### Programmation Réseau



DE ROLL

Jean-Baptiste.Yunes@univ-paris-diderot.fr

**UFR** Informatique

2013-2014

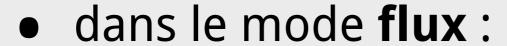
- Ce cours n'est pas un cours de réseau
  - on y détaillera pas de protocoles de basniveau (mais on en parlera)
- Ce cours est un cours de programmation réseau
  - on y apprend à écrire des applications nécessitant de la communication



- Pour le programmeur, qu'est-ce qu'un réseau ?
  - un ensemble de services
  - un moyen de communication (ensemble de machines/applications atteignables)



- Il existe au moins deux grands modes de communication :
  - par paquet (datagram): la poste en est un bon exemple
    - dans ce mode on est pas connecté (encore que), on est juste atteignable
  - en flux (stream) : la téléphonie en est un bon exemple
    - dans ce mode on est connecté




### ARIS S PARIS

### • dans le mode paquet :



- il n'existe pas d'ordre dans la délivrance des paquets
  - un paquet posté en premier peut arriver en dernier
- il n'existe pas non plus de fiabilité
  - un paquet envoyé peut être perdu
- intérêt : souple et léger...





- les informations sont reçues dans l'ordre exact de leur émission
- il n'y a pas de perte
- inconvénient : nécessite l'établissement d'une connexion et consomme donc des ressources pour sa gestion

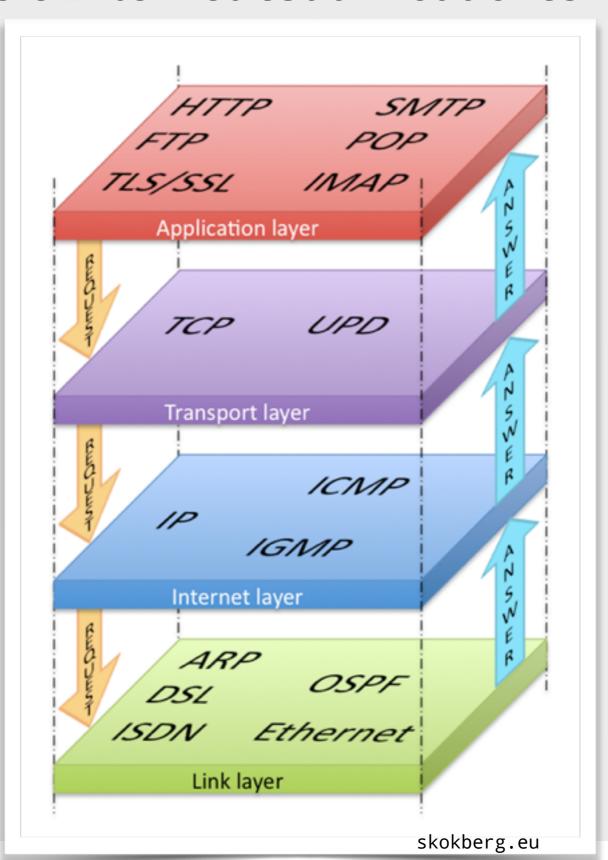


- Comment ceci fonctionne-t-il dans la réalité ?
  - le service de base est un mode paquet non fiable
    - la perte peut être compensée par des réémissions
    - la dégradation peut être compensée par des codages
- Comment passe-t'on d'un tel service à des services fiables ?
  - en superposant des couches logicielles agrémentant les couches inférieures de propriétés attendues



### ARIS DERO

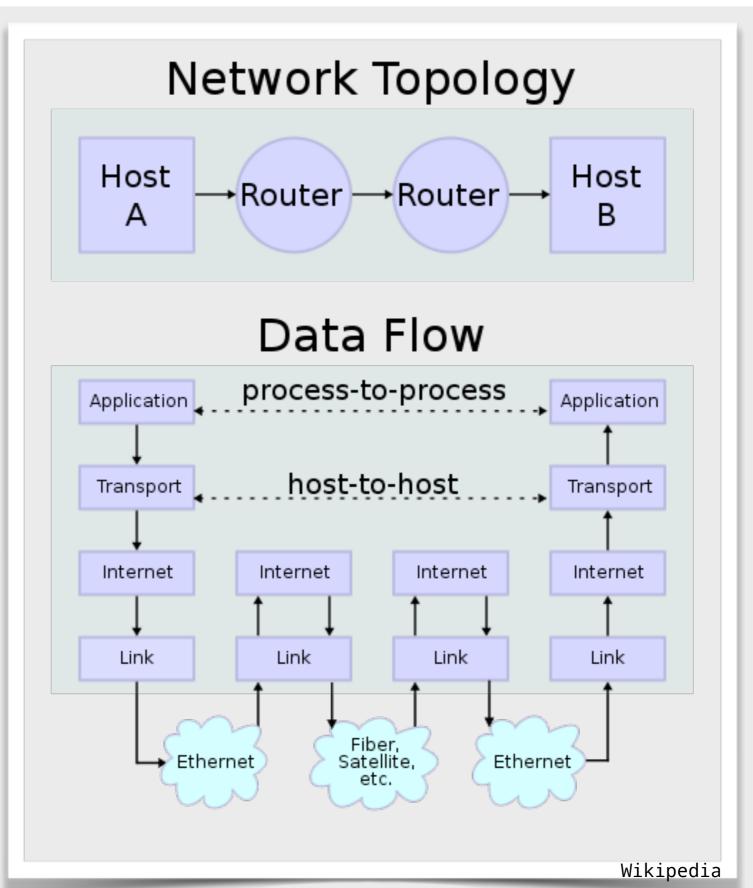
le modèle de référence est le modèle ISO/OSI
 (Open System Interconnection) en 7 couches


