

• Les JComboBoxs peuvent être éditables

• on verra plus tard comment personnaliser les 
rendus de ces objets… Les curieux peuvent aller 
jeter un œil sur ListCellRenderer<E>

40

Li
st
eE
xe
mp
le
.j
av
a



Texte

• Les champs de saisie de texte

• ordinaire

• mot de passe (saisie masquée)

• champ formatés (date, etc)

41

Te
xt
eE
xe
mp
le
.j
av
a



Divers

• Le curseur (slider)

• un curseur sur une règle

• les graduations peuvent être activées ou non 
(mineures/majeures)

• Le spinner

• la roulette (attention son aspect graphique n’est 
pas celui généralement attendu…)

42

Sl
iS
pi
Ex
em
pl
e.
ja
va



Composants

• Composants avancés (complexes, i.e. plus d’une 
interaction) :

•JColorChooser

• JEditorPane

• JTextPane

• JFileChooser

• JTable

• JTextArea

• JTree

• On les étudiera plus tard…

43



Layouts

• Les Layouts

• algorithmes de placement de composants dans 
des containers...

• problème : ranger des bagages dans un coffre

44



Layouts

•LayoutManager

• on peut toujours essayer de ranger les éléments soi-
même mais c’est généralement non-portable et 
parfaitement déconseillé…

• on peut choisir la politique de placement associée à 
un container donné

• méthode setLayout(LayoutManager)

45



Layouts

• Layouts de base

• AWT

•BorderLayout

• CardLayout

• FlowLayout

• GridLayout

• GridBagLayout

• Swing

• BoxLayout

• GroupLayout

• OverlayLayout

• ScrollPaneLayout

• SpringLayout

• ViewportLayout

46



Layouts

BorderLayoutExemple.java

•BorderLayout

• par défaut dans :

• les JRootPane des JWindow

•les contentPane des JFrame

• Cinq composants au plus : nord, sud, est, ouest, 
centre

• conserve dynamiquement son aspect

• retaille les composants si nécessaire

47



Layouts

FlowLayoutExemple.java

•FlowLayout

• par défaut dans les panneaux

• les composants sont placés comme 
dans un flot d’écriture

• ne retaille pas les composants

48



Layouts

BoxLayoutExemple.java

• BoxLayout

• par défaut dans les Box

• les composants sont rangés 
horizontalement ou verticalement 
dans des espaces tous de même 
taille

• ne retaille pas les composants

49



Layouts

GroupLayoutExemple.java

• GroupLayout

• permet d’obtenir des effets d’alignement

• ne retaille pas les composants

• un poil complexe à utiliser

50



Layouts

OverlayLayoutExemple.java

•OverlayLayout

• superpose des composants comme CardLayout

• mais autorise la visualisation/manipulation par 
transparence…

51



Layouts

SpringLayoutExemple.java

•SpringLayout

• exprime des contraintes entre composants

• simple en apparence…

52



Internationalisation
53



Internationalisation

• Régionalisation (Localization) l10n

• adaptation d’une application aux caractéristiques 
culturelles locales

• travail de l’ordre de la traduction

• Internationalisation (Internationalization) i18n

• processus de développement conduisant à 
produire une application localisable

• travail spécifique de développement

54



Internationalisation

• Idée (simple)

• ne pas afficher un message en dur

• utiliser une fonction réalisant la traduction 
adéquate en fonction d’un environnement donné

55



Internationalisation

• java.util.ResourceBundle

• une classe d’encapsulation de données 
régionalisées, la sélection des données est opérée 
par un ResourceBundle.Control

• des méthodes pour obtenir les messages depuis 
une liste (une classe adéquate ou un fichier 
adéquat)

56



Internationalisation

• Récupérer des données régionalisées depuis un 
fichier

•ResourceBundle.getBundle(String name)

• le fichier recherché aura pour nom

• name + suffixe régionalisé + “.properties“

• ex : Messages_fr_FR.properties

• possibilité d’internaliser le Bundle...

57



Internationalisation

• Récupérer la traduction d’un terme

•unResourceBundle.getString(String clé)

• permet de récupérer la chaîne associée à la 
clé donnée, et ce dans la base précédemment 
sélectionnée

58



Internationalisation

• Internationalisation

• MacOSX

• préférences système

• Windows

• préférences système

• Unix

• environnement : LANG, LC_*

• dans Eclipse : sélection possible dans 
Run Configurations... ➧ Environment

InternationalisationExemple.java

59



Internationalisation

• Internationalisation

InternationalisationExemple.java

60



Mnémoniques

• Les menus et la navigation au clavier

• on peut associer aux menus, items et boutons un 
mnémonique

• une lettre (associée à un modificateur en général <ALT>) 
permettant de se placer (naviguer) et sélectionner l’objet 
associé

• attention, l’action associée n’est pas réalisée (<RET>)

• ce n’est pas un raccourci!

• un raccourci permet de déclencher l’action associée à un 
objet d’interface sans passer par l’objet

• c’est de l’accessibilité

• La RFC 1345 est dédiée au sujet « Character Mnemonics & 
Character Sets »

61



Mnémoniques

• pour associer un mnémonique

•setMnemonic(int)

• l’entier est normalement l’identité d’une touche 
du clavier

•java.awt.event.KeyEvent.VK_*

• si le caractère est présent dans le texte affiché 
par l’objet associé, ce caractère est souligné 
par l’interface

• Attention: macOS ne supporte pas les mnémoniques Swing

62

MnemmoniquesExemple.java



Raccourcis

• un raccourci permet de déclencher l’action 
associée à un objet d’interface sans passer par 
l’objet

• c’est de l’ergonomie

•setAccelerator(KeyStroke)

• pour l’observer, il faut être capable d’associer des 
actions à des objets d’interface (très bientôt 
traité…)

63