|                                                                                                                                   | OSI (Open Source Interconnection) 7 Layer Mod                                                                                                                                                                                                                                     |                                     |               |                     |                 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|---------------------|-----------------|
| Layer                                                                                                                             | Application/Example                                                                                                                                                                                                                                                               | Central<br>Prot                     | e/            | DOD4<br>Model       |                 |
| Application (7) Serves as the window for users and application processes to access the network services.                          | End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management                                                                                             | User<br>Applicati<br>SMTE           |               |                     |                 |
| Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network. | Syntax layer encrypt & decrypt (if needed)  Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation                                                                                                                         | JPEG/ASCII                          |               | G                   | Process         |
| Session (5) Allows session establishment between processes running on different stations.                                         | Synch & send to ports (logical ports)  Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.                                                                                                                   | RPC/SQL/NFS                         |               | A<br>T              |                 |
| Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.                    | TCP Host to Host, Flow Control  Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing                                                                                                                                                   | TCP/SPX/UDP                         |               | E<br>W<br>A         | Host to<br>Host |
| Network (3) Controls the operations of the subnet, deciding which physical path the data takes.                                   | Packets ("letter", contains IP address)  Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting                                                                                                                      | Route                               |               | Y<br>Can be<br>used | Internet        |
| Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.                       | Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control | Switch<br>Bridge<br>WAP<br>PPP/SLIP | Land<br>Based | on all<br>layers    | Network         |
| Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.           | Physical structure Cables, hubs, etc.  Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts                                                                                                    | Hub                                 | Layers        |                     | HELWOIX         |

|           |   | 0     |
|-----------|---|-------|
| rsité     |   | 2     |
| universit | S | DE    |
|           | ~ |       |
|           | A | PARIS |

| Couche       | Protocoles                              |
|--------------|-----------------------------------------|
| Application  | FTP, HTTP, SMTP, POP, SSH, TELNET, IMAP |
| Présentation | SSL, WEP, WPA, Kerberos                 |
| Session      | Ports                                   |
| Transport    | TCP, UDP, SPX                           |
| Réseau       | IPv4, IPv6, ARP, IPX                    |
| Liaison      | 802.11, WiFi, ATM,<br>Ethernet, ISDN    |
| Physique     | Fibre, Câble, Radio                     |

### DERO 1


• Le modèle Internet est à 4 couches



|           |   | $\vdash$ |
|-----------|---|----------|
|           |   | 0        |
| ité       |   | 8        |
| universit |   | Ш        |
| uni       | S |          |
|           |   |          |
|           | 4 |          |
|           | A | PARIS 7  |

| Couche      | Protocoles               |
|-------------|--------------------------|
| Application | FTP, HTTP, IMAP, POP     |
| Transport   | TCP, UDP                 |
| Internet    | IPv4, IPv6, IPsec, ICMP  |
| Liaison     | ARP, PPP, DSL, Ethernet… |

### Application Transport Internet Internet Link Link Ethernet PARIS 7



- Rappelons que dans le monde Internet la normalisation est disponible sous la forme de RFCs (Request For Comments)
  - documents officiels recouvrant tous les aspects de l'Internet
    - http://www.ietf.org/rfc.html



- Les deux couches qui nous intéressent seront donc :
  - la couche transport :
    - UDP (User Datagram Protocol), RFC 768
    - TCP (Transmission Control Protocol),
       RFC 793
  - la couche application :
    - très variée...



# ARIS S PARISE DE ROT

- Le couche transport fournit un ou plusieurs services de communication entre applications (par exemple TCP ou UDP)
  - pour communiquer, ces applications doivent se connaître
    - il existe donc un mécanisme de nommage...
- une application fournit un service particulier sur une machine donnée
  - le service est identifié par un port
  - la machine est identifiée par une adresse
    - ces informations sont similaires à celles jouées par un numéro de bureau (port) dans une administration donnée (machine)

- un couple (adresse,port) est un point de communication
  - toute communication ne peut s'effectuer qu'entre au moins deux points de communications
    - l'émetteur
    - le (ou les) receveur(s)



### ARIS S BALLS DE ROLL

- une machine peut-être identifiée par :
  - un nom Internet (pas strictement nécessaire)
    - par exemple : www.samsung.com
    - une machine peut posséder plusieurs noms
  - par une adresse Internet (toute machine connectée au réseau en possède une)
    - en réalité il s'agit de l'adresse d'un dispositif réseau sur une machine (ex : 211.45.27.202)
      - une adresse par dispositif
      - mais possiblement plusieurs dispositifs pour une machine

- Les adresses correspondent à une organisation structurelle du réseau
  - Les <u>machines préfèrent les nombres</u>
- Les noms correspondent à une organisation logique
  - Les <u>humains préfèrent les noms</u>



- Le nom entièrement qualifié d'une machine est une représentation hiérarchique de la structure logique à laquelle elle appartient
- Le nom est constitué de deux parties

www.informatique.univ-paris-diderot.fr

domaine



# ARIS S PARIS

- La spécification du domaine représente la hiérarchie des responsabilités
  - exemple : l'ufr d'informatique de l'université paris diderot située dans le domaine français
  - le domaine le plus à droite est appelé domaine de premier niveau (top-level domain)
    - en gros, deux types :
      - génériques (ex.:.com, .edu, ...)
      - nationaux (ex.:.fr,.tz,...)

### DEROT

- pour www.informatique.univ-parisdiderot.fr
  - fr est le domaine national attribué par l'ICANN à la france avec délégation à l'AFNIC
  - univ-paris-diderot est le sous-domaine attribué par l'AFNIC à l'université paris diderot avec délégation à la DSI de l'université
  - informatique est le sous-domaine attribué par la DSI à l'UFR avec délégation au service informatique de l'UFR d'informatique
  - www est le nom d'une des machines sous la responsabilité de l'UFR d'informatique

- Les adresses aussi sont structurées
  - mais la structure est un reflet de la structure physique du réseau, du moins en théorie
  - dans ce cours la structure des adresses ne nous intéresse pas
    - cela relève du domaine pur des réseaux...



- Le service permettant de faire la translation d'un nom en une adresse s'appelle le service de nom, c'est un annuaire
  - le système aujourd'hui le plus répandu est le DNS (RFC 882) qui est un service d'annuaire distribué
- Important : les communications nécessitent la connaissance des adresses Internet des machines concernées
- On notera au passage qu'il existe aujourd'hui deux types d'adresses : IPv4 et IPv6 (respectivement 4 et 8 octets)
  - deux réseaux qui cohabitent...



- le service d'annuaire distribué peut être interrogé à l'aide d'outils (des APIs sont disponibles comme on le verra plus tard)
  - Outils:
    - dig
    - nslookup (souvent considéré comme obsolète)



0

```
Terminal - tcsh - 80×31
[poil-aux-oreilles:~] yunes% dig www.ibm.com
; <>> DiG 9.6-ESV-R4-P3 <>> www.ibm.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15029
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
:www.ibm.com.
                                IN
                                        A
;; ANSWER SECTION:
                                        CNAME
                                                www.ibm.com.cs186.net.
www.ibm.com.
                        2428
                                IN
www.ibm.com.cs186.net.
                                IN
                                                129.42.58.216
                        50
;; AUTHORITY SECTION:
cs186.net.
                                                ns1.events.ihost.com.
                        459
                                IN
                                        NS.
cs186.net.
                        459
                                IN
                                        NS.
                                                ns.events.ihost.com.
cs186.net.
                        459
                                IN
                                        NS.
                                                ns2.events.ihost.com.
;; ADDITIONAL SECTION:
ns.events.ihost.com.
                        590
                                IN
                                                129.42.3.200
ns1.events.ihost.com.
                        590
                                IN
                                                129.42.1.200
ns2.events.ihost.com.
                        590
                                IN
                                                129.42.5.200
;; Query time: 1 msec
;; SERVER: 194.254.199.85#53(194.254.199.85)
;; WHEN: Thu Jan 5 11:26:49 2012
;; MSG SIZE rovd: 194
[poil-aux-oreilles:~] yunes%
```

| <b>● ○ ○</b>                                                                                        | Te      | rminal | — tcsh –  | - 80×31                |   |
|-----------------------------------------------------------------------------------------------------|---------|--------|-----------|------------------------|---|
| ;www.ibm.com.                                                                                       |         | IN     | A         |                        | 1 |
| ;; ANSWER SECTION:                                                                                  |         |        |           |                        |   |
| www.ibm.com.                                                                                        | 2428    | IN     | CNAME     | www.ibm.com.cs186.net. |   |
| www.ibm.com.cs186.net.                                                                              | 50      | IN     | A         | 129.42.58.216          |   |
| ;; AUTHORITY SECTION:                                                                               |         |        |           |                        |   |
| cs186.net.                                                                                          | 459     | IN     | NS        | ns1.events.ihost.com.  |   |
| cs186.net.                                                                                          | 459     | IN     | NS        | ns.events.ihost.com.   |   |
| cs186.net.                                                                                          | 459     | IN     | NS        | ns2.events.ihost.com.  |   |
| ;; ADDITIONAL SECTION:                                                                              |         |        |           |                        |   |
| ns.events.ihost.com.                                                                                | 590     | IN     | A         | 129.42.3.200           |   |
|                                                                                                     | 590     | IN     | A         | 129.42.1.200           |   |
| ns2.events.ihost.com.                                                                               | 590     | IN     | A         | 129.42.5.200           |   |
| ;; Query time: 1 msec<br>;; SERVER: 194.254.199.<br>;; WHEN: Thu Jan 5 11:<br>;; MSG SIZE rovd: 194 | •       |        | 199.85)   |                        |   |
| [poil-aux-oreilles:~] y<br>Server: 194.254<br>Address: 194.254                                      | .199.85 |        | www.ibm.  | COM                    |   |
| Non-authoritative answe<br>www.ibm.com canonic<br>Name: www.ibm.com.cs1                             | al name | = WWW. | ibm.com.c | s186.net.              |   |
| Address: 129.42.56.216                                                                              |         |        |           |                        | Ā |
|                                                                                                     |         |        |           |                        | ▼ |

```
Terminal — tcsh = 80 \times 31
;; MSG SIZE rovd: 213
[poil-aux-oreilles:~] yunes% nslookup mail.liafa.jussieu.fr
Server:
               194.254.199.85
               194.254.199.85#53
Address:
Non-authoritative answer:
mail.liafa.jussieu.fr canonical name = liafa1.liafa.jussieu.fr.
        liafa1.liafa.jussieu.fr
Name:
Address: 132.227.93.1
[poil-aux-oreilles:~] yunes% nslookup 132.227.93.1
              194.254.199.85
Server:
Address:
               194.254.199.85#53
Non-authoritative answer:
1.93.227.132.in-addr.arpa
                           name = liafa1.liafa.jussieu.fr.
Authoritative answers can be found from:
93.227.132.in-addr.arpa nameserver = liafa1.liafa.jussieu.fr.
93.227.132.in-addr.arpa nameserver = isis.lip6.fr.
93.227.132.in-addr.arpa nameserver = soleil.uvsq.fr.
93.227.132.in-addr.arpa nameserver = osiris.lip6.fr.
isis.lip6.fr internet address = 132.227.60.2
isis.lip6.fr has AAAA address 2001:660:3302:283c::2
liafa1.liafa.jussieu.fr internet address = 132.227.93.1
osiris.lip6.fr internet address = 132.227.60.30
osiris.lip6.fr has AAAA address 2001:660:3302:283c::1e
soleil.uvsq.fr internet address = 193.51.24.1
[poil=aux=oreilles:~] yunes%
```

### ARIS DEROT

- D'autre part, sur une machine donnée plusieurs communications peuvent prendre place simultanément
  - par conséquent il doit être possible de les distinguer, comme pour différencier les téléphones fixes dans une entreprise, il existe la notion de port
    - toute communication nécessite l'utilisation d'un port
    - les ports sont donc utilisés pour assurer le multiplexage, un flux est identifié par deux couples (adresse,port)
- Les ports UDP et TCP sont distincts (deux espaces)

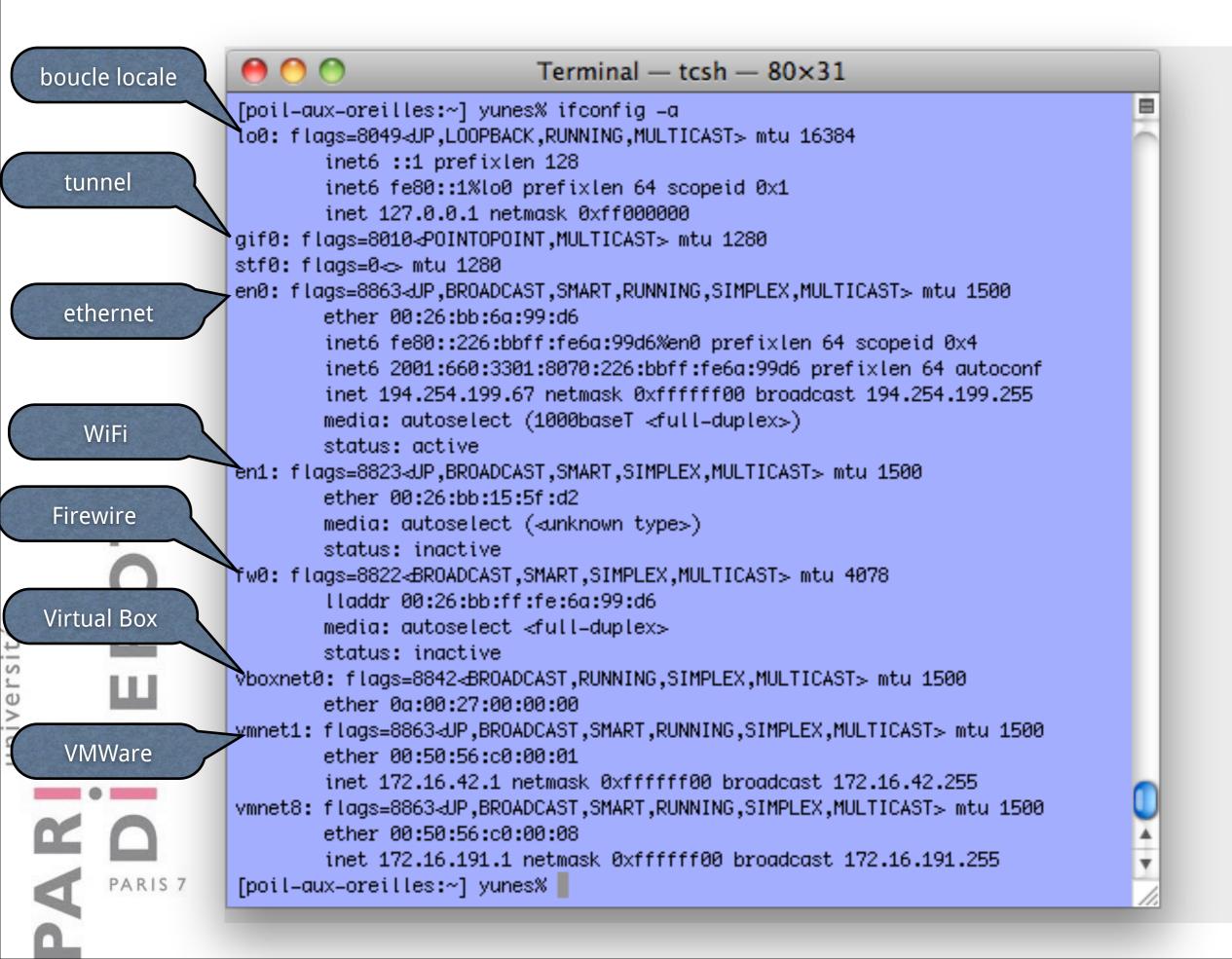
- Il existe essentiellement trois types de ports :
  - les ports reconnus, de numéro compris entre 0 et 1023
  - les ports réservés, de numéro compris entre 1024 et 49151
  - les ports libres, de numéro compris entre 49152 et 65535



- Les ports reconnus (Well-known ports) sont utilisés par des services réseau d'usage général et commun :
  - 20 et 21 pour FTP
  - 25 pour SMTP
  - 80 pour HTTP
- ce qui signifie que pour établir une connexion avec un serveur web, il faut s'adresser au port 80 de la machine concernée



- Les ports réservés (Registered ports) :
  - certains correspondent à des services d'usage moins général (souvent des services propriétaires)
    - 17500 pour Dropbox
  - n'importe quelle application peut en faire l'usage quelle désire...
- Les ports libres (Dynamic, private or ephemeral ports)
  - normalement utilisés pour des durées limitées...




| sité      |   | R       |
|-----------|---|---------|
| universit | S | DE      |
| 1         | 8 |         |
|           | 4 | PARIS 7 |

| <b>● ● ●</b> |         | Terminal — more — 80×31        |   |
|--------------|---------|--------------------------------|---|
| daytime      | 13/udp  | # Daytime (RFC 867)            |   |
| daytime      | 13/tcp  | # Daytime (RFC 867)            | 6 |
| qotd         | 17/udp  | # Quote of the Day             |   |
| qotd         | 17/tcp  | # Quote of the Day             |   |
| msp          | 18/udp  | # Message Send Protocol        |   |
| msp          | 18/tcp  | # Message Send Protocol        |   |
| chargen      | 19/udp  | # Character Generator          |   |
| chargen      | 19/tcp  | # Character Generator          |   |
| ftp-data     | 20/udp  | # File Transfer [Default Data] |   |
| ftp-data     | 20/tcp  | # File Transfer [Default Data] |   |
| ftp          | 21/udp  | # File Transfer [Control]      |   |
| ftp          | 21/tcp  | # File Transfer [Control]      |   |
| ssh          | 22/udp  | # SSH Remote Login Protocol    |   |
| ssh          | 22/tcp  | # SSH Remote Login Protocol    |   |
| telnet       | 23/udp  | # Telnet                       |   |
| telnet       | 23/tcp  | # Telnet                       |   |
|              | 24/udp  | # any private mail system      |   |
|              | 24/tcp  | # any private mail system      |   |
| smtp         | 25/udp  | # Simple Mail Transfer         |   |
| smtp         | 25/tcp  | # Simple Mail Transfer         |   |
| nsw-fe       | 27/udp  | # NSW User System FE           |   |
| nsw-fe       | 27/tcp  | # NSW User System FE           |   |
| msg-icp      | 29/udp  | # MSG ICP                      |   |
| msg-icp      | 29/tcp  | # MSG ICP                      |   |
| msg-auth     | 31/udp  | # MSG Authentication           |   |
| msg-auth     | 31/tcp  | # MSG Authentication           |   |
| dsp          | 33/udp  | # Display Support Protocol     |   |
| dsp          | 33/tcp  | # Display Support Protocol     |   |
|              | 35/udp  | # any private printer server   | À |
|              | 35/tcp  | # any private printer server   | ¥ |
|              | extrait | du fichier /etc/services       |   |

- sur les machines de la famille Unix, la configuration réseau (d'une interface) peutêtre obtenue par la commande ifconfig
  - if config: configuration des interfaces
- une machine peut posséder plusieurs interfaces





# ARIS S B DEROT

- Pour communiquer entre deux machines distantes séparées par des appareillages de relais, il est nécessaire de trouver un chemin (on dit une **route**)
  - il existe donc sur le réseau de quoi permettre le guidage (on dit le routage) des paquets
- la consultation (sous Unix) des tables locales de routage s'effectuent à l'aide de la commande netstat

|       |   | $\vdash$ |
|-------|---|----------|
|       |   | 0        |
| 2     |   | 0        |
| 2     |   | Ш        |
| allin | S |          |
|       | ~ |          |
|       | 4 | PARI     |
|       |   |          |

|                          | Terminal                      | — tcsh - | - 80×46 |        |        |        |   |
|--------------------------|-------------------------------|----------|---------|--------|--------|--------|---|
|                          | :~] yunes% netstat -          | -r       |         |        |        |        | ı |
| Routing tables           |                               |          |         |        |        |        |   |
|                          |                               |          |         |        |        |        |   |
| internet:<br>Destination | Catouau                       | Flage    | Refs    | Use    | Motif  | Expire |   |
| lefault                  | Gateway<br>el-mohino.informat | Flags    | 10      | 056    | enØ    | Expire |   |
| 169.254                  | link#4                        | UCS      | 9       | 0      | en0    |        |   |
| 72.16.42/24              | link#8                        | UC       | 1       | 0      | vmnet1 |        |   |
| 72.16.42.255             | ff:ff:ff:ff:ff                | UHLWbI   | ē       | 3      | vmnet1 |        |   |
| 72.16.191/24             | link#9                        | UC       | 1       | 0      | vmnet8 |        |   |
| 72.16.191.255            | link#9                        | UHLWbI   | 1       | 4      | vmnet8 |        |   |
| 94.254.199               | link#4                        | UCS      | 20      | ė      | enØ    |        |   |
| nickael.informatiq       | 0:21:85:3f:8:36               | UHLWI    | 0       | 64     | en0    | 1105   |   |
|                          | d4:85:64:60:62:b2             | UHLWI    | 0       | 0      | en0    | 1076   |   |
| ctoplasme.informa        |                               | UHLWI    | 0       | 0      | en0    | 1157   |   |
| hicago.informatiq        |                               | UHLWI    | 0       | 0      | en0    | 1146   |   |
|                          | 60:eb:69:3e:b8:6e             | UHLWI    | 0       | 0      | en0    | 1199   |   |
| ecretariat.inform        |                               | UHLWI    | 0       | 0      | en0    | 1166   |   |
| ivose.informatiqu        | 0:b:5d:e5:89:42               | UHLWI    | 0       | 0      | en0    | 1077   |   |
| luviose.informati        |                               | UHLWI    | 0       | 0      | en0    | 1168   |   |
| erminal.informati        |                               | UHLWI    | 0       | 0      | en0    | 1148   |   |
| essidor.informati        |                               | UHLWI    | 0       | 0      | en0    | 1127   |   |
| elents.informatiq        | 0:3:ba:12:d4:3a               | UHLWI    | 0       | 0      | en0    | 1184   |   |
| weet-smoke.inform        |                               | UHLWI    | 0       | 12     | en0    | 1185   |   |
| el-mohino.informat       | 0:22:83:8b:a4:81              | UHLWI    | 9       | 6      | en0    | 1197   |   |
| onejo.informatiqu        | 8:0:9:c5:4c:2a                | UHLWI    | 0       | 16     | en0    | 1061   |   |
| igreurs.informati        | 0:25:64:3b:9f:57              | UHLWI    | 0       | 0      | en0    | 1094   |   |
| a-amb-tomaquet.in        | 0:1b:24:93:4d:7d              | UHLWI    | 1       | 30     | en0    | 1064   |   |
| .94.254.199.255          | ff:ff:ff:ff:ff                | UHLWbI   | 0       | 4      | en0    |        |   |
|                          |                               |          |         |        |        |        |   |
| nternet6:                |                               |          |         |        |        |        |   |
| estination               | Gateway                       | Flags    |         | Expire |        |        |   |
| efault<br>               | fe80::222:83ff:fe8            |          | en0     |        |        |        |   |
| ocalhost                 | localhost                     | UH       | Lo0     |        |        |        |   |
| lolores_net_v6.ufr       |                               | UC       | en0     |        |        |        |   |
|                          | 0:22:83:8b:a4:81              | UHLW     | en0     |        |        |        |   |
| 001:660:3301:8070        |                               | UHL      | Lo0     |        |        |        |   |
| e80::%lo0                | localhost                     | Uc       | Lo0     |        |        |        |   |
| ocalhost                 | link#1                        | UHL      | Lo0     |        |        |        |   |
| e80::%en0                | link#4                        | UC       | en0     |        |        |        |   |
|                          | 0:22:83:8b:a4:81              | UHLW     | en0     |        |        |        |   |
| rotinette.local          |                               | UHL      | Lo0     |        |        |        |   |
| e80::%en1                | link#5                        | UC       | en1     |        |        |        |   |
| f01::                    | localhost                     | Um       | lo0     |        |        |        |   |
| f02::                    | localhost                     | UmC      | lo0     |        |        |        |   |

 On peut observer les routes suivies par des paquets sur le réseau par l'intermédiaire de la commande

traceroute [-P protocole] machine

- Attention traceroute ne fournit qu'une route probable
  - Chaque paquet peut suivre une route différente pour atteindre un point donné à partir d'une même source
  - L'algorithme utilisé par traceroute ne permet pas d'obtenir une route réellement utilisée (en théorie non, en pratique oui)





```
♠ ♠ ♠
                                 Terminal — tcsh = 96 \times 26
[poil-aux-oreilles:~] yunes% traceroute -P ICMP www.free.fr
traceroute to www.free.fr (212.27.48.10), 64 hops max, 72 byte packets
1 el-mohino (194.254.199.88) 0.794 ms 0.558 ms 0.494 ms
2 backbone-p7.r-prg-1.net.univ-paris7.fr (194.254.200.130) 1.229 ms 1.012 ms 1.042 ms
3 up7prg.sw-prg-gm.net.univ-paris7.fr (194.254.200.226) 23.671 ms 25.778 ms 3.659 ms
  interco-7.01-jussieu.rap.prd.fr (195.221.126.241) 1.195 ms 1.097 ms 1.231 ms
5 vl165-te3-2-jussieu-rtr-021.noc.renater.fr (193.51.181.102) 1.532 ms 1.319 ms 1.551 ms
6 te1-2-paris1-rtr-021.noc.renater.fr (193.51.189.230) 2.014 ms 1.789 ms 2.134 ms
7 aub-6k-1.routers.proxad.net (212.27.38.205) 2.027 ms * *
8 th2-crs16-1-be1007.intf.routers.proxad.net (212.27.50.137) 2.503 ms 2.595 ms 2.642 ms
   bzn-6k-sys-po21.intf.routers.proxad.net (212.27.50.6) 2.481 ms 2.313 ms 2.643 ms
10 www.free.fr (212.27.48.10) 2.594 ms 2.599 ms 2.528 ms
[poil=aux=oreilles:~] yunes%
```


### On peut tester si une machine est présente (si le service n'est pas interdit pour des raisons de sécurité) sur le réseau en utilisant le service de très bas-niveau d'écho réseau. Ce service est habituellement désigné sous le vocable ping.

 Ce service peut-être obtenu à l'aide de la commande ping



```
Terminal — tcsh — 83 \times 35
[poil-aux-oreilles:~] yunes% ping www.informatique.univ-paris-diderot.fr
PING trotinette.informatique.univ-paris-diderot.fr (194.254.199.80): 56 data bytes
64 bytes from 194.254.199.80: icmp_seq=0 ttl=255 time=0.340 ms
64 bytes from 194.254.199.80: icmp_seq=1 ttl=255 time=0.472 ms
64 bytes from 194.254.199.80: icmp_seq=2 ttl=255 time=0.355 ms
64 bytes from 194.254.199.80: icmp_seq=3 ttl=255 time=0.411 ms
64 bytes from 194.254.199.80: icmp_seq=4 ttl=255 time=0.390 ms
۸0.
--- trotinette.informatique.univ-paris-diderot.fr ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.340/0.394/0.472/0.047 ms
[poil-aux-oreilles:~] yunes% ping www.liafa.jussieu.fr
PING liafa1.liafa.jussieu.fr (132.227.93.1): 56 data bytes
64 bytes from 132.227.93.1: icmp_seq=0 ttl=249 time=2.198 ms
64 bytes from 132.227.93.1: icmp_seq=1 ttl=249 time=1.863 ms
64 bytes from 132.227.93.1: icmp_seq=2 ttl=249 time=1.934 ms
64 bytes from 132.227.93.1: icmp_seq=3 ttl=249 time=1.906 ms
64 bytes from 132.227.93.1: icmp_seq=4 ttl=249 time=1.904 ms
۸0.
--- liafa1.liafa.jussieu.fr ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 1.863/1.961/2.198/0.121 ms
[poil-aux-oreilles:~] yunes% ping www.aliceadsl.fr
PING www.aliceadsl.fr (212.27.48.10): 56 data bytes
64 bytes from 212.27.48.10: icmp_seq=0 ttl=119 time=2.451 ms
64 bytes from 212.27.48.10: icmp_seq=1 ttl=119 time=2.612 ms
64 bytes from 212.27.48.10: icmp_seq=2 ttl=119 time=2.308 ms
64 bytes from 212.27.48.10: icmp_seq=3 ttl=119 time=2.493 ms
64 bytes from 212.27.48.10: icmp_seq=4 ttl=119 time=2.509 ms
64 bytes from 212.27.48.10: icmp_seq=5 ttl=119 time=3.041 ms
۸0
--- www.aliceadsl.fr ping statistics ---
6 packets transmitted, 6 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 2.308/2.569/3.041/0.230 ms
[poil=aux=oreilles:~] yunes%
```

 La commande hostname permet d'obtenir le nom de la machine sur laquelle on est connecté



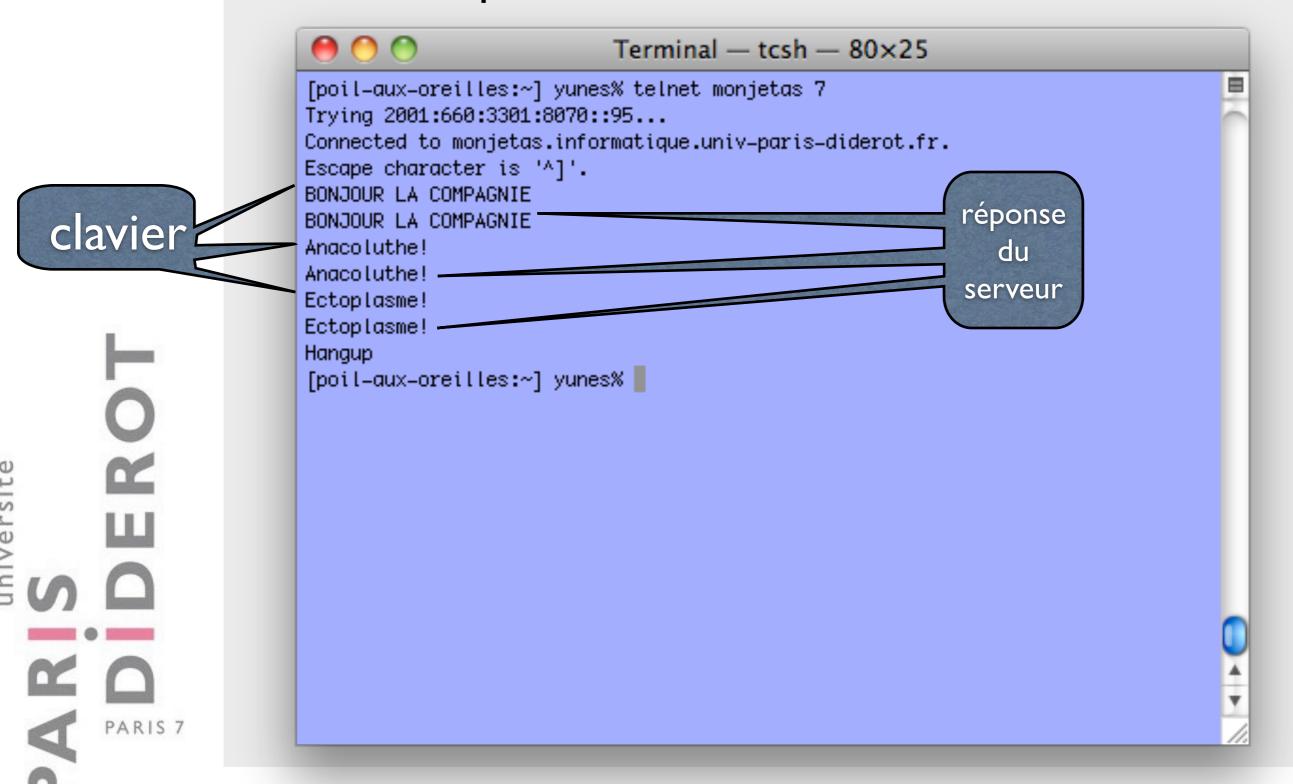


 La commande netstat permet aussi d'obtenir des informations relatives aux connexions connues de la machine

netstat [-a] [-f famille] [-p protocole]



0


```
Terminal — tcsh = 81 \times 23
[poil-aux-oreilles:~] yunes% netstat -f inet -p tcp
tcp4
                     poil-aux-oreille.54710 vx-in-f109.1e100.imaps ESTABLISHED
tcp4
                     poil-aux-oreille.54708 vx-in-f109.1e100.imaps ESTABLISHED
                     poil-aux-oreille.54706 vx-in-f109.1e100.imaps ESTABLISHED
tcp4
tcp4
                     poil-aux-oreille.54705 aosnotify.me.com.5223
                                                                   SYN_SENT
tcp4
                     poil-aux-oreille.54702 vx-in-f109.1e100.imaps ESTABLISHED
tcp4
                     poil-aux-oreille.54701 17.172.34.91.imaps
                                                                    ESTABLISHED
tcp4
                     poil-aux-oreille.54700 17.172.34.91.imaps
                                                                    ESTABLISHED
           0
tcp4
                     poil-aux-oreille.54699 17.172.34.91.imaps
                                                                    ESTABLISHED
                     poil-aux-oreille.54697 17.172.34.91.imaps
tcp4
                                                                    ESTABLISHED
           0
                     poil-aux-oreille.54688 kamis.liafa.juss.imaps ESTABLISHED
tcp4
                     poil-aux-oreille.54685 kamis.liafa.juss.imaps ESTABLISHED
tcp4
                     poil-aux-oreille.54684 kamis.liafa.juss.imaps ESTABLISHED
tcp4
                     poil-aux-oreille.54683 kamis.liafa.juss.imaps ESTABLISHED
tcp4
                     poil-aux-oreille.54575 pa-amb-tomaquet..ndl-a CLOSE_WAIT
tcp4
          37
                     poil-aux-oreille.54552 pa-amb-tomaquet..ndl-a ESTABLISHED
           0
tcp4
                     poil-aux-oreille.54420 vw-in-f108.1e100.imaps FIN_WAIT_1
tcp4
           0
                     poil-aux-oreille.54414 17.172.36.57.imaps
tcp4
                                                                    FIN_WAIT_1
                     poil-aux-oreille.54405 kamis.liafa.juss.imaps FIN_WAIT_1
tcp4
                     poil-aux-oreille.54714 pa-amb-tomaquet..ndl-a TIME_WAIT
tcp4
[poil=aux=oreilles:~] yunes%
```

 Il existe une commande permettant d'établir une liaison TCP « interactive » (i.e. dont l'entrée standard et la sortie standard correspondent à un bout de la liaison)

telnet nom\_ou\_adresse [port]



 on établit ici une connexion sur le service echo tcp d'un serveur



 On établit ici une liaison vers le service daytime en tcp

```
Terminal - tcsh - 80×25
[poil-aux-oreilles:~] yunes% telnet monjetas daytime
Trying 2001:660:3301:8070::95...
Connected to monjetas.informatique.univ-paris-diderot.fr.
Escape character is '^]'.
Thu Jan 5 16:46:58 2012
Connection closed by foreign host.
[poil-aux-oreilles:~] yunes%
```



 L'établissement d'une liaison UDP peut être aussi obtenue par emploi de la commande netcat

nc -u machine port



- Ces deux commandes permettent de fabriquer des applications réseau à moindre coût
  - mais elles seront nécessairement primitives



- Le principe général de l'établissement d'une connexion réseau est
  - que l'un des deux points de communication [m,p] doit être placé en attente d'une demande de connexion (mode serveur)
  - l'autre point de communication [m',p'] peut alors demander l'établissement d'une connexion (mode client)
  - la partie serveur décide d'accepter ou non la connexion et si oui
    - un nouveau point de communication [m,p"] est construit (à l'aide d'un port éphémère) et connecté avec le point de connexion du client
    - une connexion est alors établie entre [m',p'] et [m,p"]
      - à ce moment les deux points sont fonctionnellement interchangeables (symétrie de la liaison)



- L'objet standard de communication est la socket
  - de quoi s'agit-il?
    - il faut avoir à l'esprit que dans l'univers inspiré d'Unix « tout est fichier »
      - un abus de langage pour signifier l'uniformité d'opérations d'entrées/ sorties : « tout se manipule de la même manière en matière d'entrées/sorties »
        - y compris le réseau... où l'objet sousjacent correspondant est appelé socket



## DIDEROT

- Une communication <u>standard</u> s'établit de façon suivante :
  - la partie serveur est passive et attend toute demande de connexion sur un port donné
  - la partie cliente choisit un port depuis lequel elle va émettre sa demande de connexion
  - le serveur accepte la demande en établissant la connexion sur un port de service
  - lorsque tout est établi, on aura bien un couple identifiant la connexion...

## Le codage

- Puisqu'il s'agit de communiquer entre machines diverses et variées, il est nécessaire de rappeler que la représentation des nombres aussi est variée. Pour les entiers, il y a deux grands types de codage :
  - petit-boutiste ou petit-boutien (littleendian)
  - grand-boutiste ou grand-boutien (bigendian)



### On rappelle que le codage (univoque) d'un nombre n en base b s'écrit :

$$n = \sum c_i b^i$$

- comme les machines utilisent des octets, on peut considérer la base comme égale à 256
- pour un entier de 32 bits, 4 octets l'écriture est donc :

$$n = c_3.256^3 + c_2.256^2 + c_1.256^1 + c_0.256^0$$



- se pose donc le problème du stockage de ces 4 octets en mémoire, deux grandes possibilités (parmi d'autres) :
  - petit-boutien (petit bout d'abord) :

| adresse | m | m+l | m+2 | m+3 |
|---------|---|-----|-----|-----|
| chiffre | C | U   | C   | С   |

grand-boutien (grand bout d'abord) :

| adresse | m | m+I | m+2 | m+3 |
|---------|---|-----|-----|-----|
| chiffre | С | С   | С   | С   |



- dans les communications ce problème est parfois dénommé « the NUXI problem »...
- le protocole IP a donc nécessité de faire un choix :
  - c'est celui du grand-boutisme
    - cet ordre est aussi dénommé NBO (Network Byte Ordering)



# DEROT

- il peut être nécessaire d'effectuer soi-même, les conversions du codage courant vers NBO :
  - en C, il existe des 4 fonctions pour convertir depuis l'hôte vers le réseau (ou vice-versa) les types entiers de 16 bits et entiers de 32 bits appelés respectivement (short et long):

```
#include <arpa/inet.h>
```

```
uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);
```

- en C il faut bien prendre soin de réaliser les conversions pour toute donnée utilisée par les protocoles réseau...
- en Java, ce n'est pas nécessaire, l'API fait la conversion elle-même
  - car le codage des entiers en Java est standardisé

